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We introduce a natural way to extend celebrated spin-cluster Monte Carlo algorithms for fast
thermal lattice simulations at criticality, like Wolff, to systems in arbitrary fields, be they linear
magnetic vector fields or nonlinear anisotropic ones. By generalizing the ‘ghost spin’ representation
to one with a ‘ghost transformation,’ global invariance to spin symmetry transformations is restored
at the cost of an extra degree of freedom which lives in the space of symmetry transformations. The
ordinary cluster-building process can then be run on the new representation. We show that this
extension preserves the scaling of accelerated dynamics in the absence of a field for Ising, Potts, and
O(n) models and demonstrate the method’s use in modelling the presence of novel nonlinear fields.
We also provide a C++ library for the method’s convenient implementation for arbitrary models.

Lattice models are important in the study of statistical
physics and phase transitions. Rarely exactly solvable,
they are typically studied by approximate and numerical
methods. Monte Carlo techniques are a common way of
doing this, approximating thermodynamic quantities by
sampling the distribution of system states. These Monte
Carlo algorithms are better the faster they arrive at a
statistically independent sample. This becomes a prob-
lem near critical points, where critical slowing down [1]
results in power-law divergences of dynamic timescales.

Celebrated cluster algorithms largely addressed this in
the absence of symmetry-breaking fields by using nonlo-
cal updates [2] whose clusters undergo a percolation tran-
sition at the critical point of the system [3]. These result
in relatively small dynamic exponents for many spin sys-
tems [4–7], including the Ising, O(n) [8], and Potts [9, 10]
models. These algorithms rely on the natural invariance
of the systems in question under symmetry transforma-
tions on their spins.

Some success has been made in extending these algo-
rithms to systems in certain external fields by adding a
‘ghost site’ [11] that returns global rotation invariance to
spin Hamiltonians at the cost of an extra degree of free-
dom, allowing the method to be used in a subcategory
of interesting fields [12–14]. Static fields have also been
applied by including a separate metropolis or heat bath
update step after cluster formation [15–17], and other
categories of fields have been applied using replica meth-
ods [18–20]. Monte Carlo techniques that involve cluster
updates at fixed magnetization have been used to exam-
ine quantities at fixed field by later integrating measured
thermodynamic functions [21, 22].

We show that the scaling of correlation time near the
critical point of several models suggests that the ‘ghost’
approach is a natural one, e.g., that it extends the cel-
ebrated scaling of dynamics in these algorithms at zero
field to various non-symmetric perturbations. We also
show, by a redefinition of the spin–spin coupling in a
generic class of spin systems, arbitrary external fields can
be treated using cluster methods. Rather than the in-
troduction of a ‘ghost spin,’ our representation relies on
introducing a ‘ghost transformation,’ an extra degree of
freedom residing on a ‘ghost’ site coupled to all other sites

that takes its values from the collection of spin symmetry
transformations of the base model rather than resemble
the base spins themselves.

We provide an open-source implementation of this
method in the form of a C++ library, available at
https://git.kent-dobias.com/wolff/ [23]. Use of
this library will be described briefly within, but exten-
sive documentation is also available at https://doc.
kent-dobias.com/wolff/.

I. CLUSTERS WITHOUT A FIELD

We will pose the problem in a general way, but several
specific examples can be found in Table I for concrete-
ness. Let G = (V,E) be a graph, where the set of vertices
V = {1, . . . , N} enumerates the sites of a lattice and the
set of edges E contains pairs of neighboring sites. Let R
be a group acting on a set X, with the action of group
elements r ∈ R on elements s ∈ X denoted r · s. X is
the set of states accessible by each spin, and R is the
symmetry group of X. The set X must admit a mea-
sure µ that is invariant under the action of R, e.g., for
any A ⊆ X and r ∈ R, µ(r · A) = µ(A). This trait
is shared by the counting measure on any discrete set,
or by any group acting by isometries on a Riemannian
manifold, such as O(n) on Sn−1 in the O(n) models [24].
Finally, a subset R2 of elements in R of order two must
act transitively on X. This property, while apparently
obscure, is shared by any symmetric space [25] or by any
transitive, finitely generated isometry group. In fact, all
the examples listed here have spin spaces with natural
metrics whose symmetry group is their set of isometries.
We put one spin at each site of the lattice described by
G, so that the state of the entire system is described by
elements s ∈ X × · · · ×X = XN .

The Hamiltonian of this system is a function H :
XN → R defined by

H(s) = −
∑
{i,j}∈E

Z(si, sj)−
∑
i∈V

B(si), (1)

where Z : X × X → R couples adjacent spins and B :
X → R is an external field. Z must be symmetric in its
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arguments and invariant under the action of any element
of R applied to the entire lattice, that is, for any r ∈ R
and s, t ∈ X, Z(r · s, r · t) = Z(s, t). One may also allow
Z to also be a function of edge—for modelling random-
bond, long-range, or anisotropic interactions—or allow B
to be a function of site—for applying arbitrary boundary
conditions or modelling random fields. The formal results
of this paper (that the algorithm obeys detailed balance
and ergodicity) hold equally well for these cases, but we
will drop the additional index notation for clarity. Some
extensions, like adding strong random fields or bonds,
ultimately prove inefficient [18, 26].

Implementation of a model in the provided library is
as simple as defining a class that represents an element of
the state space X, with default constructor (and destruc-
tor, if necessary), and a class that represents an element
of the group R, with default constructor and member
functions that define the action and inverse action of the
class on both states and group elements. Specific de-
tails may be found at https://doc.kent-dobias.com/
wolff/models.html.

The goal of statistical mechanics is to compute expec-
tation values of observables A : XN → R. Assuming
the ergodic hypothesis holds (for systems with broken-
symmetry states, it does not), the expected value 〈A〉
of an observable A is its average over every state s in
the configuration space XN weighted by the Boltzmann
probability of that state appearing, or

〈A〉 =

∫
XN A(s)e−βH(s) dµ(s)∫
XN e−βH(s) dµ(s)

, (2)

where for Y1× · · · × YN = Y ⊆ XN the product measure
µ(Y ) = µ(Y1) · · ·µ(YN ) is the simple extension of the
measure on X to a measure on XN . These values are
estimated using Monte Carlo techniques by constructing
a finite sequence of states {s1, . . . , sM} such that

〈A〉 ' 1

M

M∑
i=1

A(si). (3)

Sufficient conditions for this average to converge to 〈A〉
as M → ∞ are that the process that selects si+1 given
the previous states be Markovian (only depends on si),
ergodic (any state can be accessed), and obey detailed
balance (the ratio of probabilities that s′ follows s and
vice versa is equal to the ratio of weights for s and s′ in
the ensemble).

Measurements of observables during Monte Carlo in
the provided library are made by the use of hooks, which
are member functions of a measurement class that are
run at designated points during the algorithm’s execu-
tion and are provided arbitrary information about the
internal state of all relevant objects. A detailed de-
scription of these hooks can be found at https://doc.
kent-dobias.com/wolff/measurement.html.

While any of several related cluster algorithms can
be described for this system, we will focus on the Wolff
algorithm [8]. In the absence of an external field, e.g.,
B(s) = 0, the Wolff algorithm proceeds in the following
way.

Algorithm 1 Wolff

1. Pick a random site m0 and add it to the stack.

2. Select a transformation r ∈ R2 distributed by f(r |
m0, s). Often f is taken as uniform on R2, but it is
sufficient for preserving detailed balance that f be any
function of the seed site m0 and Z(s, r · s) for all s ∈ s.
The flexibility offered by the choice of distribution will
be useful in situations where the set of spin states is
infinite.

3. While the stack isn’t empty,

(a) pop site m from the stack.

(b) If site m isn’t marked,

i. mark the site.

ii. For every j such that {m, j} ∈ E, add site j
to the stack with probability

pr(sm, sj) = min{0, 1− eβ(Z(r·sm,sj)−Z(sm,sj))}. (4)

iii. Take sm 7→ r · sm.

When the stack is exhausted, a cluster of connected
spins will have been transformed by the action of r. In or-
der for this algorithm to be useful, it must satisfy ergod-
icity and detailed balance. Ergodicity is satisfied since
we have ensured that R2 acts transitively on X, e.g., for
any s, t ∈ X there exists r ∈ R2 such that r · s = t.
Since there is a nonzero probability that only one spin is
transformed and that spin can be transformed into any
state, ergodicity follows. The probability P (s→ s′) that
the configuration s is brought to s′ by the flipping of a
cluster formed by accepting transformations of spins via
bonds C ⊆ E and rejecting transformations via bonds
∂C ⊂ E is related to the probability of the reverse pro-
cess P (s′ → s) by

P (s→ s′)

P (s′ → s)
=

f(r | m0, s)

f(r−1 | m0, s′)

∏
{i,j}∈

pr(si, sj)

pr−1(s′i, s
′
j)

∏
{i,j}∈∂C

1− pr(si, sj)
1− pr−1(s′i, s

′
j)

=
∏

{i,j}∈∂C

eβ(Z(s′i,s
′
j)−Z(si,sj)) =

e−βH(s′)

e−βH(s)
,

(5)

whence detailed balance is also satisfied, using r = r−1 and Z(r · s′, s′) = Z(r · s, s).
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Spins (X) Symmetry (R) Action (g · s) Coupling (Z(s, t)) Common Field (B(s))

Ising {−1, 1} Z/2Z 0 · s 7→ s, 1 · s 7→ −s st Hs

O(n) Sn−1 O(n) M · s 7→Ms sTt HTs

Potts {1, . . . , q} Sn (i1, . . . , iq) · s = is δ(s, t)
∑
mHmδ(m, s)

Clock Z/qZ Dn rm · s = m+ s, sm · s = −m− s cos(2π s−t
q

)
∑
mHm cos(2π s−m

q
)

Dgm Z Dinf rm · s = m+ s, sm · s = −m− s (s− t)2 Hs2

TABLE I. Several examples of spin systems and the symmetry groups that act on them. Common choices for the spin–spin
coupling in these systems and their external fields are also given. Other fields are possible, of course: for instance, some are
interested in modulated fields H cos(2πkθ(s)) for integer k and θ(s) giving the angle of s to some axis applied to the O(2)
model [27]. All models listed here have example implementations in the provided C++ library [23].

The Wolff algorithm is well known to be efficient in
sampling many spin models near and away from criti-
cality, including the Ising, Potts, and O(n) models. In
general, its efficiency will depend on the system at hand,
e.g., the structure of the configurations X and group R.
A detailed discussion of this dependence for a class of
configuration spaces with continuous symmetry groups
can be found in [24, 28].

This algorithm can be run on a system using the pro-
vided library. To construct a system, you must provide
a graph representing the lattice, a temperature, the spin
coupling function Z, and the field coupling function B.
Once constructed, cluster flips as described in Alg. 1
can be performed by directly providing seed sites m0

and transformations r, or many in sequence by provid-
ing a function that generates random (appropriately dis-
tributed to preserve detailed balance) transformations r.
The construction and use of Wolff systems is described at
https://doc.kent-dobias.com/wolff/system.html.

II. ADDING THE FIELD

This algorithm relies on the fact that the coupling Z
depends only on relative orientation of the spins—global
reorientations do not affect the Hamiltonian. The ex-
ternal field B breaks this symmetry. Fortunately it can
be restored. Define a new graph G̃ = (Ṽ , Ẽ), where

Ṽ = {0, 1, . . . , N} adds the new ‘ghost’ site 0 which is
connected by

Ẽ = E ∪
{
{0, i} | i ∈ V

}
(6)

to all other sites. Instead of assigning the ghost site a
spin whose value comes from X, we assign it values in
the symmetry group s0 ∈ R, so that the configuration
space of the new model is R × XN . We introduce the
Hamiltonian H̃ : R×XN → R defined by

H̃(s0, s) = −
∑
{i,j}∈E

Z(si, sj)−
∑
i∈V

B(s−10 · si)

= −
∑
{i,j}∈Ẽ

Z̃(si, sj),
(7)

where the new coupling Z̃ : (R ∪ X) × (R ∪ X) → R is
defined for s, t ∈ R ∪X by

Z̃(s, t) =


Z(s, t) if s, t ∈ X
B(s−1 · t) if s ∈ R
B(t−1 · s) if t ∈ R.

(8)

The modified coupling is invariant under the action of
group elements: for any r, s0 ∈ R and s ∈ X,

Z̃(rs0, r · s) = B((rs0)−1 · (r · s))
= B(s−10 · s) = Z̃(s0, s)

(9)

The invariance of Z̃ to global transformations given other
arguments follows from the invariance properties of Z.

We have produced a system incorporating the field
function B whose Hamiltonian is invariant under global
rotations, but how does it relate to our old system, whose
properties we actually want to measure? If A : XN → R
is an observable of the original system, we construct an
observable Ã : R ×XN → R of the new system defined
by

Ã(s0, s) = A(s−10 · s) (10)

whose expectation value in the new system equals that
of the original observable in the old system. First, note
that H̃(1, s) = H(s). Since the Hamiltonian is invariant
under global rotations, it follows that for any g ∈ R,
H̃(g, g · s) = H(s). Using the invariance properties of
the measure on X and introducing a measure ρ on R, it
follows that

〈Ã〉 =

∫
R

∫
XN Ã(s0, s)e

−βH̃(s0,s) dµ(s) dρ(s0)∫
R

∫
XN e−βH̃(s0,s) dµ(s) dρ(s0)

=

∫
R

∫
XN A(s−10 · s)e−βH̃(s0,s) dµ(s) dρ(s0)∫
R

∫
XN e−βH̃(s0,s) dµ(s) dρ(s0)

=

∫
R

∫
XN A(s′)e−βH̃(s0,s0·s′)dµ(s0 · s′) dρ(s0)∫
R

∫
XN e−βH̃(s0,s0·s′)dµ(s0 · s′) dρ(s0)

=

∫
R
dρ(s0)∫

R
dρ(s0)

∫
XN A(s′)e−βH(s′)dµ(s′)∫

XN e−βH(s′)dµ(s′)
= 〈A〉.

(11)

Using this equivalence, spin systems in a field may be
treated in the following way.
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1. Add a site to your lattice adjacent to every other
site.

2. Initialize a ‘spin’ at that site whose value is a rep-
resentation of a member of the symmetry group of
your ordinary spins.

3. Carry out the ordinary Wolff cluster-flip procedure
on this new lattice, substituting Z̃ as defined in (8)
for Z.

Ensemble averages of observables A can then be esti-
mated by sampling the value of Ã on the new system. In
contrast with the simpler ghost spin representation, this
form of the Hamiltonian might be considered the ‘ghost
transformation’ representation.

One of the celebrated features of the cluster represen-
tation of the Ising and associated models are the im-
proved estimators of various quantities in the base model,
found by measuring conjugate properties of the clusters
themselves [29]. What of these quantities survive this
translation? As is noted in the formative construction of
the cluster representation for the Ising and Potts mod-
els, all estimators involving correlators between spins are
preserved, including correlators with the ghost site [30].
Where a previous improved estimator exists, we expect
this representation to extend it to finite field, all other
features of the algorithm held constant. For instance,
the average cluster size in the Wolff algorithm is often
said to be an estimator for the magnetic susceptibility in
the Ising, Potts, and (with clusters weighted by the com-
ponents of their spins along the reflection direction [31])
O(n) models, but really what it estimates is the averaged
squared magnetization, which corresponds to the suscep-
tibility when the average magnetization is zero. At finite
field the latter thing is no longer true, but the correspon-
dence between cluster size and the squared magnetization
continues to hold (see (16) and Fig. 3 below).

III. EXAMPLES

Several specific examples from Table I are described in
the following.

A. The Ising model

In the Ising model spins are drawn from the set
{1,−1}. Its symmetry group is C2, the cyclic group
on two elements, which can be conveniently represented
by a multiplicative group with elements {1,−1}, exactly
the same as the spins themselves. The only nontrivial
element is of order two, and is selected every time in
the algorithm. Since the symmetry group and the spins
are described by the same elements, performing the al-
gorithm on the Ising model in a field is fully described
by just using the ‘ghost spin’ representation. This algo-
rithm or algorithms based on the same decomposition of

the Hamiltonian have been applied by several researchers
[12–14]. The algorithm has been implemented by one of
the authors in an existing interactive Ising simulator at
https://mattbierbaum.github.io/ising.js [32].

B. The O(n) models

In the O(n) model spins are described by vectors on
the (n − 1)-sphere Sn−1. Its symmetry group is O(n),
n × n orthogonal matrices, which act on the spins by
matrix multiplication. The elements of O(n) of order
two are reflections about hyperplanes through the origin
and π rotations about any axis through the origin. Since
the former generate the entire group, reflections alone
suffice to provide ergodicity. Sampling those reflections
uniformly works well at criticality. The ‘ghost spin’ ver-
sion of the algorithm has been used to apply a simple
vector field to the O(3) model [33]. Other fields of inter-
est include (n + 1)-dimensional spherical harmonics [27]
and cubic fields [34, 35], which can be applied with the
new method. The method is quickly generalized to spins
whose symmetry groups are other compact Lie groups
[24, 28].

At low temperature or high external vector field se-
lecting reflections uniformly becomes inefficient because
the excitations of the model are spin waves, in which the
magnetization only differs by a small amount between
neighboring spins. Under these conditions, most choices
of reflection plane will cause a change in energy so great
that the whole system is always flipped, resulting in many
correlated samples. To ameliorate this, one can draw re-
flections from a distribution that depends on how the
seed spin is transformed, taking advantage of the free-
dom to choose the function f in Alg. 1. We implement
this in the following way. Say that the state of the seed of
the cluster is s. Generate a vector t taken uniformly from
the space of unit vectors orthogonal to s. Let the plane of
reflection be that whose normal is n = s+ ζt, where ζ is
drawn from a normal distribution of mean zero and vari-
ance σ. It follows that the tangent of the angle between
s and the plane of reflection is also distributed normally
with zero mean and variance σ. Since the distribution
of reflection planes only depends on the angle between s
and the plane, and since that angle is invariant under the
reflection, this choice preserves detailed balance.

The choice of σ can be inspired by mean field the-
ory. At high field or low temperature, spins are likely to
both align with the field and each other and the model is
asymptotically equal to a simple Gaussian one, in which
in the limit of large L the expected square angle between
neighbors is

〈θ2〉 ' (n− 1)T

D +H/2
. (12)

We take σ =
√
〈θ2〉/2. Fig. 1 shows the effect of mak-

ing such a choice on autocorrelation times for the energy
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FIG. 1. The scaled autocorrelation time of the energy H for
the Wolff algorithm on a 32× 32× 32 xy model at its critical
temperature as a function of applied vector field magnitude
|H|. Red points correspond to reflections sampled uniformly,
while the green points represent reflections sampled as de-
scribed in section III B.

for a critical 3d xy (O(2)) model. At small fields both
methods perform the same as zero field Wolff. Intermedi-
ate field values see efficiency gains for both methods. At
large field the uniform sampling method sees correlation
times grow rapidly without bound, while for the sampling
method described here the correlation time crosses over
to a constant. A similar behavior holds for the critical
O(3) model, though in that case the constant value the
correlation time approaches at large field is larger than
its minimum value (see Fig. 2). This behavior isn’t par-
ticularly worrisome, since the very large field regime cor-
responds to correlation lengths comparable to the lattice
spacing and is efficiently simulated by other algorithms.
More detailed discussion on correlation times and these
numeric experiments can be found in section IV.

C. The Potts model

In the q-state Potts model spins are described by ele-
ments of {1, . . . , q}. Its symmetry group is the symmetric
group Sn of permutations of its elements. The element
(i1, . . . , iq) takes the spin s to is. There are potentially
many elements of order two, but the two-element swaps
alone are sufficient to both generate the group and act
transitively on {1, . . . , q}, providing ergodicity.

D. Clock models

In the q-state clock model spins are described by
elements of Z/qZ, the set of integers modulo q.
Its symmetry group is the dihedral group Dq =
{r0, . . . , rq−1, s0, . . . , sq−1}, the group of symmetries of
a regular q-gon. The element rn represents a rota-
tion by 2πn/q, and the element sn represents a reflec-

tion composed with the rotation rn. The group acts
on spins by permutation: rn · m = n+m (mod q) and
sn ·m = −(n+m) (mod q). This is the natural action of
the group on the vertices of a regular polygon that have
been numbered 0 through q − 1. The elements of Dq of
order 2 are all reflections and rq/2 if q is even, though
the former can generate the latter. While reflections do
not necessarily generate the entire group, their action on
Z/qZ is transitive and therefore the algorithm is ergodic.

E. Roughening models

Though not often thought of as a spin model, roughen-
ing of surfaces can be described in this framework. Spins
are described by integers Z and their symmetry group is
the infinite dihedral group D∞ = {ri, si | i ∈ Z}, whose
action on the spin j ∈ Z is given by ri · j = i + j and
si · j = −i− j. The elements of order two are reflections
si, whose action on Z is transitive. The coupling can be
any function of the absolute difference |i − j|. Because
uniform choice of reflection will almost always result in
energy changes so large that the whole system is flipped,
it is better to select random reflections about integers or
half-integers close to the state of the system. A variant
of the algorithm has been applied without a field whose
success relies both on this and another technique [36].
They note that detailed balance is still satisfied if the
bond probabilities (4) are modified by adding a constant
0 < x ≤ 1 with

pr(sm, sj | x) = min{0, 1− xeβ(Z(r·sm,sj)−Z(sm,sj))}.
(13)

When x < 1 transformations that do not change the
energy of a bond can still activate it in the cluster, which
allows nontrival clusters to be seeded when the height
of the starting site is also the plane of reflection. This
modification is likely useful in general for systems with
large yet discrete state spaces.

IV. PERFORMANCE

No algorithm is worthwhile if it doesn’t run efficiently.
This algorithm, being an extension of the Wolff algorithm
into a new domain, should be considered successful if it
likewise extends the efficiency of the Wolff algorithm into
that domain. Some systems are not efficient under Wolff,
and we don’t expect them to fare better when extended
in a field. For instance, Ising models with random fields
or bonds technically can be treated with Wolff [37], but
it is not efficient because the clusters formed do not scale
naturally with the correlation length [18, 26]. Other ap-
proaches, like replica methods, should be relied on in-
stead [18–20].

At a critical point, correlation time τ scales with sys-
tem size L = N−D as τ ∼ Lz. Cluster algorithms are
celebrated for their small dynamic exponents z. In the
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vicinity of an ordinary critical point, the renormalization
group predicts scaling behavior for the correlation time
as a function of temperature t and field h of the form

τ = h−zν/βδT (ht−βδ, hLβδ/ν). (14)

If a given dynamics for a system at zero field results in
scaling like Lz, one should expect its natural extension in
the presence of a field to scale roughly like h−zν/βδ and
collapse appropriately as a function of hLβδ/ν .

We measured the autocorrelation time τ of the energy
H for a variety of models at critical temperature with
many system sizes and canonical fields (see Table I with
h = βH) using standard methods for obtaining the value
and uncertainty from timeseries [38]. Since the compu-
tational effort expended in each step of the algorithm de-
pends linearly on the size of the associated cluster, these
values are then scaled by the average cluster size per site
〈s1c〉/LD to produce something proportional to machine
time per site. The resulting scaling behavior, plotted in
Fig. 2, is indeed consistent with an extension to finite field
of the behavior at zero field, with an eventual finite-size
crossover to constant autocorrelation time at large field.
This crossover isn’t always kind to the efficiency, e.g.,
in the O(3) model, but in the large-field regime where
the crossover happens the correlation length is on the
scale of the lattice spacing and better algorithms exist,
like Bortz–Kalos–Lebowitz for the Ising model [39]. Also
plotted are lines proportional to h−zν/βδ, which match
the behavior of the correlation times in the intermediate
scaling region as expected. Values of the critical expo-
nents for the models were taken from the literature [40–
42] with the exception of z for the energy in the Wolff
algorithm, which was determined for each model by mak-
ing a power law fit to the constant low field behavior.
These exponents are imprecise and are provided in the
figure with only qualitative uncertainty.

Since the formation and flipping of clusters is the hall-
mark of Wolff dynamics, another way to ensure that the
dynamics with field scale like those without is to analyze
the distribution of cluster sizes. The success of the algo-
rithm at zero field is related to the fact that the clusters
formed undergo a percolation transition at models’ criti-
cal point. According to the scaling theory of percolation
[43], the distribution of cluster sizes in a full Swendsen–
Wang decomposition—where the whole system is decom-
posed into clusters with every bond activated with prob-
ability (4)—of the system scales consistently near the
critical point if it has the form

PSW(s) = s−τf(tsσ, th−1/βδ, tL1/ν). (15)

The distribution of cluster sizes in the Wolff algorithm
can be computed from this using the fact that the al-
gorithm selects clusters with probability proportional to
their size, or

〈s1c〉 =
∑
s

sP1c(s) =
∑
s

s
s

N
PSW(s)

= Lγ/νg(ht−βδ, hLβδ/ν).

(16)

For the Ising model, an additional scaling relation can
be written. Since the average cluster size is the average
squared magnetization, it can be related to the scaling
functions of the magnetization and susceptibility per site
by (with ht−βδ dependence dropped)

〈s1c〉 = LD〈M2〉 = β〈χ〉+ LD〈M〉2

= Lγ/ν
[
(hLβδ/ν)−γ/βδβY(hLβδ/ν , ht−βδ)

+ (hLβδ/ν)2/δM(hLβδ/ν , ht−βδ)
]
.

(17)

We therefore expect that, for the Ising model, 〈s1c〉L−γ/ν
should go as (hLβδ/ν)2/δ for large argument. We fur-
ther conjecture that this scaling behavior should hold
for other models whose critical points correspond with
the percolation transition of Wolff clusters. This behav-
ior is supported by our numeric work along the criti-
cal isotherm for various Ising, Potts, and O(n) models,
shown in Fig. 3. Fields are the canonical ones referenced
in Table I. As can be seen, the average cluster size col-
lapses for each model according to the scaling hypothesis,
and the large-field behavior likewise scales as we expect
from the näıve Ising conjecture.

V. APPLYING NONLINEAR FIELDS TO THE
XY MODEL

Thus far our numeric work has quantified the perfor-
mance of existing techniques. Briefly, we demonstrate
our general framework in a new way: harmonic pertur-
bations to the low-temperature xy, or 2d O(2), model.
We consider fields of the form Bn(s) = hn cos(nθ(s)),
where θ is the angle made between s and the x-axis.
Corrections of these types are expected to appear in
realistic models of systems näıvely expected to exhibit
Kosterlitz–Thouless critical behavior due to the presence
of the lattice or substrate. Whether these fields are rel-
evant or irrelevant in the renormalization group sense
determines whether those systems spoil or admit that
critical behaviour. Among many fascinating [17, 27, 44–
46] results that emerge from systems with one or more
of these fields applied, it is predicted that h4 is relevant
while h6 is not at some sufficiently high temperatures be-
low the Kosterlitz–Thouless point [27]. The sixfold fields
are expected to be present, for instance, in the otherwise
Kosterlitz–Thouless-type two-dimensional melting of ar-
gon on a graphite substrate [47].

We made a basic investigation of this result using our
algorithm. Since we ran the algorithm at fairly high fields
we did not choose reflections though the origin uniformly.
Instead, we choose the planes of reflection first by rotat-
ing our starting spin by πm/n for m uniformly taken
from 1, . . . , n and generating a normal to the plane from
that direction as described in Section III B. The result-
ing susceptibilities as a function of system size are shown
for various field strengths in Fig. 4. In the fourfold case,
for each field strength there is a system size at which the
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FIG. 2. Scaling collapse of autocorrelation times τ for the energy H scaled by the average cluster size as a function of external
field for various models of Table I. Critical exponents are model-dependent. Colored lines and points depict values as measured
by the extended algorithm. Solid black lines show a plot proportional to h−zν/βδ for each model. The dynamic exponents z are
roughly measured as 2d Ising: 0.23(5), 3d Ising: 0.28(5), 2d 3-State Potts: 0.55(5), 2d 4-State Potts: 0.94(5), 3d O(2): 0.17(5),
3d O(3): 0.13(5). O(n) models use the distribution of transformations described in Section III B. The curves stop collapsing
at high fields when the correlation length falls to near the lattice spacing; here non-cluster algorithms can be efficiency used.

divergence in the susceptibility is cut off, while for the six-
fold case we measured no such cutoff, even up to strong
fields. This conforms to the expected result, that even
in a strong field the sixfold perturbations preserve the
critical behavior. Previous work has used Monte Carlo
to investigate similar symmetry-breaking fields and used
a hybrid cluster–metropolis method [17]. To our knowl-
edge, no application of a direct cluster method has been
applied to this problem before now.

VI. CONCLUSIONS

We have taken several disparate extensions of cluster
methods to spin models in an external field and general-
ized them to work for any model of a broad class. The
resulting representation involves the introduction of not
a ghost spin, but a ghost transformation. We provide a
C++ library with example implementations of all models
described here [23]. We provided evidence that algorith-
mic extensions deriving from this method are the natural
way to extend cluster methods in the presence of a field,
in the sense that they appear to reproduce the scaling
of dynamic properties in a field that would be expected
from renormalization group predictions.

In addition to uniting several extensions of cluster
methods under a single description, our approach allows
the application of fields not possible under prior methods.
Instead of simply applying a spin-like field, this method

allows for the application of arbitrary functions of the
spins. For instance, theoretical predictions for the effect
of symmetry-breaking perturbations on spin models can
be tested numerically [27, 34, 35, 48].
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FIG. 3. Collapses of rescaled average Wolff cluster size 〈s〉1cL−γ/ν as a function of field scaling variable hLβδ/ν for a variety
of models. Critical exponents γ, ν, β, and δ are model-dependant. Colored lines and points depict values as measured by the
extended algorithm. Solid black lines show a plot of g(0, x) ∝ x2/δ for each model.
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FIG. 4. Susceptibilities as a function of system size for a 2d
O(2) model at T = 0.7 and with (top) fourfold symmetric and
(bottom) sixfold symmetric perturbing fields. Different field
strengths are shown in different colors.
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