
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Probabilistic scheme for joint parameter estimation and
state prediction in complex dynamical systems

Sara Pérez-Vieites, Inés P. Mariño, and Joaquín Míguez
Phys. Rev. E 98, 063305 — Published  5 December 2018

DOI: 10.1103/PhysRevE.98.063305

http://dx.doi.org/10.1103/PhysRevE.98.063305


A probabilistic scheme for joint parameter estimation and state

prediction in complex dynamical systems
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Abstract

Many problems in physics demand the ability to calibrate the parameters and predict the time

evolution of complex dynamical models using sequentially-collected data. Here we introduce a

general methodology for the joint estimation of the static parameters and the forecasting of the

state variables of nonlinear stochastic dynamical models. The proposed scheme is essentially

probabilistic. It aims at recursively computing the sequence of joint posterior probability

distributions of the unknown model parameters and its (time varying) state variables conditional

on the available observations. The new framework combines two layers of inference: in the first

layer, a grid-based scheme is used to approximate the posterior probability distribution of the fixed

parameters; in the second layer, filtering (or data assimilation) techniques are employed to track

and predict different conditional probability distributions of the state variables. Various types of

procedures (deterministic grids, Monte Carlo, Gaussian filters, etc.) can be plugged into both

layers, leading to a wealth of algorithms. For this reason, we refer to the proposed methodology

as nested hybrid filtering. In this paper we specifically explore the combination of Monte Carlo

and quasi Monte Carlo (deterministic) approximations in the first layer with Gaussian filtering

methods in the second layer, but other approaches fit naturally within the new framework. We

prove a general convergence result for a class of procedures that use sequential Monte Carlo in the

first layer. Then, we turn to an illustrative numerical example. In particular, we apply and compare

different implementations of the methodology to the tracking of the state, and the estimation of

the fixed parameters, of a stochastic two-scale Lorenz 96 system. This model is commonly used to

assess data assimilation procedures in meteorology. We show estimation and forecasting results,

obtained with a desktop computer, for up to 5,000 dynamic state variables.
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I. INTRODUCTION

A common feature to many problems in some of the most active fields of science is

the need to calibrate (i.e., estimate the parameters) and then forecast the time evolution

of high-dimensional dynamical systems using sequentially-collected observations. One can

find obvious examples in meteorology, where current models for global weather forecasting

involve the tracking of millions of time-varying state variables [1], as well as in oceanography

[2] or in climate modelling [3]. This problem is not constrained to geophysics, though. In

biochemistry and ecology it is often necessary to forecast the evolution of populations of

interacting species (typically animal and/or vegetal species in ecology and different types of

reacting molecules in biochemistry), which usually involves the estimation of the parameters

that govern the interaction as well [4].

A. State of the art

Traditionally, model calibration (i.e., the estimation of the model static parameters)

and the tracking and forecasting of the time-varying state variables have been addressed

separately. The problem of tracking the state of the system using sequentially-collected

observations is often termed data assimilation in geophysics, while it is referred to as

stochastic or Bayesian filtering by researchers in computational statistics and applied

probability. Carrying out both tasks jointly, parameter estimation and state forecasting,

is a hard problem posing several practical and theoretical difficulties.

Many procedures have been suggested over the years (see, e.g., [5–8], as well as [9] for

a survey), however they are subject to problems related to observability (i.e., ambiguities),

lack of performance guarantees or prohibitive computational demands. Some of the most

relevant techniques can be classified in one or more of the categories below.

• State augmentation methods with artificial dynamics: the state vector, which contains

the dynamical variables that describe the physical system, is extended with any

static unknown parameters (commonly reinterpreted as “slowly changing” dynamical

variables) in the model [5, 10–12]. Standard filtering (or data assimilation) techniques

are then used in order to track and forecast the extended state vector.

• Particle learning techniques: for some models, the posterior probability distribution
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of the static parameters, conditional on the system state, can be computed in closed

form and it depends only on a set of finite-dimensional statistics [8, 13, 14]. In a Monte

Carlo setting, e.g., for particle filters, this means that the static parameters can be

efficiently represented by sampling. Unfortunately, this approach is restricted to very

specific models (an attempt to extend this idea to a more general setting can be found

in [15]). The term particle learning was coined in [8], although the fundamental ideas

were introduced earlier [13, 14].

• Classical importance resampling methods: several authors have studied the

performance of classical sequential importance sampling for static parameters [16–

18]. Unfortunately, such algorithms tend to degenerate quickly over time unless certain

conditions are met by the prior and posterior distributions [16, 17] or computationally-

heavy interpolation schemes are adopted for the static parameters [18].

Only in the last few years there have been advances leading to well-principled probabilistic

methods that solve the joint problem numerically and supported by rigorous performance

analyses [19–23]. They aim at calculating the posterior probability distribution of all the

unknown variables and parameters of the model. From the viewpoint of Bayesian analysis,

these conditional, or posterior, distributions contain all the information relevant for the

estimation task. From them, one can compute point estimates of the parameters and states

but also quantify the estimation error. However, state-of-the-art methods for Bayesian

parameter estimation and stochastic filtering are batch techniques, i.e., they process the

whole set of available observations repeatedly in order to produce numerical solutions. For

this reason, they are not well suited to problems where observations are collected sequentially

and have to be processed as they arrive (or, simply, when the sequence of observations is too

long). The popular particle Markov chain Monte Carlo (pMCMC) [19] and the sequential

Monte Carlo square (SMC2) [20] schemes are examples of such batch methods. The nested

particle filter (NPF) of [21] is a purely recursive Monte Carlo method, more suitable than

pMCMC and SMC2 when long sequences of observations have to be processed. However,

this technique is still computationally prohibitive in high dimensional settings as it relies on

two layers of intertwined Monte Carlo approximations.

While the schemes in [19–21] fully rely on Monte Carlo approximations in order to
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approximate the posterior probability distribution of the parameters and the states, there is

an alternative class of schemes, often coined recursive maximum likelihood (RML) methods

[9, 10, 24, 25], that enable the sequential processing of the observed data as they are collected

but do not yield full posterior distributions of the unknowns. They only output point

estimates instead. Therefore, it is not possible to quantify the uncertainty of the estimates

or forecasts. Moreover, they are subject to various convergence (and complexity) issues, e.g.,

when the posterior probability distribution is multimodal, when it contains singularities or

when the parameter likelihoods cannot be computed exactly.

In the physics literature, approximation schemes have been proposed that exploit the

conditional dependences between the static parameters and the dynamic state variables, in

a way that resembles the SMC2 or NPF schemes. The authors of [26] introduce a two-

stage filter that alternates the estimation of static parameters (conditional on a fixed state

estimate) and the tracking of the dynamic variables (conditional on a fixed estimate of the

static parameters). Another alternating scheme, that combines Monte Carlo estimators with

ensemble Kalman filters in order to handle the static parameters and dynamic states, can

be found in [27].

In [28], an expectation-maximization (EM) algorithm is used to track a particle whose

dynamics are governed by a hidden Markov model. The expectation step involves a (Monte

Carlo based) forward-filtering, backward-smoothing step that is computationally heavy and

prevents the online application of the method. The authors of [29] investigate a variational

scheme (based on the Laplace integral approximation) for data assimilation (including state

and parameter estimation) and illustrate it with applications to the Lorenz 63 and Lorenz

96 models in a low dimensional setting. The same task of data assimilation with parameter

estimation is tackled in [30]. In this case, the estimation of the states and parameter is

reduced to an optimization problem that can be solved via an adjoint method for the

estimation of a Hessian matrix. The schemes in [28], [29] and [30] require to process

the data in batches, rather than recursively, and hence they are not well suited for online

implementations. A sequential method, based on variational Bayes techniques, that admits

an online (recursive) implementation can be found in [31]. However, the latter contribution

is limited to the estimation of the time-varying states and does not deal with unkown static

parameters.
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B. Contribution

In this paper we propose a general probabilistic scheme to perform the joint task of

parameter estimation and state tracking and forecasting. The methodology is Bayesian,

i.e., it aims at the computation of the posterior probability distribution of the unknowns

given the available data. It involves two layers of estimators, one for the static parameters

and another one for the time-varying state variables. It can be interpreted that the state

estimators and predictors are nested, or inserted, within a main algorithm that tackles the

estimation of the parameters. The estimation of the static parameters and the dynamic

variables is carried out in a purely sequential and recursive manner. This property makes

the proposed method well-suited for problems where long time series of data have to be

handled.

It can be shown that a particular case of the proposed scheme is the NPF of [21], which

relies on a sequential Monte Carlo sampler in the parameter space and bank of particle filters

[32, 33] in the space of the dynamic variables. However, the key feature and advantage of the

general scheme that we advocate here is the ability to combine different types of algorithms

in the two layers of inference (parameters and dynamic variables). Any grid-based method

(where the probability distribution of the static parameters is represented by a set of points

in the parameter space) can be employed in the first layer, while the computationally-heavy

particle filters in the second layer of the NPF can be replaced by simpler algorithms, easier

to apply in practical problems.

We have investigated the use of sequential Monte Carlo and quasi-Monte Carlo [34]

techniques in the parameter estimation layer. We note that the quasi-Monte Carlo scheme is

a deterministic technique, although it formally resembles the Monte Carlo approach (hence

the name). In the same vein, an unscented Kalman filter (UKF) can be utilized in the

parameter estimation layer, although we have left this for future research. For the second

layer, we have assessed two Gaussian filters, namely the extended Kalman filter (EKF) and

the ensemble Kalman filter (EnKF). These two types of Gaussian filters have been well-

studied in the geophysics literature and there are a number of numerical techniques to ease

their practical implementation for large-scale systems (e.g., covariance inflation [35, 36] or

localization [37–39]).

Because the flexibility to combine estimation techniques of different types within the same
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overall scheme is a key advantage of the proposed methodology, we refer to the resulting

algorithms in general as nested hybrid filters (NHFs). Besides the numerical example

described below, we provide a theoretical result on the asymptotic convergence of NHFs

that use a sequential Monte Carlo scheme in the first layer (for the static parameters) and

finite-variance estimators of the state variables in the second layer. Our analysis shows

that the NHF can be biased if the filters in the second layer are (as it is the case in

general with approximate Gaussian filters). However, it also ensures that the approximate

posterior distribution of the parameters generated by the NHF, consisting of N samples in

the parameter space, converges to a well-defined limit distribution with rate O(N− 1
2) under

mild assumptions.

To illustrate the performance of the methodology, we present the results of computer

simulations with a stochastic two-scale Lorenz 96 model [40] with underlying chaotic

dynamics. In meteorology, the Lorenz 96 model is commonly used as a benchmark system

for data assimilation [41, 42] and parameter estimation techniques [43, 44] because it displays

the basic physical features of atmospheric dynamics [40] (e.g., convection and sensitivity to

perturbations) and its dimension (number of state variables) can be selected arbitrarily, so it

is possible to make the system as high-dimensional as one consider. We have implemented,

and compared numerically, four NHFs that combine Monte Carlo, quasi-Monte Carlo, EKF

and EnKF schemes in different ways. All the combinations that we have tried yield significant

reductions of running times in comparison with the NPF for this model, without a significant

loss of accuracy. We report simulation results for systems with up to 5,000 dynamical

variables to track and forecast.

C. Organization of the paper

The rest of the paper is organized as follows. After a brief comment on notation, we

describe in Section II the class of (stochastic) dynamical systems of interest. NHFs are

introduced and explained in Section III. The asymptotic convergence theorem is stated and

discussed in Section IV. In Section V, the stochastic Lorenz 96 model which is used in

the simulations is described and then, some illustrative numerical results are presented in

Section VI. Finally, Section VII is devoted to the conclusions.
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D. Notation

We denote vectors and matrices by bold-face letters, either lower-case (for vectors) or

upper-case (for matrices). Scalar magnitudes are denoted using regular-face letters. For

example, d ∈ N and x ∈ R are scalars, x ∈ Rd is a vector and X ∈ Rd×d is a matrix.

Most of the magnitudes of interest in this paper are random vectors (r.v.’s). If x is a

d-dimensional r.v. taking values in Rd, we use the generic notation p(x) for its probability

density function (pdf). This is an argument-wise notation. If we have two r.v.’s, x and y,

we write p(x) and p(y) for their respective pdf’s, which are possibly different. In a similar

vein, p(x,y) denotes the joint pdf of the two r.v.’s and p(x∣y) denotes the conditional pdf

of x given y. We find this simple notation convenient for the presentation of the model and

methods and introduce a more specific terminology only for the analysis of convergence. We

assume, for simplicity, that all random magnitudes can be described by pdf’s with respect

to the Lebesgue measure. Notation x ∼ p(x) is read as “the r.v. x is distributed according

to the pdf p(x)”. A table summarising the most important notation has been included in

Appendix D.

II. DYNAMICAL MODEL AND PROBLEM STATEMENT

A. State space models

We are interested in systems that can be described by a multidimensional stochastic

differential equation (SDE) of the form

dx = f(x,θ)dt + σdw (1)

where t denotes continuous time, x(t) ∈ Rdx is the dx-dimensional system state, f ∶
Rdx × Rdθ → Rdx is a nonlinear function parametrized by a fixed vector of unknown

parameters, θ ∈ Rdθ , σ > 0 is a scale parameter that controls the intensity of the stochastic

perturbation and w(t) is a dx × 1 vector of independent standard Wiener processes. Very

often, the underlying ordinary differential equation (ODE) ẋ = f(x,θ) describes some

peculiar dynamics inherent to the system of interest (e.g., many of the systems of interest in

geophysics are chaotic) and the addition of the perturbation w(t) accounts for model errors

or other sources of uncertainty.
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Equation (1) does not have a closed-form solution for a general nonlinear function f(x,θ)
and, therefore, it has to be discretized for its numerical integration. A discretization scheme

with fixed step-size h > 0 yields, in general, a discrete-time stochastic dynamical system of

the form

x̄k = x̄k−1 +F (x̄k−1,θ, h, σwk), (2)

where k ∈ N denotes discrete time, x̄k ≃ x(kh) is the system state at time t = kh and wk

is a r.v. of dimension dw ≥ dx that results from the integration of dw independent Wiener

processes. Since the integral of a Wiener process over an interval of length h is a Gaussian

random variable with zero mean and variance h, the r.v. wk is also Gaussian, with mean 0

and covariance matrix hIdw , where Idw is the dw × dw identity matrix. This was denoted as

wk ∼ N(wk∣0, hIdw). The function F depends on the choice of discretization scheme. The

simplest one is the Euler-Maruyama method, which yields [45]

x̄k = x̄k−1 + hf(x̄k−1,θ) + σwk, (3)

i.e., the noise is additive, with dw = dx, and F (x̄k−1,θ, h, σwk) = hf(x̄k−1,θ) + σwk. For

a Runge-Kutta method of order q, as a more sophisticated example, dw = qdx and the

function F results from applying f q times, with a Gaussian perturbation passing through

the nonlinearity at each of these intermediate steps. See [45] for details on various integration

methods for SDEs. In the sequel, we work with the general Eq. (2).

We assume that the system of Eq. (2) can be observed every m discrete-time steps (i.e.,

every mh continuous-time units). The n-th observation is a r.v. yn ∈ Rdy of dimension dy

that we model as

yn = g(xn,θ) + rn, (4)

n ∈ N, where xn = x̄nm ≃ x(nmh) is the system state at the time of the n-th observation

(continuous time t = nmh), g ∶ Rdx ×Rdθ → Rdy is a transformation that maps the state into

the observation space and rn is a 0-mean observational-noise vector with covariance matrix

σ2
oIdy .

We can re-write the state Eq. (2) in the time scale of the observations (i.e., discrete-time

n rather than k) as

xn = xn−1 +Fm(xn−1,θ, h, σwn), (5)

n ∈ N, where the notation Fm indicates that Eq. (2) is applied m consecutive times in order
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to move from xn−1 = x̄(n−1)m to xn = x̄nm. Note that, as a consequence, the noise vector wn

in Eq. (5) has dimension dw =mqdx.

B. Probabilistic representation and problem statement

The state equation (5) together with the observation equation (4) describe a (stochastic)

state space model. The goal is to design methods for the recursive estimation of both the

static parameters θ and the states xn, n ∈ N. Note that the latter implies the estimation

of the sequence x̄k ≃ x(kh), k ∈ N, i.e., the states between observations instants have to be

estimated as well.

We adopt a Bayesian approach to this task. From this point of view, both the parameters

θ and the sequence of states xn are random and we aim at computing their respective

probability distributions conditional on the available data, i.e., the sequence of observations

yn. The problem is best described if we replace the functional representation of the state

space model in Eqs. (5) and (4) by an equivalent one in terms of pdf’s [46]. To be specific,

the probabilistic representation consists of the following elements

x0 ∼ p(x0) (6)

θ ∼ p(θ) (7)

xn ∼ p(xn∣xn−1,θ) (8)

yn ∼ p(yn∣xn,θ) (9)

where p(x0) and p(θ) are, respectively, the a priori pdf’s of the system state and the

parameter vector at time n = 0 (t = 0 as well), p(xn∣xn−1,θ) is the conditional pdf of xn

given the state xn−1 and the parameters in θ, and p(yn∣xn,θ) is the conditional pdf of the

observation given the state and the parameters.

We note that:

• The priors p(x0) and p(θ) can be understood as a probabilistic characterization of

uncertainty regarding the system initial condition. If the initial condition x0 were

known exactly, p(x0) could be replaced by a Dirac delta allocating probability 1 at

that point.

• The pdf p(xn∣xn−1,θ) does not have, in general, a closed-form expression because of
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the nonlinearity Fm. However, it is usually straightforward to simulate xn given xn−1

and θ using Eq. (5) and this is sufficient for many methods to work.

• The observations are conditionally independent given the states and the parameters.

If the observational noise vn is Gaussian, then p(yn∣xn,θ) = N(yn∣g(xn,θ), σ2
oIdy).

From a Bayesian perspective, all the information relevant for the characterization of θ

and xn at discrete time n (corresponding to t = nmh) is contained in the joint posterior pdf

p(θ,xn∣y1∶n), where y1∶n = {y1,y2, . . . ,yn}. The latter density cannot be computed exactly

in general and the goal of this paper is to describe a class of flexible and efficient recursive

methods for its approximation.

We will show that one way to attain this goal is to tackle the approximation of the

sequence of posterior pdf’s of the parameters, p(θ∣y1∶n), n ∈ N. This yields, in a natural

way, approximations for p(θ,xn∣y1∶n) and p(xn∣y1∶n) for each n, as well as predictions for

the densities of the intermediate states, p(x̄nm+k∣y1∶n), for k = 1, . . . ,m − 1.

III. NESTED HYBRID FILTERING

A. Importance sampling for parameter estimation

In order to introduce the proposed scheme of nested hybrid filters, let us consider the

approximation of the n-th posterior probability distribution of the parameters, with pdf

p(θn∣y1∶n), using classical importance sampling [47]. In particular, let qn(θ) be an arbitrary

proposal pdf for the parameter vector θ and assume that qn(θ) > 0 whenever p(θ∣y1∶n) > 0.

Assume that the posterior at time n− 1, p(θ∣y1∶n−1), is available. Then the posterior pdf

at time n can be expressed, via Bayes’ theorem, as

p(θ∣y1∶n) ∝ p(yn∣θ,y1∶n−1)p(θ∣y1∶n−1), (10)

where the proportionality constant, p(yn∣y1∶n−1), is independent of θ. Expression (10)

enables the application of the importance sampling method to approximate integrals w.r.t.

the posterior pdf p(θ∣y1∶n) (i.e., to approximate the statistics of this probability distribution).

Specifically, if we

• draw N independent and identically distributed (i.i.d.) samples from qn(θ), denoted

θin, i = 1, . . . ,N ,
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• compute importance weights of the form

w̃in =
p(yn∣θin,y1∶n−1)p(θin∣y1∶n−1)

qn(θin)
,

and normalize them to obtain

win =
w̃in

∑Nk=1 w̃
k
n

, i = 1, . . . ,N,

then it can be proved [47] that

lim
N→∞

N

∑
i=1

winf(θin) = ∫ f(θ)p(θ∣y1∶n)dθ almost surely (a.s.) (11)

for any integrable function f ∶ Rdθ → R under mild regularity assumptions. In this way one

could estimate the value of θ, e.g.,

θNn =
N

∑
i=1

winθ
i
n ≃ ∫ θp(θ∣y1∶n)dθ =∶ E[θ∣y1∶n],

where E[θ∣y1∶n] denotes the expected value of θ conditional on the observations y1∶n. We

could also estimate the mean square error (MSE) of this estimator, as

MSEN
n =

N

∑
i=1

win∥θin − θ̂n∥2 ≃ ∫ ∥θin −E[θ∣y1∶n]∥2p(θ∣y1∶n)dθ. (12)

The choice of qn(θ) is, of course, key to the complexity and the performance of importance

sampling schemes. One particularly simple choice is qn(θ) = p(θ∣y1∶n−1), which reduces the

importance sampling algorithm to

1. drawing N i.i.d. samples θin, i = 1, . . . ,N , from p(θ∣y1∶n−1), and

2. computing normalized importance weights win ∝ p(yn∣θin,y1∶n−1), i = 1, ...,N.

Unfortunately, this method is not practical because

• it is not possible to draw exactly from p(θ∣y1∶n), since this pdf is unknown, and

• the likelihood function p(yn∣θin,y1∶n−1) cannot be evaluated exactly either.

In the sequel we tackle the two issues above and, in doing so, obtain a general scheme for the

approximation of the posterior distribution of the parameter vector θ and the state vector

xn, i.e., the distribution with pdf p(θ,xn∣y1∶n).
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B. Sequential Monte Carlo hybrid filter

It is well known that the likelihood un(θ) ∶= p(yn∣θ,y1∶n−1) can be approximated using

filtering algorithms [19, 48]. To be specific, function un(θ) can be written as the integral

un(θ) = ∫ p(yn∣xn,θ)p(xn∣θ,y1∶n−1)dθ (13)

where, in turn, the predictive density p(xn∣θ,y1∶n−1) is

p(xn∣θ,y1∶n−1) = ∫ p(xn∣θ,xn−1)p(xn−1∣θ,y1∶n−1)dxn−1 (14)

and

p(xn−1∣θ,y1∶n−1) ∝ p(yn−1∣θ,xn−1)p(xn−1∣θ,y1∶n−2). (15)

Given a fixed parameter vector θ and a prior pdf p(x0∣θ), the sequence of likelihoods un(θ)
can be computed by recursively applying Eqs. (13), (14) and (15) for n = 1,2, . . ..

Let us now assume that we are given a sequence of parameter vectors θ0, . . . ,θk−1,θk and

we are interested in computing the likelihood of the last vector, θk = θ′. Following [21], one

can compute a sequence of approximate likelihoods ûn(θn), n = 1, . . . , k, using the recursion

p̂(xn−1∣θn−1,y1∶n−1) ∝ p(yn−1∣θn−1,xn−1)p̂(xn−1∣θn−1,y1∶n−2) (16)

p̂(xn∣θn,y1∶n−1) ∶= ∫ p(xn∣θn,xn−1)p̂(xn−1∣θn−1,y1∶n−1)dxn−1 (17)

ûn(θn) ∶= ∫ p(yn∣θn,xn)p̂(xn∣θn,y1∶n−1)dxn (18)

which starts with the initial density p̂(x0∣θ0) ∶= p(x0∣θ0). It can be proved, using the same

type of continuity arguments in [21], that the approximation error

∣uk(θ′) − ûk(θ′)∣, (19)

can be kept bounded, for any k, provided some simple assumptions on the state space model

and the sequence θ1, . . . ,θn are satisfied. Note that, in expression (19), uk(θ′) is the actual

likelihood calculated by iterating (13), (14) and (15) for n = 1, ..., k, while ûk(θ′) is the

approximation computed using the sequence θ0, . . . ,θk−1,θk = θ′ and recursion (16)–(18).

The recursive approximation scheme for ûn(θ) can be combined with the “naive” IS

procedure of Section III A to yield a general (and practical) method for the approximation

of the sequence of a posteriori probability distributions of the parameter vector θ, hereafter

denoted as

µn(dθ) ∶= p(θ∣y1∶n)dθ.
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We refer to the proposed scheme as a nested hybrid filter (NHF) and provide a detailed

outline in Algorithm 1.

Algorithm 1 Nested hybrid filter (NHF).

Inputs:

- N (number of Monte Carlo samples to generate).

- A priori pdf ’s p(θ) and p(x0).

- A Markov kernel κN(dθ∣θ′) which, given θ′ ∈D, generates jittered parameters θ ∈ Rdθ .

Procedure:

1. Initialization

Draw θi0, i = 1, . . . ,N , i.i.d. samples from µ0(dθ) = p(θ)dθ.

2. Recursive step

(a) For i = 1, . . . ,N :

i. Draw θ̄in from κN(dθ∣θin−1).

ii. Approximate p̂(xn∣θ̄in,y1∶n−1) using a filtering algorithm.

iii. Use this approximation to compute the estimate

ûn(θ̄in) = ∫ p(yn∣θ̄in,xn)p̂(xn∣θ̄in,y1∶n−1)dxn (20)

and let win ∝ ûn(θ̄in) be the normalized weight of θ̄in.

(b) Resample the discrete distribution

µ̃Nn (dθ) =
N

∑
i=1

winδθ̄in(dθ) (21)

N times with replacement in order to obtain the particle set {θin}Ni=1 and the

approximate probability measure µNn (dθ) = 1
N ∑

N
i=1 δθin(dθ).

Outputs: A set of particles {θin}Ni=1 and a probability measure µNn (dθ).
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Algorithm 1 is essentially a sequential Monte Carlo (SMC) method, often known as a

particle filter [32, 49, 50]. At each time step n, the output of the algorithm is an estimate

of the posterior probability distribution µn(dθ) = p(θ∣y1∶n)dθ. Specifically we construct the

discrete and random probability measure

µNn (dθ) = 1

N
∑ δθin(dθ) (22)

that can be used to approximate any integrals w.r.t. the true probability measure µn(dθ) =
p(θ∣y1∶n)dθ. For example, one can estimate any posterior expectations of the parameter

vector θ given the observations y1∶n, namely

E[θ∣y1∶n] = ∫ θµn(dθ) ≃ ∫ θµNn (dθ) = 1

N
∑
i

θin =∶ θNn (23)

Since we have constructed a complete distribution, statistical errors can be estimated as

well. The a posteriori covariance matrix of vector θ can be approximated as

E [(θ −E[θ∣y1∶n]) (θ −E[θ∣y1∶n])
⊺ ∣y1∶n] ≃

1

N

N

∑
i=1

(θin − θNn ) (θin − θNn )⊺ =∶ PN
n . (24)

As a byproduct, Algorithm 1 also yields an approximate predictive pdf for xn, namely

p̂(xn∣y1∶n−1) =
N

∑
i=1

winp̂(xn∣θin,y1∶n−1).

If one computes the approximate filter, p̂(xn∣θin,y1∶n−1) as well, then the joint probability

distribution of θ and xn conditioned on y1∶n (denoted πn(dθ × dxn)) can be approximated

as

πNn (dθ × dxn) =
N

∑
i=1

winp̂(xn∣θ,y1∶n)δθ̄in(dθ)dxn.

The scheme of Algorithm 1 is referred to as nested because the SMC algorithm generates,

at each time step n, a set of samples {θ1
n, . . . ,θ

N
n } and, for each sample θin, we embed a filter

in the state space Rdx in order to compute the pdf p̂(xn∣θ̄in,y1∶n−1) and the approximate

likelihood ûn(θin). The term hybrid is used because the embedded filters need not be Monte

Carlo methods –a variety of techniques can be used and in this paper we focus on Gaussian

filters, which are attractive because of their (relative) computational simplicity. A scheme

with nested particle filters was thoroughly studied in [21, 51].

Let us finally remark that the NHF scheme relies on two approximations:
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• Jittering of the parameters : The difficulty of drawing samples from µn−1(dθ) =
p(θ∣y1∶n−1)dθ can be circumvented if we content ourselves with an approximate

sampling step. In particular, if we have computed a Monte Carlo approximation

µNn−1(dθ) = 1
N ∑

N
i=1 δθin−1(dθ) at time n − 1 (with some of the samples replicated

because of the resampling step) then we can generate new particles θ̄in, i = 1, . . . ,N ∼
κN(dθ∣θin−1), where κN(dθ∣θ′) is a Markov kernel, i.e., a probability distribution for

θ conditional on θ′. See Section IV for guidelines on the selection of this kernel.

Intuitively, we can either jitter a few particles with arbitrary variance (while leaving

most of them unperturbed) or jitter all particles with a controlled variance that

decreases as N increases.

• Estimation of likelihoods : The sequential approximation of Eqs. (16)–(18) yields

biased estimates of the likelihoods un(θn) [21]. This is discussed in Section IV. In

Appendix A we provide details on the computation of the estimates p̂(xn∣θ̄in,y1∶n−1)
and ûn(θn) using both the ensemble Kalman Filter (EnKF) and the Extended Kalman

Filter (EKF). Other techniques (e.g., particle filters as in [21] or sigma-point Kalman

filters [52, 53]) can be used as well.

C. Sequential quasi Monte Carlo hybrid filter

The SMC method in the first layer of Algorithm 1 can be replaced by other schemes that

rely on the point-mass representation of the posterior probability distribution µn(dθ). It

is possible to devise procedures based, for instance, on an unscented Kalman filter [54] or

other sigma-point Kalman methods [52, 53] to obtain a Gaussian approximation of µn(θ).
Such Gaussian approximations, however, can be misleading when the posterior distribution

is multimodal.

In this subsection, we describe a NHF method (hence, of the same class as Algorithm 1)

where the SMC scheme is replaced by a sequential quasi-Monte Carlo (SQMC) procedure

of the type introduced in [34]. The term quasi-Monte Carlo (QMC) refers to a class of

deterministic methods for numerical integration [55] that employ low-discrepancy point sets

(e.g., Halton sequences [56] or Sobol sequences [57]), instead of random sample sets, for the

approximation of multidimensional integrals. In the context of QMC, discrepancy is defined

to quantify how uniformly the points in a sequence are distributed into an arbitrary set S.
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Hence, the lowest discrepancy is attained when these points are equi-distributed. The main

advantage of (deterministic) QMC methods over (random) Monte Carlo schemes is that

they can attain a faster rate of convergence relative to the number of points in the grid, N .

Within a NHF, the use of QMC should lead to a better performance/complexity trade-off

as long as the parameter dimension, dθ, is relatively small. This is illustrated numerically

for a stochastic two-scale Lorenz 96 model in Section VI.

The NHF based on the SQMC methodology of [34] can be obtained from Algorithm

1 if we replace the sampling and resampling steps typical of the SMC schemes by the

generation of low-discrepancy point sets. Let {vin}Ni=1 be a Halton sequence of low-

discrepancy (deterministic) uniform samples [56]. These uniform samples can be used to

generate low-discrepancy variates from other distributions via a number of methods [58]. For

example, the Box-Muller transformation [59] can be used to generate pairs of independent,

standard, normally distributed pseudo-random numbers. We explicitly indicate the use of

low-discrepancy uniform numbers, vin, in the generation of samples with general distributions

by conditioning on vin. Hence, drawing the i-th sample from the prior parameter pdf,

θi0 ∼ p(θ), is now replaced by θi0 ∼ p(θ∣vi0). In order to propagate the i-th sample at time

n − 1, θin−1, into time n, we draw from the kernel κN(θn∣θin−1,v
i
n). If sampling is needed in

the second layer of filters (in order to compute the estimates p̂(xn∣θ̄in,y1∶n−1) and ûn(θ̄in))
we use additional Halton sequences in a similar way.

In order to keep the low-discrepancy property across the resampling step, we additionally

introduce the following functions (see [34] for details).

• A discrepancy-preserving bijective map ψ ∶ Rdx → [0,1]dθ . Several choices are possible

for this function. Following [34], here we assume

ψ(θ̄in) = [1 + exp(− θ̄
i
n − θ−n
θ+n − θ−n

)]
−1

, (25)

where θ−n and θ+n are the dθ-dimensional vectors whose j-th components are,

respectively,

[θ−n]j =mN
n,j − 2s2N

n,j and [θ+n]j =mN
n,j + 2s2N

n,j ,

whereas mN
n,j = ∑Ni=1w

i
n[θ̄in]j and s2N

n,j = ∑Ni=1w
i
n ([θ̄in]j −mN

n,j)
2
, j = 1, . . . , dθ, are

component-wise means and variances.
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• The inverse of the Hilbert curve, h ∶ [0,1]dθ Ð→ [0,1], which is a continuous fractal

space-filling curve that provides a locality-preserving map between a 1-dimensional

and a dθ-dimensional space [60, 61].

The SQMC-based NHF is outlined in Algorithm 2.

Algorithm 2 Sequential quasi Monte Carlo nested hybrid filter (SQMC-NHF).

Inputs:

- N (number of Monte Carlo samples to generate).

- A priori pdf ’s p(θ) and p(x0).

- A Markov kernel κN(dθ∣θ′) which, given θ′, generates jittered parameters θ ∈ Rdθ .

Procedure:

1. Initialization

(a) Generate QMC uniform samples {vi−1,v
i
0}Ni=1 in [0,1)dθ . Draw θi0 ∼ p(θ∣vi−1),

i = 1, . . . ,N .

2. Recursive step, n ≥ 1.

(a) For i = 1, . . . ,N :

i. If n = 1, then draw θ̄i1 ∼ κN(dθ∣θi0,vi0), else draw θ̄in ∼ κN(dθ∣θin−1, ṽ
c(i)
n−1), for

n ≥ 2.

ii. Approximate p̂(xn∣θ̄in,y1∶n−1).

iii. Use this approximation to compute the estimate

ûn(θ̄in) = ∫ p(yn∣θ̄in,xn)p̂(xn∣θ̄in,y1∶n−1)dxn. (26)

and let win ∝ ûn(θ̄in) be the normalized weight of θ̄in.

(b) Generate a QMC point set {vin}Ni=1 in [0,1)dθ+1; let vin = (vin, ṽin) ∈ [0,1)×[0,1)dθ .

(c) Hilbert sort: find a permutation b such that

(h ○ ψ)(θ̄b(1)n ) ≤ . . . ≤ (h ○ ψ)(θ̄b(N)
n ), if dθ ≥ 2

θ̄b(1)n ≤ . . . ≤ θ̄b(N)
n , if dθ = 1.
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(d) Resampling: find a permutation c such that v
c(1)
n ≤ . . . ≤ vc(N)

n . For i = 1, . . . ,N ,

set θin = θ̄jn if, and only if,

j−1

∑
k=1

w
b(k)
n < vc(i)n ≤

j

∑
k=1

w
b(k)
n , j ∈ {1, . . . ,N}.

Outputs: A set of particles {θin}Ni=1 and a probability measure µNn (dθ) = 1
N ∑

N
i=1 δθin(dθ).

IV. CONVERGENCE ANALYSIS

The nested filtering schemes of Section III admit various implementations depending on

how we choose to approximate the conditional pdf p(xn∣y1∶n−1,θ) which, in turn, is needed to

estimate the likelihood function and compute the importance weights win ∝ û(θ̄in) ≃ un(θ̄in),
i = 1, . . . ,N .

For each choice of approximation method, the estimate ûn(θ) may behave differently and

yield different convergence properties. Here we assume that ûn(θ) is a random variable with

finite mean ūn(θ) = E[ûn(θ)] < ∞ and finite moments up to some prescribed order p ≥ 1.

Specifically, we make following assumption.

A. 1 Given θ ∈ Rdθ , the estimator ûn(θ) is random and can be written as

ûn(θ) = ūn(θ) +mn(θ), (27)

where mn(θ) is a zero-mean r.v. satisfying E[mn(θ)p] ≤ σp < ∞ for some prescribed p ≥ 1.

Furthermore, the mean ūn(θ) = E [ûn(θ)] has the form

ūn(θ) = un(θ) + bn(θ), (28)

where bn(θ) is a deterministic and absolutely bounded bias function.

From here on, we use D ⊆ Rdθ to denote the support set of the parameter vector

θ. Given a real function a ∶ D → R, its absolute supremum is indicated as ∥a∥∞ ∶=
supθ∈D ∣a(θ)∣. The set of absolutely bounded real functions on D is denoted B(D), i.e.,

B(D) ∶= {(a ∶D → R) ∶ ∥a∥∞ < ∞}. For our analysis we assume that un ∈ B(D) and, since

we have also assumed the bias function bn to be bounded, it follows that ūn ∈ B(D), i.e.,

∥ūn∥∞ < ∞. To be precise, we impose the following assumption.
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A. 2 Given a fixed sequence of observations y1∶n, the family of functions {ūn(θ),θ ∈ D}
satisfies the following inequalities for each n = 1,2, ...:

1. ūn ∈ B(D), and

2. ūn(θ) > 0 for any θ ∈D.

Since ∥un∥∞ < ∞, A.2.1 follows from assumption A.1. Similarly, if un(θ) > 0 for all θ ∈D
then A.2.2 is a natural assumption (since û(θ) is an estimator of a positive magnitude).

We shall prove that, because of the bias bn(θ), the approximation µNn converges to the

perturbed probability measure µ̄n induced by the mean function ūn, instead of the true

posterior probability measure µn induced by the true likelihood function un.

To be specific, the sequence of posterior measures µn, n ≥ 1, can be constructed

recursively, starting from a prior µ0, by means of the projective product operation [62],

denoted µn = un ⋅ µn−1. When u is a positive and bounded function and µ is a probability

measure, the new measure u ⋅µ is defined in terms of its integrals. In particular, if a ∈ B(D)
then

∫ a(θ)(u ⋅ µ)(dθ) ∶= ∫ a(θ)u(θ)µ(dθ)
∫ u(θ)µ(dθ) .

For conciseness, hereafter we use the shorthand

(a,µ) ∶= ∫ a(θ)µ(dθ)

for the integral of a function a(θ) w.r.t. a measure µ(dθ). With this notation, we can write

(a,µn) = (a, un ⋅ µn−1) =
(aun, µn−1)
(un, µn−1)

. (29)

If, instead of the true likelihood un, we use the biased function ūn = un + bn to update the

posterior probability measure associated to the parameter vector θ at each time n then we

obtain the new sequence of measures

µ̄0 = µ0, µ̄n = ūn ⋅ µ̄n−1, n = 1,2, ...,

where, according to the definition of the projective product,

(a, µ̄n) =
(aūn, µ̄n−1)
(ūn, µ̄n−1)

20



for any integrable function a(θ). Note that the two sequences, µn and µ̄n, start from the

same prior µ0. Obviously, we recover the original sequence, i.e, µ̄n → µn, when the bias

vanishes, bn → 0.

In this section we prove that the approximation µNn generated by a generic nested filter

that satisfies A.1 and A.2 converges to µ̄n in Lp, for each n = 1,2, ..., under additional

regularity assumption on the jittering kernel κn.

A. 3 The kernel κN used in the jittering step satisfies the inequality

sup
θ′∈D
∫ ∣h(θ) − h(θ′)∣κN(dθ∣θ′) ≤ cκ∥h∥∞√

N
(30)

for every h ∈ B(D) and some constant cκ < ∞ independent of N .

A simple kernel that satisfies A.3 is [21]

κN(dθ∣θ′) = (1 − εN)δθ′(dθ) + εNκ(dθ∣θ′),

where 0 < εN ≤ 1√
N

and κ(dθ∣θ′) is an arbitrary Markov kernel with mean θ′ and finite

variance, for example κ(dθ∣θ′) = N(θ∣θ′, σ̃2Idθ), where σ̃2 < ∞ and Idθ is the identity

matrix. Intuitively, this kind of kernel changes each particle with probability εN and leaves

it unmodified with probability 1 − εN .

Finally, we can state a general result on the convergence of Algorithm 1. For a real

random variable x and p ≥ 1, let ∥x∥p denote the Lp norm, i.e. ∥x∥p ∶= E[∣x∣p]
1
p .

Theorem 1 Let the sequence of observations y1∶no be arbitrary but fixed, with no < ∞, and

choose an arbitrary function h ∈ B(D). If assumptions A.1, A.2 and A.3 hold, then

∥(h,µNn ) − (h, µ̄n)∥p ≤
cn∥h∥∞√

N
, for n = 0,1, . . . , no and any p ≥ 1, (31)

where {cn}0≤n≤no is a sequence of finite constants independent of N .

Proof: See Appendix B. ◻
We remark that Theorem 1 does not state that the approximate posterior probability

measure output by Algorithm 1, µNn , converges to the true posterior measure µn, but to the

biased version µ̄n. Moreover, the latter depends on the choice of filters used in the second

layer of Algorithm 1 (i.e., on the estimator of the likelihood, ûn). The value of this theorem

is that it guarantees the numerical consistency of the the nested hybrid filter: as we increase
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the computational effort (by increasing N), the random probability measure µNn converges

to a well defined limit (and so do any point estimators that we may derive from it, e.g.,

the posterior mean estimator θNn ). The connection between this limit measure, µ̄n, and the

true posterior measure µn is given by assumption A.1 and the projective product operation,

namely,

µ̄n = (un + bn) ⋅ µ̄n−1, while µn = un ⋅ µn−1,

with both sequences starting with a common prior measure µ̄0 = µ0. The practical

performance of the proposed schemes (with finite N) is explored numerically in the sequel.

V. A STOCHASTIC LORENZ 96 MODEL

In order to assess the proposed methods numerically, we have applied them to a stochastic,

discrete-time version of the two-scale Lorenz 96 model [40, 43, 63]. The latter is a

deterministic system of nonlinear differential equations that displays some key features of

atmospheric dynamics (including chaotic behavior) in a relatively simple model of arbitrary

dimension (the number dx of dynamic variables can be scaled as needed). The model consists

of two sets of dynamic variables, x and z. The system of stochastic differential equations

takes the form

dx = f 1(x,z,α)dt + σdw

dz = f 2(x,z,α)dt + σ̄dw̄
(32)

where x(t) and z(t) represent the slow and fast variables, respectively, w and w̄ are Wiener

processes, σ, σ̄ > 0 are known scale parameters and α is a parameter vector of dimension

dα = 4. Let us assume there are dx slow variables, xj, j = 0, . . . , dx−1, and L fast variables per

slow variable, i.e., zl, l = 0, ..., dxL−1, overall. The maps f 1 and f 2 are Rdx ×RL×Rdα → Rdx

and RL × Rdx × Rdα → RL functions, respectively, that can be written (skipping the time

index t) as

f 1 = [f1,0, . . . , f1,dx−1]⊺ and f1,j(x,z,α) = −xj−1(xj−2 − xj+1) − xj + F − HC
B

Lj−1

∑
l=(j−1)L

zl,

f 2 = [f2,0, . . . , f2,dxL−1]⊺ and f2,l(z,α) = −CBzl+1(zl+2 − zl−1) −Czl +
CF

B
+ HC

B
x⌊ l−1

L
⌋,

(33)
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where α contains the parameters F ,C,H and B. The forcing parameter F controls the

turbulence of the chaotic flow, C determines the time scale of the fast variables {zl}l≥0, H

controls the strength of the coupling between the fast and slow variables and B determines

the amplitude of the fast variables [40]. The dynamic variables are assumed to be arranged

on a circular structure, hence the operations on the j indices are modulo dx and operations

on the l indices are modulo L. This means that for any integer k, j +k ≡ (j +k) mod dx and

l + k ≡ (l + k) mod L. Notation ⌊a⌋ indicates the truncation of a positive real number a to

the closest integer smaller than a.

We apply the 4th order Runge-Kutta (RK4) method [45] to obtain a discrete-time version

of the two-scale Lorenz 96 model. To be specific, we numerically integrate Eq. (32) by means

of the stochastic difference equations

xn = xn−1 +Fm
1 (xn−1,zn−1,α, h, σwn),

zn = zn−1 +Fm
2 (xn−1,zn−1,α, h, σ̄w̄n)

(34)

where h > 0 is the integration step-size, and vn and v̄n are sequences of i.i.d. standard

Gaussian r.v.’s.

We assume that the observations are linear but can only be collected from this system

once every T discrete-time steps. Moreover, only 1 out of K slow variables can be observed.

Therefore, the observation process has the form

yn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xK,nT

x2K,nT

⋮
xdyK,nT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ rn, (35)

where n = 1,2, ... and rn is a sequence of i.i.d. r.v.’s with common pdf N(rn∣0, σ2
oIdy). Note

that fast variables are not observed.

In our computer experiments, system (33) is often employed to generate both ground-

truth values for the slow variables {xn}n≥0 and synthetic observations, {yn}n≥1. However,

since in real world problems models are inherently imperfect (modelling errors always exist

to some extent), a different and simpler version of the Lorenz 96 model is used in order to

implement the NHFs. In this simpler version, the contribution of the fast variables to the

j-th equation is substituted by a polynomial function of the slow variable xj. To be specific,
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we use the SDE

dxj = fj(x,θ)dt + σdwj = [−xj−1(xj−2 − xj+1) − xj + F − `(xj, a)]dt + σdwj, j = 0, ..., dx − 1,

(36)

where a = [a1, a2]⊺ is a (constant) parameter vector, θ = [F, a⊺]⊺ contains all the parameters,

function `(xj, a) ∈ R is a polynomial ansatz for the coupling term HC
B ∑

Lj−1
l=(j−1)L

zl in (33) and

wj is a standard Wiener process. Note that in this simplified model we have removed the

fast variables completely. In this paper we assume that `(xj, a) is a polynomial in xj of

degree 2, characterized by the coefficients a1 and a2 as

`(xj, a) = a1x
2
j + a2xj.

Then, the system (34) can be replaced by

xn = xn−1 + F̄m(xn−1,θ, h, σwn) (37)

where F̄m is the RK4 approximation of the function f = [f0, . . . , fdx−1]⊺ in Eq. (36).

Assuming rn is a sequence of independent and identically distributed noise terms with

Gaussian probability distribution, p(r) = N(r∣0, σ2
oIdy), then

p(yn∣xn,θ) = N(yn∣xn, σ2
oIdy) (38)

which denotes a dy-dimensional Gaussian density with zero mean and covariance matrix

σ2
oIdy , where Idy is the dy × dy identity matrix.

VI. NUMERICAL RESULTS

We have conducted computer simulations to illustrate the performance of the proposed

NHF methods. In particular, we have carried out computer experiments for six different

schemes: the NPF of [21], the two-stage filter of [64] and four NHFs that rely on the SQMC

and the SMC, both in combination with EKFs or EnKFs. Then, two different versions

of Algorithm 1 (SMC-EKF, SMC-EnKF) and Algorithm 2 (SQMC-EKF, SQMC-EnKF)

are simulated. The simulation setup is described below, followed by the discussion of our

numerical results in Section VI B.
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A. Simulation setup

For our computer experiments we have used the two-scale Lorenz 96 model of Eq. (32),

in order to generate

• reference signals x̃k, k = 0,1, . . ., used as ground truth for the assessment of the

estimators, and

• sequences of observations, yn, n = 1,2, . . . as in Eq. 25.

The model is integrated using the RK4 method with Gaussian perturbations [45] (as

outlined in Eq. (34)). The integration step is set to h = 5 × 10−3 continuous-time units

through all experiments and the fixed model parameters are F = 8, H = 0.75, C = 10 and

B = 15. For all experiments, we assume that there are L = 10 fast variables per slow

variable, hence the total dimension of the model is 10dx (with different values of dx for

different experiments). The noise scaling factors are σ = h
4 = 0.25 × 10−3 and σo = 4, both

assumed known. We assume that half of the slow variables are observed in Gaussian noise,

i.e., K = 2.

We assess the accuracy of the estimation algorithms in terms of the mean square error

(MSE) of the predictors of the dynamic variables. For the NHFs, these estimators take the

form

x̂n =
N

∑
i=1

winx̂
i
n, (39)

where x̂in is the posterior-mean estimate obtained from the approximate filter p̂(xn∣y1∶n, θ̄
i
n),

that can be expressed as N(xn∣x̂in,P i
n), since the approximation is Gaussian. In the plots,

however, we show the empirical MSE per dimension resulting directly from the simulations,

MSEn =
1

dx
∥ xn − x̂n ∥2 . (40)

averaged over 100 independent simulation runs, being all of them of 40 continuous-time units

of duration.

The simulations presented below include running times for the different methods. They

have been coded in Matlab R2016a and run on a computer with 64 GB of DRAM and

equipped with two Intel Xeon E5-2680 processors (running at 2.80GHz) with 10 cores each

and HyperThreading as well as an Intel Xeon Phi co-processor.
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B. Results

Table I shows a comparison of the performance of the NPF, the two-stage filter and the

four NHFs, based on the use of SMC, SQMC, EKF and EnKF schemes as described in

Section III, in terms of their running times and the MSE of the state estimators (averaged

over time and dimensions). We have carried out this computer simulation for a model with

dimension dx = 40 and a gap between observations of hm = 0.05 continuous-time units.

All NHFs algorithms work with N = 100 particles for the approximation of the posterior

distributions of the fixed parameters, using M = dx = 40 samples per each EnKF in the

second-layer. It can be seen that the highest error is achieved by the NPF, followed by the

two-stage filter method. The NPF is also the algorithm that takes the longest running time.

Both NHFs using EKF attain the least MSE with the smallest running time. In order to

improve the performance of the NPF, the numbers of particles M and N would have to

be considerably increased, but this would increase the running times correspondingly (the

complexity of the NPF is O(NM) [21]).

Algorithm Running time (minutes) MSE

NHF: SQMC-EKF 2.16 0.46

NHF: SMC-EKF 2.27 0.49

NHF: SQMC-EnKF 6.83 0.62

NHF: SMC-EnKF 7.12 0.95

Two-Stage Filter (N = 600,M = 400) 6.85 4.59

NPF (N =M = 800) 17.96 11.91

TABLE I: Running times and average MSE (over time and state dimensions) for the NPF,

the two-stage filter and four NHFs, based on the SQMC, the SMC, the EKF and the

EnKF, respectively.

In the next experiment we assess the performance of the different NHFs depending on

the number of particles used in the first-layer of the filter, in order to choose appropriately

this number to carry out the following computer experiments. For this purpose, we consider

a model with dimension dx = 100, a gap between observations of hm = 0.05 continuous-
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time units and a number of particles that ranges from 50 to 400. Figure 1 shows the

numerical results for this experiment. We observe that the MSE for the four algorithms

stabilizes quickly. At the sight of these results, we set N = 100 for all remaining experiments.

Additionally, Figure 1 also shows the difference between the NHFs. Specifically, we see that

using SQMC in the first-layer we can slightly improve slightly the performance. For this

reason, in the next experiments we only simulate NHFs that rely on SQMC. Moreover, it is

easy to observe that the filters that use EKFs in the second-layer obtain better results.
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FIG. 1: MSE of the different NHFs depending on the number of particles used in the

first-layer of the filter.

In the next set of computer experiments we compare the SQMC-EKF and the SQMC-

EnKF methods in terms of their average MSE and their running times for different values

of the state dimension dx and the gap between consecutive observations m (in discrete time

steps). For each combination of dx and m we have carried out 100 independent simulation

runs. The number of particles in the parameter space is fixed, N = 100, for all simulations,

but the size of the ensemble in the EnKFs is adjusted to the dimension, in particular, we

set M = dx.
Figure 2 shows (a) the running times and (b) the average MSE attained by the two SQMC

NHFs when the state dimension dx ranges from 100 to 800. The gap between observations

is fixed to m = 20 (i.e., 0.1 time units versus 0.05 in Figure 1). We observe that the SQMC-

EKF method attains significantly lower running times compared to the SQMC-EnKF, since

the former increases linearly with dimension while the latter increases its cost exponentially.
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However, the SQMC-EKF obtains an MSE which increase with the dimension dx, while the

values of MSE for the SQMC-EnKF method are steady w.r.t. dx.

Next, Figure 3 displays the running times and the average MSEs attained by the two

NHFs as we increase the gap between observations from m = 10 to m = 100 (hence, from

hm = 0.05 to hm = 0.50 continuous time units). The dimension of the state for this

experiment is fixed to dx = 100. Note that, as the gap m increases, less data points

are effectively available for the estimation of both the parameters and the states. We

observe, again, that the SQMC-EnKF is computationally more costly than the SQMC-

EKF, however it attains a consistently smaller MSE when the gap between observations

increases, suggesting that it may be a more efficient algorithm in data-poor scenarios.
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FIG. 2: Comparison of the SQMC-EKF (red lines) and SQMC-EnKF (blue lines) in terms

of their running time (a) and their MSE (b) as the state dimension dx increases, with a

fixed gap between observations of T = 20 discrete time steps.

Finally, we show results for a computer experiment in which we have used the SQMC-

EnKF method to estimate the parameters F and a and track the state variables of the two-

scale Lorenz system with dimension dx = 5,000 and a gap between consecutive observations

of hm = 0.05 continuous-time units. As in the rest of computer simulations, the number of

particles used to approximate the sequence of parameter posterior distributions is N = 100.

Figure 4 shows the true state trajectories, together with their estimates, for the first two

slow state variables of the two-scale Lorenz 96 model. We note that the first variable, x1(t),
is observed in Gaussian noise (with σo = 4) while the second variable, x2(t), is not observed.

The accuracy of the estimation is similar, though, over the 20 continuous-time units of the

simulation run (corresponding to 20 × 103 discrete time steps), achieving and MSE ≊ 0.87.
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FIG. 3: Comparison of the SQMC-EKF (red lines) and SQMC-EnKF (blue lines) in terms

of their running time (a) and their MSE (b) as the gap between observations m increases,

with fixed state dimension dx = 100.

Taking into account the steadiness of MSE w.r.t. dimension of SQMC-EnKF in Figure 2b

and the values of MSE shown in Figure 3b for the gap selected in this experiment (m = 10),

the results obtained are within the expected range.

In Figure 5 we observe the estimated posterior pdf’s of the fixed parameters F , a1 and

a2, together with the reference values. Note that the value F = 8 is ground truth, but the

values of a1 and a2 are genie-aided least-squares estimates obtained by observing directly the

fast variables of the two-scale model. Figure 5a displays the true value F = 8 (vertical line)

together with the approximate posterior pdf generated by the same Euler algorithm. We

observe that nearly all probability mass is allocated close to the true value. In Fig. 5b we

compare the approximate pdf of the coefficients a = [a1, a2]T produced by the NHF (dashed

contour lines) with a kernel density estimator computed from the least-squares genie-aided

estimates obtained from 100 independent simulations with the same setting (solid contour

lines). The modes of the two pdf’s are slightly shifted but the two functions are otherwise

similar. The genie-aided estimate of a is located in a high probability region of the density

function computed by the NHF.

VII. CONCLUSIONS

We have introduced a nested filtering methodology to recursively estimate the static

parameters and the dynamic variables of nonlinear dynamical systems. The proposed
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FIG. 4: Sequences of state values (black line) and estimates (dashed red line) in x1 (a) and

x2 (b) over time. Variable x1 is observed (in Gaussian noise), while x2 is unobserved.
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FIG. 5: Posterior density of the parameters a = [a1, a2]⊺ and F at t = 5 in a

5,000-dimensional Lorenz 96 model (red dashed lines). The true value of F (in plot 5a) is

indicated by a black vertical line, while the location of reference values of a (in plot 5b) is

marked by a black star. Note that there is no ground truth for the parameters in a.

framework combines a recursive Monte Carlo approximation method to compute the

posterior probability distribution of the static parameters with a variety of filtering

techniques to estimate the posterior distribution of the state variables of the system.

In particular, we have investigated the use of Gaussian filters, as they admit fast

implementations that can be well suited to high dimensional systems. As a result, we

have proposed a class of nested hybrid filters that combine Monte Carlo and quasi Monte

Carlo schemes for the (moderate dimensional) unknown static parameters of the dynamical

system with either extended Kalman filtering or ensemble Kalman filtering for the (higher

dimensional) time-varying states. Additionally, when sequential MC is applied in the first

30



layer of the NHF scheme, we have proved that the algorithm converges with rate O(N− 1
2)

to a well defined limit distribution. We have presented numerical results for a two-scale

stochastic Lorenz 96 system, a model commonly used for the assessment of data assimilation

methods in the Geophysics. We illustrate the average performance of the methods in terms

of estimation errors and running times, and show numerical results for a 5,000-dimensional

system. This has been achieved with a relatively inefficient implementation of the method

running on a desktop computer, hence we expect that the method can be applied to much

larger scale systems using adequate hardware and software.
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Appendix A: Summary of NHF algorithms

In this Appendix we provide details of the four versions of the NHF used in the

experiments of Section VI. The differences between the specific methods depend on whether

the posterior distribution of the parameters is approximated using either an SMC or

an SQMC scheme and whether the posterior (approximate) pdf’s p̂(xn∣y1∶n−1, θ̄
i
n) and

p̂(xn∣y1∶n, θ̄
i
n), which are needed to evaluate the importance weights win ∝ ûn(θ̄in) are

computed using either an EKF or an EnKF method.

In order to implement the EKF scheme, the state and the observation functions (f and

g) are assumed nonlinear and differentiable and, therefore, the mean xin and the covariance

matrix P i
n can be directly calculated. This can be done by computing their respective

Jacobian matrices (Jf ,x,θ and Jg,x,θ) evaluated at the point x in the state space and θ

in the parameter space. In the EnKF scheme [65] the approximate filter p̂(xn∣y1∶n, θ̄
i
n) is

represented by an ensemble of M Monte Carlo particles {xi,jn }Mj=1, which can be combined to

yield an empirical covariance matrix P i,M
n , hence there is no need to assume that the state
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or observation functions are differentiable.

Each ensemble can be stored in a dx×M matrix X i
n = [xi,1n ,xi,2n , . . . ,xi,Mn ]. The i-th mean

and the i-th covariance matrix can be computed as

x̄in =
1

M
X i

n1 and P̄ i
n =

1

M
X̃ i

n(X̃ i
n)⊺,

respectively, where 1 = [1, . . . ,1]⊺ is an M -dimensional column vector and X̃ i
n =X i

n − x̄in1⊺

is an ensemble of deviations from x̄in. We hence write N(xn∣X i
n) as a shorthand for the

Gaussian pdf N(xn∣x̄in, P̄ i
n).

We assume that the prior pdf of the state is Gaussian with known mean and covariance

matrix, namely

p(x0) = N(x0∣x̄0, P̄ 0) (A1)

The noise terms in the state space model are also assumed Gaussian, with zero mean and

known covariance matrices, specifically

wk ∼ N(wk∣0,Q) and rk ∼ N(rk∣0,T ). (A2)

represent the state and observation noise respectively.

Below, we describe algorithms that rely on either Monte Carlo (MC) or quasi Monte Carlo

(QMC) sampling schemes. Our simulations show that QMC can attain better performance,

but this is only true if this sampling scheme is used both in the parameter space and the

state space. To be specific, the methods that we have assessed are the following:

• SMC-EnKF (Algorithm 3) uses a sequential MC sampling procedure in the parameter

space and a bank of EnKF’s for the computation of the weights. Sampling inside each

EnKF is standard MC.

• SQMC-EnKF (Algorithm 4) uses sequential QMC sampling in the parameter space

an QMC inside the EnKF’s.

• SMC-EKF (Algorithm 5) relies on sequential MC sampling for the parameters and

uses EKF’s for the weight computation. There is no need for sampling in the EKF

algorithm.

• SQMC-EKF (Algorithm 6) performs sequential QMC sampling in the parameter space

and computes weights using EKF’s.
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Algorithm 3 SMC-EnKF

1. Initialization: draw N i.i.d. particles θi0 ∼ µ0(dθ) and {xi,j0 } ∼ p(x0), i = 1, . . . ,N ,

j = 1, . . . ,M . Let X i
0 = [xi,10 , . . . ,x

i,M
0 ], i = 1, . . . ,N .

2. Recursive step: at time n − 1, we have obtained µNn−1(dθ) = 1
N ∑

N
i=1 δθin−1(dθ) and, for

each i = 1, . . . ,N , p̂(xn−1∣y1∶n−1,θ
i
n−1) = N(xn−1∣X i

n−1).

(a) Prediction step:

i. Draw θ̄in ∼ κN(dθ∣θin−1), i = 1, . . . ,N .

ii. For each i = 1, . . . ,N compute

X̂ i
n =X i

n−1 +Fm(X i
n−1, θ̄

i
n, h, σW

i
n) (A3)

where W i
n = [wi,1

n , . . . ,w
i,M
n ], i = 1, . . . ,N , is a mqdx×M matrix of Gaussian

perturbations (q denotes the order of the underlying RK integrator). This is

done by generating mqdx ×M QMC random variates [66] and then applying

the inversion method [67] to generate the Gaussian variates (one per uniform

sample).

iii. Set p̂(xn∣y1∶n−1, θ̄
i
n) = N(xn∣X̂ i

n).

(b) Update step:

i. For i = 1, . . . ,N , compute

M̄ i
n=

1

M
X̃ i

n(Z̃i
n)⊺ (A4)

S̄in=
1

M
Z̃i
n(Z̃i

n)⊺ + T (A5)

Ki
n= M̄ i

n(S̄in)−1 (A6)

X̌ i
n= X̂ i

n +Ki
n(yn1⊺ − Ȳ i

n) (A7)

where T = σ2
oIdy is the measurement noise covariance, ȳn = 1

M Ȳ
i
n1 and

x̄in = 1
M X̂

i
n1, with Ȳ i

n = g(X̂ i
n,θ) +Ri

n and Ri
n = [r1

n, . . . ,r
M
n ] a matrix of

Gaussian perturbations. X̃ i
n and Z̃i

n are calculated as

X̃ i
n= X̂ i

n − x̄in1⊺ (A8)

Z̃i
n=

1

M
g(X̂ i

n,θ) − ȳin1⊺ (A9)
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ii. Compute û(θ̄in) = N(yn∣g(x̄in, θ̄in), S̄in) and obtain the normalized weights,

wi =
û(θ̄in)

∑Nj=1 ûn(θ̄jn)
, i = 1, . . . ,N. (A10)

iii. Set the filter approximation

p̂(xn∣y1∶n, θ̄
i
n) = N(xn∣X̌ i

n). (A11)

(c) Resampling: draw indices j1, . . . , jN from the multinomial distribution with

probabilities w1
n, . . . ,w

N
n , then set

θin = θ̄jin , and X i
n = X̌ji

n (A12)

for i = 1, . . . ,N . Hence

p̂(xn∣y1∶n,θ
i
n) = N(xn∣X i

n) and µNn (dθ) = 1

N

N

∑
i=1

δθin(dθ).

Algorithm 4 SQMC-EnKF

1. Initialization: generate QMC uniform samples {vi−1,v
i
0} in [0,1)dθ and v̄i−1 in [0,1)dx.

Draw θi0 ∼ µ0(dθ∣vi−1) and {xi,j0 } ∼ p(x0∣v̄i−1),i = 1, . . . ,N , j = 1, . . . ,M . Let X i
0 =

[xi,10 , . . . ,x
i,M
0 ], i = 1, . . . ,N .

2. Recursive step, n ≥ 1. At time n − 1, we have obtained µNn−1(dθ) = 1
N ∑

N
i=1 δθin−1(dθ)

and, for each i = 1, . . . ,N , p̂(xn−1∣y1∶n−1,θ
i
n−1) = N(xn−1∣X i

n−1).

(a) Prediction step:

i. If n = 1, draw θ̄in ∼ κN(dθ∣θin−1,v
i
0), else draw θ̄in ∼ κN(dθ∣θin−1, ṽ

c(i)
n−1),

i = 1, . . . ,N , for n ≥ 2.

ii. For each i = 1, . . . ,N compute

X̂ i
n =X i

n−1 +Fm(X i
n−1, θ̄

i
n, h, σW

i
n) (A13)

where W i
n = [wi,1

n , . . . ,w
i,M
n ], i = 1, . . . ,N , is a mqdx×M matrix of Gaussian

perturbations (q denotes the order of the underlying RK integrator). This is

done by generating mqdx ×M QMC random variates [68] and then applying

the inversion method [67] to generate the Gaussian variates (one per uniform

sample).
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iii. Set p̂(xn∣y1∶n−1, θ̄
i
n) = N(xn∣X̂ i

n).

(b) Update step:

i. For i = 1, . . . ,N , compute

M̄ i
n=

1

M
X̃ i

n(Z̃i
n)⊺ (A14)

S̄in=
1

M
Z̃i
n(Z̃i

n)⊺ + T (A15)

Ki
n = M̄ i

n(S̄in)−1 (A16)

X̌ i
n= X̂ i

n +Ki
n(yn1⊺ − Ȳ i

n) (A17)

where T = σ2
oIdy is the measurement noise covariance, ȳn = 1

M Ȳ
i
n1 and

x̄in = 1
M X̂

i
n1, with Ȳ i

n = g(X̂ i
n,θ) +Ri

n and Ri
n = [r1

n, . . . ,r
M
n ] a matrix of

Gaussian perturbations. X̃ i
n and Z̃i

n are calculated as

X̃ i
n= X̂ i

n − x̄in1⊺ (A18)

Z̃i
n=

1

M
g(X̂ i

n,θ) − ȳin1⊺ (A19)

ii. Compute û(θ̄in) = N(yn∣g(x̄in, θ̄in), S̄in) and obtain the normalized weights,

wi =
û(θ̄in)

∑Nj=1 ûn(θ̄jn)
, i = 1, . . . ,N. (A20)

iii. Set the filter approximation

p̂(xn∣y1∶n, θ̄
i
n) = N(xn∣X̌ i

n). (A21)

(c) Generate a QMC point set {vin}Ni=1 in [0,1)dθ+1; let vin = (vin, ṽin) ∈ [0,1)×[0,1)dθ .

(d) Hilbert sort: find a permutation b such that

(h ○ ψ)(θ̄b(1)n ) ≤ . . . ≤ (h ○ ψ)(θ̄b(N)
n ), if dθ ≥ 2

θ̄b(1)n ≤ . . . ≤ θ̄b(N)
n , if dθ = 1.

(e) Resampling: find a permutation c such that v
c(1)
n ≤ . . . ≤ vc(N)

n . For i = 1, . . . ,N

set θin = θ̄jn and X i
n = X̌j

n if, and only if,

j−1

∑
k=1

w
b(k)
n < vc(i)n ≤

j

∑
k=1

w
b(k)
n , j ∈ {1, . . . ,N}.

Hence p̂(xn∣y1∶n,θ
i
n) = N(xn∣X i

n) and µNn (dθ) = 1
N ∑

N
i=1 δθin(dθ).
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Algorithm 5 SMC-EKF.

1. Initialization: draw N i.i.d. particles θi0 ∼ µ0(dθ) and {xi0} ∼ p(x0), i = 1, . . . ,N . Let

P i
0 = P 0.

2. Recursive step: at time n − 1, we have obtained µNn−1(dθ) = 1
N ∑

N
i=1 δθin−1(dθ) and, for

each i = 1, . . . ,N , p̂(xn−1∣y1∶n−1,θ
i
n−1) = N(xn−1∣xin−1,P

i
n−1).

(a) Prediction step:

i. Draw θ̄in ∼ κN(dθ∣θin−1), i = 1, . . . ,N .

ii. For each i = 1, . . . ,N compute

x̂in= xin−1 +Fm(xin−1, θ̄
i
n, h) (A22)

P̂ i
n=Gm(P i

n−1, σ,Q) (A23)

where Q is the covariance matrix of the state and Gm denotes the composition

of function G m times (G ○ . . . ○G). Function G in turn, is described as

G(P i
k−1, σ,Q) = JF ,x̂i

k−1
,θ̄in
P i
k−1J

⊺

F ,x̂i
k−1

,θ̄in
+ σ2Q (A24)

iii. Set p̂(xn∣y1∶n−1, θ̄
i
n) = N(xn∣x̂in, P̂ i

n).

(b) Update step:

i. For i = 1, . . . ,N , compute

S̄in= Jg,x̂in,θ̄inP̂
i
nJ

⊺

g,x̂in,θ̄
i
n
+ σ2T (A25)

Ki
n= P̂ i

nJ
⊺

g,x̂in,θ̄
i
n
(S̄in)−1 (A26)

x̌in= x̂in +Ki
n(yn − g(x̄in, θ̄in)) (A27)

P̌ i
n= (Idx −Ki

nJg,x̂in,θ̄in)P̂
i
n (A28)

where T = σ2
oIdy is the measurement noise covariance.

ii. Compute û(θ̄in) = N(yn∣g(x̄in, θ̄in), S̄in) and obtain the normalized weights,

wi =
û(θ̄in)

∑Nj=1 ûn(θ̄jn)
, i = 1, . . . ,N. (A29)

iii. Set the filter approximation

p̂(xn∣y1∶n, θ̄
i
n) = N(xn∣x̌in, P̌ i

n). (A30)
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(c) Resampling: draw indices j1, . . . , jN from the multinomial distribution with

probabilities w1
n, . . . ,w

N
n , then set

θin = θ̄jin , xin = x̌jin and P i
n = P̌ ji

n (A31)

for i = 1, . . . ,N . Hence

p̂(xn∣y1∶n,θ
i
n) = N(xn∣xin,P i

n) and µNn (dθ) = 1

N

N

∑
i=1

δθin(dθ).

Algorithm 6 SQMC-EKF.

1. Initialization: generate QMC uniform samples {vi−1,v
i
0} in [0,1)dθ and v̄i−1 in [0,1)dx.

Draw θi0 ∼ µ0(dθ∣vi−1) and {xi0} ∼ p(x0∣v̄i−1), i = 1, . . . ,N . Let P i
0 = P 0.

2. Recursive step, n ≥ 1. At time n − 1, we have obtained µNn−1(dθ) = 1
N ∑

N
i=1 δθin−1(dθ)

and, for each i = 1, . . . ,N , p̂(xn−1∣y1∶n−1,θ
i
n−1) = N(xn−1∣xin−1,P

i
n−1).

(a) Prediction step:

i. If n = 1, draw θ̄in ∼ κN(dθ∣θin−1,v
i
0), else draw θ̄in ∼ κN(dθ∣θin−1, ṽ

c(i)
n−1),

i = 1, . . . ,N , for n ≥ 2.

ii. For each i = 1, . . . ,N compute

x̂in= xin−1 +Fm(xin−1, θ̄
i
n, h) (A32)

P̂ i
n=Gm(P i

n−1, σ,Q) (A33)

where Q is the covariance matrix of the stateand Gm denotes the composition

of function G m times (G ○ . . . ○G). Function G in turn, is described as

G(P i
k−1, σ,Q) = JF ,x̂i

k−1
,θ̄in
P i
k−1J

⊺

F ,x̂i
k−1

,θ̄in
+ σ2Q (A34)

iii. Set p̂(xn∣y1∶n−1, θ̄
i
n) = N(xn∣x̂in, P̂ i

n).

(b) Update step:
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i. For i = 1, . . . ,N , compute

S̄in= Jg,x̂in,θ̄inP̂
i
nJ

⊺

g,x̂in,θ̄
i
n
+ σ2T (A35)

Ki
n= P̂ i

nJ
⊺

g,x̂in,θ̄
i
n
(S̄in)−1 (A36)

x̌in= x̂in +Ki
n(yn − g(x̄in, θ̄in)) (A37)

P̌ i
n= (Idx −Ki

nJg,x̂in,θ̄in)P̂
i
n (A38)

where T = σ2
oIdy is the measurement noise covariance.

ii. Compute û(θ̄in) = N(yn∣g(x̄in, θ̄in), S̄in) and obtain the normalized weights,

wi =
û(θ̄in)

∑Nj=1 ûn(θ̄jn)
, i = 1, . . . ,N. (A39)

iii. Set the filter approximation

p̂(xn∣y1∶n, θ̄
i
n) = N(xn∣x̌in, P̌ i

n). (A40)

(c) Generate a QMC point set {vin}Ni=1 in [0,1)dθ+1; let vin = (vin, ṽin) ∈ [0,1)×[0,1)dθ .

(d) Hilbert sort: find a permutation b such that

(h ○ ψ)(θ̄b(1)n ) ≤ . . . ≤ (h ○ ψ)(θ̄b(N)
n ), if dθ ≥ 2

θ̄b(1)n ≤ . . . ≤ θ̄b(N)
n , if dθ = 1.

(e) Resampling: find a permutation c such that v
c(1)
n ≤ . . . ≤ vc(N)

n . For i = 1, . . . ,N

set θin = θ̄jn, xin = x̌jn and P i
n = P̌ j

n if, and only if,

j−1

∑
k=1

w
b(k)
n < vc(i)n ≤

j

∑
k=1

w
b(k)
n , j ∈ {1, . . . ,N}.

Hence p̂(xn∣y1∶n,θ
i
n) = N(xn∣xin,P i

n) and µNn (dθ) = 1
N ∑

N
i=1 δθin(dθ).

The computational complexity of sampling in the parameter space increases linearly

with N using either the SMC or the SQMC methods. However, the complexity of SQMC

increases also with N logN due to the resampling step since it requires the computation of

the Hilbert inverse as well as two permutations in steps 2d and 2e, in Algorithms 4 and 6.

The computational cost of the EKF method increases with rates d3
y and d2

x. The former is due
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to the inversion of the dy-dimensional matrix S̄in in Eq. (A26) and Eq. (A36) of Algorithms

5 and 6 respectively, while the product in Eq. (A28) and Eq. (A38), used to obtain the

predictive state covariance matrix P̌ i
n, justifies the latter. Using the EnKF method, the

complexity is also cubic with dy because of the inversion of S̄in in Eq. (A6) and Eq. (A16)

of Algorithms 3 and 4, and it increases linearly with M and dx because Algorithms 3 and

4 do not require the computation of the predictive state covariance matrices. In Table II

the complexity is summarised depending on the filters we choose. In order to alleviate the

computational cost of the inversion of the observation covariance matrix S̄in, in practice we

use the approximation described in Appendix C.

Algorithm SMC SQMC

EKF O(d2
xd

3
yN) O(d2

xd
3
yN logN)

EnKF O(dxd
3
yMN) O(dxd

3
yMN logN)

TABLE II: Summary of the complexity of the different NHFs.

Appendix B: Proof of Theorem 1

1. Outline of the proof

We need to prove that the approximation µNn generated by a generic nested filter that

satisfies assumptions A.1, A.2 and A.3 converges to µ̄n in Lp, for each n = 1,2, ..., n0 < ∞.

We split the analysis of the nested filter in three steps: jittering, weight computation and

resampling. The approximation µNn−1 of µ̄n−1 is available at the beginning of the n-th time

step. After jittering, we obtain a new approximation,

µ̌Nn−1 =
1

N

N

∑
i=1

δθ̄in , (B1)

that can be proved to converge to µ̄n−1 using an auxiliary result from [21]. After the

computation of the weights, the measure

µ̃Nn =
N

∑
i=1

winδθ̄in (B2)
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is obtained and its convergence towards µ̄n has to be established. Finally, after the

resampling step, a standard piece of analysis proves the convergence of

µNn = 1

N

N

∑
i=1

δθin (B3)

to µ̄n. Below, we provide three lemmas for the conditional convergence of µ̌Nn−1, µ̃Nn and µNn ,

respectively. Then we combine them in order to prove Theorem 1 by an induction argument.

2. Jittering

In the jittering step, a new cloud of particles {θ̄in}Ni=1 is generated by propagating the

existing samples across the kernels κN(dθ∣θin−1), i = 1, . . . ,N . This step has been analyzed

in [21] in the context of the NPF. Several types of kernels can be used. In general, there

is a trade-off between the number of particles that are changed using this kernel and the

“amount of perturbation” that can be applied to each particle. For this reason, we let the

jittering kernel κN depend explicitly on N . For our analysis, assumption A.3 is sufficient.

The convergence results to be given in this appendix are presented in terms of upper

bounds for the Lp norms of the approximation errors. For a random variable z, its Lp

norm is ∥z∥p = E [∣z∣p]
1
p . The approximate measures generated by the nested filter, e.g., µNn ,

are measured-valued random variables. Therefore, integrals of the form (h,µNn ), for some

h ∈ B(D), are real random variables and it makes sense to evaluate the Lp norm of the

random error (h,µNn ) − (h, µ̄n). We start with the approximation µ̌Nn−1 produced after the

jittering step at time n.

Lemma 1 Let the sequence of observations y1∶n be arbitrary but fixed. If h ∈ B(D), A.3

holds and

∥(h,µNn−1) − (h, µ̄n−1)∥p ≤
cn−1∥h∥∞√

N
(B4)

for some p ≥ 1 and a constant cn−1 < ∞ independent of N , then

∥(h, µ̌Nn−1) − (h, µ̄n−1)∥p ≤
c1,n∥h∥∞√

N
, (B5)

where the constant c1,n < ∞ is also independent of N .

Proof: The proof of this Lemma is identical to the proof of [21, Lemma 3]. ◻
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3. Computation of the weights

In order to analyze the errors at the weight computation step we rely on assumption A.2.

An upper bound for the error in the weight computation step is established next.

Lemma 2 Let the sequence of observations y1∶n be arbitrary but fixed, choose any h ∈ B(D)
and some p ≥ 1. If assumptions A.1 and A.2 hold, and

∥(h, µ̌Nn−1) − (h, µ̄n−1)∥p ≤
c1,n∥h∥∞√

N
(B6)

for some constant c1,n < ∞ independent of N , then

∥(h, µ̃Nn ) − (h, µ̄n)∥p ≤
c2,n∥h∥∞√

N
, (B7)

where the constant c2,n < ∞ is independent of N .

Proof: We address the characterization of the weights and, therefore, of the approximate

measure µ̃Nn = ∑Ni=1w
i
nδθ̄in . From the definition of the projective product in (29), the integrals

of h w.r.t. µ̄n and µ̃Nn can be written as

(h, µ̄n) =
(ūnh, µ̄n−1)
(ūn, µ̄n−1)

, and (h, µ̃Nn ) = (ûnh, µ̌Nn−1)
(ûn, µ̌Nn−1)

, (B8)

respectively. From (B8) one can write the difference (h, µ̃Nn ) − (h, µ̄n) as

(h, µ̃Nn ) − (h, µ̄n) =
(hûn, µ̌Nn−1) − (hūn, µ̄n−1)

(ūn, µ̄n−1)
+ (h, µ̃Nn )(ūn, µ̄n−1) − (ûn, µ̌Nn−1)

(ūn, µ̄n−1)
,

which readily yields the inequality

∣(h, µ̃Nn ) − (h, µ̄n−1)∣ ≤
∣(hûn, µ̌Nn−1) − (hūn, µ̄n−1)∣

(ūn, µ̄n−1)
+ ∥h∥∞∣(ûn, µ̌Nn−1) − (ūn, µ̄n−1)∣

(ūn, µ̄n−1)
(B9)

by simply noting that ∣(h, µ̃Nn )∣ ≤ ∥h∥∞, since µ̃Nn is a probability measure. From (B9) and

Minkowski’s inequality we easily obtain the bound

∥(h, µ̃Nn ) − (h, µ̄n−1)∥p ≤
1

(ūn, µ̄n−1)
[∥h∥∞∥(ûn, µ̌Nn−1) − (ūn, µ̄n−1)∥p

+∥(hûn, µ̌Nn−1) − (hūn, µ̄n−1)∥p, ] (B10)

where (ūn, µ̄n−1) > 0 from assumption A.2.2.

We need to find upper bounds for the two terms on the right hand side of (B10). Consider

first the term ∥(hûn, µ̌Nn−1) − (hūn, µ̄n−1)∥p. A simple triangle inequality yields

∥(hûn, µ̌Nn−1)−(hūn, µ̄n−1)∥p ≤ ∥(hûn, µ̌Nn−1)−(hūn, µ̌Nn−1)∥p+∥(hūn, µ̌Nn−1)−(hūt, µ̄n−1)∥p. (B11)
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On one hand, since supθ∈D ∣h(θ)ūn(θ)∣ ≤ ∥h∥∞∥ūn∥∞ < ∞ (see A.2.1), it follows from the

assumption in Eq. (B6) that

∥(hūn, µ̌Nn−1) − (hūn, µ̄n−1)∥p ≤
c1,n∥h∥∞∥ūn∥∞√

N
, (B12)

where c1,n < ∞ is a constant independent of N .

On the other hand, we may note that

∣(hûn, µ̌Nn−1) − (hūn, µ̌Nn−1)∣p = ∣ 1

N

N

∑
i=1

(h(θ̄in)ûn(θ̄in) − h(θ̄in)ūn(θ̄in))∣
p

. (B13)

Let Gn be the σ-algebra generated by the random particles {θ̄i1∶n−1,θ
i
0∶n−1}1≤i≤N and assume

that p is even. Then we can apply conditional expectations on both sides of (B13) to obtain

E [∣(hûn, µ̌Nn−1) − (hūn, µ̌Nn−1)∣
p ∣Gn] = E [( 1

N

N

∑
i=1

h(θ̄in)mn(θ̄in))
p

∣Gn]

where the expression on the right hand side has been simplified by using the assumption

ûn(θ) = ūn(θ) +mn(θ) in A.1. Also from assumption A.1, the random variables mn(θ̄in)
are conditionally independent (given Gn), have zero mean and finite moments of order p,

E[mn(θ̄in)p] ≤ σp < ∞. If we realise that

E[h(θ̄in)mn(θ̄in)∣Gn] = h(θ̄in)E[mn(θ̄in)∣Gn] = 0

and bear in mind the conditional independence of the mn(θ̄in)’s, then it is an exercise in

combinatorics to show that the number of non-zero terms in

E [( 1

N

N

∑
i=1

h(θ̄in)mn(θ̄in))
p

∣Gn] = ∑
i1

. . .∑
ip

E [h(θ̄i1n )mn(θ̄i1n ) . . . h(θ̄ipn )mn(θ̄ipn )∣Gn]

is at most c̃pN
p
2 , for some constant c̃p < ∞ independent of N and h. Since each of the non-

zero terms is upper bounded by E [(h(θ̄in)mn(θ̄in))p∣Gn] ≤ ∥h∥p∞σp < ∞ (using A.1 again),

then it follows that

E [∣(hûn, µ̌Nn−1) − (hūn, µ̌Nn−1)∣
p] = E [( 1

N

N

∑
i=1

h(θ̄in)mn(θ̄in))
p

∣Gn] ≤
c̃pσp∥h∥p∞
N

p
2

(B14)

for even p. Given (B14), it is straightforward to show that the same result holds for every

p ≥ 1 using Jensen’s inequality. Finally, since the bound on the right hand side of (B14) is

independent of Gn, we can take expectations on both sides of the inequality and obtain that

∥(hûn, µ̌Nn−1) − (hūn, µ̌Nn−1)∥p ≤
c̃σ∥h∥∞√

N
. (B15)
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Substituting (B15) and (B12) into (B11) yields

∥(hûn, µ̌Nn−1) − (hūn, µ̄n−1)∥p ≤
c′n∥h∥p∞∥ūn∥∞√

N
, (B16)

where c′n = c1,n + c̃σ is a constant independent of N .

The same argument leading to the bound in (B16) can be repeated, step by step, on the

norm ∥(ûn, µ̌Nn−1) − (ūn, µ̄n−1)∥p (simply taking h(θ) = 1), to arrive at

∥(ûn, µ̌Nn−1) − (ūn, µ̄n−1)∥p ≤
c′n∥ūn∥∞√

N
. (B17)

To complete the proof, we substitute (B16) and (B17) back into (B10) and so obtain

∥(h, µ̃Nn ) − (h, µ̄n−1)∥p ≤
c2,n∥h∥∞√

N
,

where the constant c2,n = ∥ūn∥∞ (2c′n) /(ūt, µ̄t−1) < ∞ is independent of N . ◻

4. Resampling

The quantification of the error in the resampling step of the nested filter is a standard

piece of analysis, well known from the particle filtering literature (see, e.g., [62]). We can

state the following result.

Lemma 3 Let the sequence of observations y1∶n be arbitrary but fixed. If h ∈ B(D) and

∥(h, µ̃Nn ) − (h, µ̄n)∥p ≤
c2,n∥h∥∞√

N
(B18)

for a constant c2,n < ∞ independent of N , then

∥(h,µNn ) − (h, µ̄n)∥p ≤
c3,n∥h∥∞√

N
,

where the constant c3,n < ∞ is independent of N as well.

Proof: See, e.g., the proof of [69, Lemma 1]. ◻

5. An induction proof for Theorem 1

Finally, we can put Lemmas 1, 2 and 3 together in order to prove the inequality (31)

by induction in n. At time n = 0, we draw θi0, i = 1, . . . ,N , independently from the prior
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µ0 = µ̄0 and it is straightforward to show that ∥(h,µN0 ) − (h, µ̄0)∥p ≤ c0∥h∥∞√
N

, where c0 does

not depend on N .

Assume that, at time n − 1,

∥(h,µNn−1) − (h, µ̄n−1)∥p ≤
cn−1∥h∥∞√

N

where cn−1 < ∞ is independent of N . Then, we simply apply Lemmas 1, 2 and 3 in sequence

to obtain

∥(h,µNn ) − (h, µ̄n)∥p ≤
cn∥h∥∞√

N

for a constant cn = c3,n < ∞ independent of N . ◻

Appendix C: Simplification of the inverse (Si)−1

The predictive covariance of the observation vector yn is a dy×dy matrix Sn. Inverting Sn

has a cost O(d3
y), which can become intractable. Assuming that variables located “far away”

in the circumference of the Lorenz 96 model have small correlation we can approximate Sn

as a block diagonal matrix, namely, Ŝn = Sn ⊙M , where ⊙ denotes element-wise product,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0

0 1 . . . 0

⋮ ⋮ ⋱ ⋮
0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C1)

is a mask matrix and 0 and 1 are, respectively, matrices of zeros and ones of dimension

dq ×dq. There are Q blocks in the diagonal of M , hence dy = Qdq. The original matrix could

contain some non-zero values where the zero blocks of M are placed, however their values

are assumed close to zero. The resulting matrix,

Ŝ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S̄1 0 . . . 0

0 S̄2 . . . 0

⋮ ⋮ ⋱ ⋮
0 0 . . . S̄Q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, is easily inverted as Ŝ−1
n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S̄−1
1 0 . . . 0

0 S̄−1
2 . . . 0

⋮ ⋮ ⋱ ⋮
0 0 . . . S̄−1

Q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with a computational cost O(Qd3
q) = O( d

3
y

Q2 ).
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Appendix D: Summary of notation

a Coefficients vector that characterizes the polynomial `(x, a)
dx State dimension

dy Observation dimension

dθ Parameter dimension

State function (continuous time)

F Forcing parameter

F State function (discrete time)

Fm Function F applied m consecutive times

g Observation function

h Integration step

h Inverse of Hilbert curve

` Polynomial of degree 2 of x

m Time steps of the state between each new observation

M Number of ensembles in EnKF

n Time step in the observation time scale

N Number of particles in SMC or SQMC

r Observation noise

u Likelihood

v Vector of QMC samples

w Normalised weights

w State noise

x State vector (dynamic variables)

y Observation vector

θ Parameter vector

θN Monte Carlo approximation of the posterior expectation of θ

κN Markov kernel

µ Posterior probability distribution of the parameter vector θ

σ Scale parameter that controls the stochastic perturbations of the state

σo Scale parameter that controls the stochastic perturbations of the observation

ψ Discrepancy-preserving bijection map
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