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We investigate the phonon spectra of two-dimensional liquid dusty plasmas on a one-dimensional
periodic substrate using numerical simulations. The propagation of the waves across the potential
wells of the substrate is inhibited due to the confinement of the dust particles by the substrate
minima. If the substrate wells are narrow or deep, one-dimensional chains of particles are formed
in each minima, and the longitudinal motion of an individual chain dominates the propagation
of waves along the potential wells of the substrate. Increasing the width or decreasing the depth
of the substrate minima allows the particles to buckle into a zig-zag structure, and the resulting
spectra develop two branches, one for sloshing motion and one for breathing motion. The repulsion
between neighboring dust particles produces backward propagation of the sloshing wave for small
wave numbers.

I. INTRODUCTION

Dynamical behaviors of an assembly of particles mov-
ing over substrates have been widely studied over the
past decades in colloidal systems [1–5], where rich be-
haviors such as intriguing phase transitions occur. The
interference of two laser beams creates an optical po-
tential in the form of a one-dimensional periodic sub-
strate (1DPS) in colloidal experiments [6]. When the
strength of the 1DPS is increased, laser-induced freezing
and laser-induced melting appear, as observed in exper-
iments [7–10] and verified in simulations [11]. Several
laser beams can be combined to generate different sub-
strate geometries, including two-dimensional (2D) peri-
odic substrates [10], quasi-periodic substrates [12] and
quasi-crystalline substrates [13], and experiments show
that these substrates produce abundant phases. Stud-
ies of dynamical behavior on these substrates [14, 15]
reveal a variety of phenomena such as intermediate sub-
diffusion [16] as well as pinning and depinning dynam-
ics [17]. More complex substrate geometries combined
with an external force on the particles are currently be-
ing explored in a range of different systems.

A dusty plasma [18–22] is a partially ionized gas con-
taining micron-sized particles of solid matter [23]. Un-
der typical experimental conditions, these dust particles
are negatively charged to ≈ −104e. Due to their high
charges, the dust particles are strongly coupled and un-
able to move past one another easily, so that the assembly
exhibits liquid-like [28, 29] and solid-like [30, 31] behav-
ior. The charged dust particles can be levitated and con-
fined by the electric field in the plasma sheath, permitting
them to self-organize into a single layer, i.e., a 2D sus-

pension [24] with negligible out-of-plane motion [25, 26].
Within this single layer, the interaction between dust
particles is a repulsive Yukawa potential [27], resulting
from the shielding effects of the free electrons and ions.
Through video microscopy, the 2D suspension can be
imaged at the scale of individual particles, whose po-
sitions and motion can be tracked from frame to frame.
Langevin dynamical simulations have been widely used
to study the behaviors of 2D dusty plasmas [32, 33].

In dusty plasma experiments, the phonon spectra can
be directly calculated based on the thermal motion of the
dust particles. The results can be compared to theoreti-
cal predictions for the dispersion relations of a 2D dusty
plasma crystal lattice [34, 35]. Over the past decades,
the phonon spectra have been obtained in both experi-
ments [36–40] and simulations [41–43], including the com-
pressional (longitudinal) mode and the shear (transverse)
mode, and the results are consistent with the theoreti-
cal dispersion relations. In addition, the phonon spec-
tra or dispersion relations of a 1D chain or a ring of
dusty plasma have been investigated experimentally [44–
48] and theoretically [49, 50]. Similar studies have also
been performed using two chains or rings as well as mixed
Yukawa particles [51–54]. We are, however, unaware of
any previous studies of the phonon spectra for 2D dusty
plasmas on substrates.

In the dusty plasma experiments of Refs. [55–57], a
modified electrode was used to generate a 1D substrate
for studying the dynamics and transport response of
dusty plasmas. It may be possible in the future to use
laser-generated substrates of the type employed in col-
loidal experiments [1] for dusty plasma experiments. The
colloidal system is overdamped, but the dusty plasma is
underdamped. Thus, inertial effects in the motion of the
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dusty plasma particles can generate rich behavior not
found for colloidal particles.

Here, we explore the impact of different types of 1DPS
on the collective modes of 2D dusty plasmas. In Sec.
II, we briefly describe our Langevin dynamical simula-
tion method. In Sec. III, we present the phonon spectra
of the 2D dusty plasmas on varied types of 1DPS. We
summarize our work in Sec. IV.

II. SIMULATION METHOD

Dusty plasmas are traditionally characterized using
two dimensionless parameters, the coupling parame-
ter Γ and the screening parameter κ. Here, Γ =
Q2/(4πε0akBT ) can be regarded as the inverse temper-
ature, where Q is the particle charge, T is the kinetic
temperature of particles, and a = 1/

√
πn is the Wigner-

Seitz radius for an areal number density of n. The screen-
ing parameter κ = a/λD indicates the length scale of
the space occupied by one dust particle over the Debye
screening length λD. To normalize the length, in addi-
tion to the value of a, we use the average distance between
nearest neighbors, called the lattice constant b. For the
2D triangular lattice we consider here, b = 1.9046a.

To obtain the dynamics of 2D dusty plasmas on a 1D
periodic substrate, we perform Langevin dynamical simu-
lations. We numerically integrate the equation of motion

mr̈i = −∇Σφij − νmṙi + ξi(t) + FS
i (1)

for 1024 dust particles, confined in a rectangular box with
dimensions 61.1a×52.9a, using periodic boundary condi-
tions. The four terms on the right-hand side of Eq. (1) are
the particle-particle interaction −∇Σφij , the frictional
drag −νmṙi, the Langevin random kicks ξi(t), and the
force FS

i due to the 1D periodic substrate, respectively.
The inter-particle interaction has the form of the Yukawa
potential, φij = Q2exp(−rij/λD)/4πε0rij , where λD is
the Debye length, rij is the distance between particles i
and j. The force FS

i from the 1D periodic substrate is
given by

FS
i = −∂U(x)

∂x
x̂ = (2πU0/w) sin(2πx/w)x̂, (2)

where U(x) = U0 cos(2πx/w) is an array of potential
wells parallel to the y axis, and x̂ is the unit vector in
the x direction. Here, U0 is the depth of each potential
well (or the substrate depth) in units of E0 = Q2/4πε0b
and w is the width of the potential wells (or the substrate
period) in units of b.

To obtain a 2D Yukawa liquid, we set the coupling
parameter Γ = 200 and the screening parameter κ = 2.
This is above the melting point of Γ = 396 for the
2D Yukawa system of κ = 2 obtained using the bond-
angular order parameter [58]. As justified in Ref. [59],
our integration time step is 0.037ω−1pd , where ωpd =

(Q2/2πε0ma
3)1/2 is the nominal dusty plasma frequency.

We take the frictional damping from the gas to be
ν/ωpd = 0.027, comparable to typical experimental con-
ditions [24]. The expression of force FS

i in Eq. (2) has two
parameters, the substrate period w and depth U0. Due to
the periodic boundary conditions, the substrate period w
is limited to values that produce integer numbers of po-
tential wells within the simulation box. Here, we choose
w = 1.002b and w = 2.004b, corresponding to Nw = 32
and Nw = 16 potential wells, respectively. For the sub-
strate depth, we specify three values of U0 = 0.25E0,
U0 = 0.5E0, and U0 = E0.

For each simulation run, after the system has reached a
steady state, we analyze the particle trajectories and ve-
locities over a period of 106 simulation time steps. Other
details of our simulation are the same as those described
in [60]. We also performed a few test runs of a larger
system containing 4096 dust particles, and found no sub-
stantial differences in the phonon spectra.

We calculate the phonon spectra of our simulated
Yukawa liquid using the Fourier transformations of lon-
gitudinal and transverse current autocorrelation func-
tions. The current autocorrelation functions are defined
as [62, 63]

CL(k, t) =
1

N
〈[k · j(k, t)][k · j(−k, 0)]〉, (3)

for the longitudinal mode and

CT (k, t) =
1

2N
〈[k× j(k, t)] · [k× j(−k, 0)]〉, (4)

for the transverse mode, where k is the wave vector
and N is the number of particles. Here, j(k, t) =∑N

j=1 vj(t) exp[ik ·rj(t)] is the vector current of all simu-

lated particles for a given wave vector k, where vj(t) and
rj(t) are the velocity and position of the jth particle, re-
spectively. Finally, the phonon spectra can be obtained
using

C̃L,T (k, ω) =

∫ ∞
0

e−iωtCL,T (k, t)dt. (5)

Here, C̃L(k, ω) and C̃T (k, ω) correspond to the longitu-
dinal and transverse wave spectra, respectively. Due to
the 1D substrate, the phonon spectra of our simulated
Yukawa liquid in different wave vector directions should
be completely different. We focus on four types of phonon
spectra labeled as C̃L(kx, ω), C̃T (kx, ω), C̃L(ky, ω), and

C̃T (ky, ω), corresponding to the longitudinal and trans-
verse spectra when the wave vector directions are along
the x and y axes, respectively.

III. RESULTS AND DISCUSSIONS

A. Lattice structure with different periodic
substrates

Figure 1 shows the positions of the particles on peri-
odic substrates with different values of U0 and w, along
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FIG. 1: Snapshots of the dust particle positions (dots) along
with an illustration of the width and depth of the 1D substrate
potential. (a) U0 = 0.5E0 and w = 1.002b. The particles
form 1D chains at the bottom of each potential well of the
substrate. (b) U0 = 0.5E0 and w = 2.004b. For this value of
w, the 1D chain of particles buckles into a zigzag shape. (c)
U0 = 0.25E0 and w = 2.004b. (d) U0 = E0 and w = 2.004b.
As U0 increases, the zigzag shape narrows. For each panel,
the inset on the bottom left corner is the corresponding 2D
distribution function [8] g(x, y) of the total simulated area.

with a plot of the substrate potential. When the sub-
strate period w is small, the particles are closely confined
within each potential well to form 1D chains, as illus-
trated in Fig. 1(a) for w = 1.002b and U0 = 0.5E0. If
the substrate period is increased but the substrate depth
remains unchanged, the particles buckle into a zig-zag
chain within each potential well to reduce the interparti-
cle interactions, as shown in Fig. 1(b) for w = 2.004b
and U0 = 0.5E0. Figure 1(c), with w = 2.004b and
a weaker U0 = 0.25E0, indicates that the width of the
zigzag increases if the substrate depth is reduced, while
in Fig. 1(d) at w = 2.004b and a larger U0 = E0, the
zigzag narrows and becomes nearly one-dimensional in
some regions when the substrate strength is increased.
Our calculated 2D distribution functions [8] g(x, y) in
Fig. 1 also verify the observations above.

B. Wave spectra with different widths of potential
wells w

For comparison, we first compute the phonon spectra
C̃L(kx, ω) and C̃T (kx, ω) of the 2D Yukawa liquid with-
out a substrate. In Fig. 2, we illustrate the longitudinal
and transverse phonon spectra of our simulated liquid
dusty plasma at the same conditions without any sub-
strate, plotted as height fields as a function of frequency
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FIG. 2: Longitudinal (a) and transverse (b) phonon spectra
of our simulated 2D Yukawa liquid as functions of frequency
ω/ωpd and wave number kb in the absence of a substrate at
Γ = 200 , κ = 2.0, and ν = 0.027ωpd.

ω/ωpd and wave number kb. The shape of each spec-
trum agrees well with previous predictions [64]. Note
that, in Fig. 2, we only illustrate the wave vector in the
x direction. Since the simulated Yukawa liquid with-
out a substrate is isotropic, we verify that the calculated
C̃L(kx, ω) is nearly the same as C̃L(ky, ω), and similarly

that C̃T (kx, ω) is almost identical to C̃T (ky, ω).
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FIG. 3: The longitudinal and transverse phonon spectra
C̃L(kx, ω) (a), C̃T (kx, ω) (b), C̃L(ky, ω) (c), and C̃T (ky, ω)
(d) as functions of ω/ωpd and kb for a periodic substrate with
U0 = 0.5E0 and w = 1.002b.

Figure 3 shows the phonon spectra of C̃L(kx, ω),

C̃T (kx, ω), C̃L(ky, ω), and C̃T (ky, ω) in the presence of a
periodic substrate described by Eq. (2) with U0 = 0.5E0

and w = 1.002b. For the C̃L(kx, ω) and C̃T (ky, ω) spec-
tra in Figs. 3(a) and (d), the flat slope indicates that
the group velocity is nearly zero, meaning that the wave
cannot propagate. These two spectra correspond to the
motion of dust in the x direction, which is completely
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constrained due to the substrate. The x direction motion
of dust particles in different potential wells is very nearly
uncorrelated, and this prevents the propagation of waves
along the x direction. In these spectra, the frequency
is nearly constant at ω/ωpd = 1.194, corresponding to
the oscillation frequency of about 1.193ωpd for a single
dust particle within a potential well of depth U0 = 0.5E0

and width w = 1.002b. Note that the slight difference
between the constant frequency in Figs. 3(a, d) and the
calculated single dust particle oscillation frequency may
come from the interparticle interaction and the screening
effects of the Yukawa system.

The C̃T (kx, ω) and C̃L(ky, ω) spectra in Fig. 3(b) and
(c) correspond to the motion of dust particles in the y di-
rection, which is unconstrained by the substrate. There
is only one chain of dust particles in each potential well,
as shown in Fig. 1(a), and the motion of dust parti-
cles in different potential wells are not correlated at all.
As a result, it is not possible for the transverse wave
C̃T (kx, ω) to propagate, and the energy in C̃T (kx, ω) is
distributed around zero frequency, as shown in Fig. 3(b).

The C̃L(ky, ω) spectra in Fig. 3(c) is dominated by the
longitudinal wave of the single chain within each poten-
tial well. Since there is no constraint on the y direction
motion, the C̃L(ky, ω) spectrum in the presence of a sub-
strate is very similar to the substrate-free longitudinal
spectrum in Fig. 2(a). The sound speed is slightly larger
when there is a substrate, as shown in Fig. 3(c), because
the y direction spacing of the dust particles within each
potential well is reduced due to the compression of the
substrate, as illustrated in Fig. 1(a), giving a stronger
interparticle interaction force [52].
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FIG. 4: The longitudinal and transverse phonon spectra
C̃L(kx, ω) (a), C̃T (kx, ω) (b), C̃L(ky, ω) (c), and C̃T (ky, ω)
(d) as functions of ω/ωpd and kb for a periodic substrate with
U0 = 0.5E0 and w = 2.004b.

We next consider a substrate with the same depth,
U0 = 0.5E0, but with wider wells, w = 2.004b, and plot
the resulting phonon spectra in Fig. 4. All four spectra
in Fig. 4 have two branches due to the zigzag structure
that produces the equivalent of two chains within each
potential well, as shown in Fig. 1(b). The C̃L(kx, ω)

and C̃T (ky, ω) spectra of Figs. 4(a) and (d) correspond
to the motion of dust particles in the x direction, which
is constrained by the substrate. The lower and higher
branches roughly correspond to the sloshing [38] and
breathing motion of dust particles within each potential
well, and we refer to these as the sloshing and breathing
branches, respectively. When the wavenumber is nearly
zero, both C̃L(kx, ω) and C̃T (ky, ω) have the same fre-
quency of ω/ωpd = 0.51, which is very close to the es-
timated sloshing mode oscillation frequency of 0.59ωpd

for the two combined dust particles within this potential
well.

In Fig. 4(d), the wave speed is negative for the slosh-
ing branch when the wavenumber kb < 2, which means
that this wave propagates backward. The mechanism
of the backward motion is the pure repulsion between
dust particles, which is the same as in the transverse
wave of the 1D Yukawa chain [44]. When kb = 0 in the
sloshing mode, all of the dust particles move together,
and the restoring force is provided entirely by the po-
tential well of the substrate. When the wavenumber is
slightly larger than zero, neighboring dust particles have
slightly different x direction coordinates, so the repulsive
force between dust particles in the x direction partially
cancels the restoring force. In other words, the restor-
ing force is reduced when the wavenumber is larger than
zero, reducing the frequency and resulting in a backward
wave [42, 44].

The C̃T (kx, ω) and C̃L(ky, ω) spectra in Figs. 4(b) and
(c) represent the motion of dust particles in the y di-
rection, which is unconstrained by the substrate. The
lower branch of Fig. 4(b) is similar to that of Fig. 3(b),
and corresponds to the uncorrelated motion of dust par-
ticles in different potential wells. The upper branch in
Fig. 4(b) arises from the correlated motion of the two
chains formed by the zigzag structure within one po-
tential well, as shown in Fig. 1(b). Due to the inter-
particle interactions, the frequency of the upper branch
of C̃T (kx, ω) is not zero, but the group velocity is zero,
suggesting that the wave cannot propagate due to the
confinement by the potential well. The C̃L(ky, ω) spec-
trum in Fig. 4(c) splits into two branches above kb ≈ 2.
The lower branch in Fig. 4(c) is similar to Fig. 3(c), and
corresponds to a longitudinal wave of all the dust par-
ticles within one potential well at a large length scale.
The upper branch of Fig. 4(c) is produced by the rela-
tive motion of dust particles in the y direction between
two chains within one potential well of the substrate, as
illustrated in Fig. 1(b).

Note that, in our calculated C̃L(kx, ω) and C̃T (kx, ω),
we observe a few gaps when kb ≈ π. This occurs due
to the modulation of the dust particle density by the
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periodic substrate. In the x direction, the length of the
first Brillouin zone [65] due to the 1DPS is simply kb =
2π/w = 3.135. The spectral information at kb = 3.135 is
exactly the same as that at kb = 0, as shown in Figs. 4(a)
and (b), where the spectral weight is zero in both cases.
Since the motion in the y direction is unconstrained, the
C̃L(ky, ω) and C̃T (ky, ω) spectra do not show a similar
gap feature at all.

C. Wave spectra with different depths of potential
wells U0
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FIG. 5: The longitudinal and transverse phonon spectra
C̃L(kx, ω) (a, c) and C̃T (kx, ω) (b, d) as functions of ω/ωpd

and kb for two different periodic substrates of U0 = 0.25E0 in
(a, b) and U0 = E0 in (c, d), where w = 2.004b is unchanged.

We next consider the effect of changing the depth of
the substrate, or the substrate strength. Figure 5 shows
C̃L(kx, ω) and C̃T (kx, ω) for substrates with w = 2.004b
at substrate depths of U0 = 0.25E0 for Fig. 5(a,b) and
U0 = E0 for Fig. 5(c,d). As the depth of the substrate in-

creases, the frequencies of C̃L(kx, ω) and C̃T (kx, ω) both
increase due to the larger restoring force exerted by the
substrate on the dust particles. In Figs. 5(a) and (c), the

lower branch of C̃L(kx, ω) intersects with the frequency
axis at ω/ωpd = 0.31 and ω/ωpd = 0.80, respectively.
These two values are close to the sloshing frequencies of
two combined dust particles inside the two substrates,
which are 0.42ωpd and 0.84ωpd, respectively. By compar-
ing all panels in Fig. 5 with Fig. 4(a, b), we find that as
the substrate depth increases, the intensity of the upper
branch in C̃L(kx, ω) and C̃T (kx, ω) gradually decreases.
As shown in Fig. 1, an increase in U0 causes the two par-
ticle chains within each potential well to compress and
gradually merge into a single chain, such as in Fig. 1(d).

As a result, the amount of energy in the high frequency
mode diminishes.
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FIG. 6: The longitudinal and transverse phonon spectra
C̃L(ky, ω) (a, c) and C̃T (ky, ω) (b, d) as functions of ω/ωpd

and kb for two different periodic substrates of U0 = 0.25E0 in
(a, b) and U0 = E0 in (c, d), where w = 2.004b is unchanged.

Figure 6 shows C̃L(ky, ω) and C̃T (ky, ω) spectra for the
same substrates in Fig. 5 with w = 2.004b at depths of
U0 = 0.25E0 for Fig. 6(a, b) and U0 = E0 for Fig. 6(c,d).
As the substrate depth increases, the upper branches of
C̃L(ky, ω) and C̃T (ky, ω) are both enhanced and extend
to higher frequencies. This trend is exactly the same as
what is shown in Fig. 5, and emerges for the same reason.
When kb ≈ 0, the frequencies of C̃T (ky, ω) in Fig. 6(b,
d) are the same as those shown in Fig. 5(a, c), meaning
that as the substrate depth increases, the frequency of
C̃T (ky, ω) at kb ≈ 0 is higher. Since this frequency is
higher for a deeper substrate, the wavenumber range of
the backward wave is larger, as shown in Fig. 6(d).

IV. SUMMARY

We have investigated the phonon spectra of a 2D dusty
plasma confined by a one-dimensional periodic substrate.
In the absence of a substrate, our results agree well with
previous theoretical predictions. In the presence of the
substrate, waves along the x direction are unable to prop-
agate due to the confinement of the particles by the sub-
strate minima. For narrow or deep substrate minima,
a single one-dimensional chain of particles occupies each
potential well, and waves along the y direction are dom-
inated by the longitudinal motion of this single chain.
When the substrate minima are wider or shallower, the
particles buckle into a zigzag structure, splitting the spec-
tra into a sloshing branch and a breathing branch. At
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small wave numbers, the sloshing wave propagates back-
ward due to the repulsion between neighboring dust par-
ticles, and the wavenumber range of this backward mo-
tion increases as the substrate becomes deeper. Our re-
sults could be tested experimentally by applying optically
generated substrates to a dusty plasma.
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