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Under liquid-like conditions, particles are found to rearrange on multiple time scales in a two-
dimensional dusty plasma experiment. Our analysis is based on survival functions, which are time-
series graphs of the probability that a particle’s number of nearest neighbors remains unchanged.
Non-defects are found to exhibit two distinct time scales, revealed by an elbow in their survival
function. Defects have survival functions that are more nearly exponential, with decay rates that
offer insight at a microscopic level into the viscoelastic relaxation in a liquid.

I. INTRODUCTION

Strongly coupled plasmas can often behave like liq-
uids [1–6]. Among all kinds of strongly coupled plas-
mas, one that can be studied most easily in laboratory
experiments is a dusty plasma [7–16]. A dusty plasma
is a four-component mixture of micron-sized solid parti-
cles, ions, electrons, and neutral gas atoms. The solid
particles gain large negative electric charges, so that the
ensemble of particles is strongly coupled, with an inter-
particle potential energy that exceeds their kinetic en-
ergy. The particles self-organize with a microstructure
that is liquid-like when laser heating is applied [17]. Di-
rect imaging [18] and tracking [19] of individual particles
enables an experimental study of microscopic dynamics.
Previous studies of strongly coupled plasmas have

often centered on the concept of relaxation [20–30],
and in particular, a relaxation time. Dating back to
Maxwell [31], this description of liquids is a microscopic
model that characterizes interparticle interactions as a
viscoelastic combination of elasticity and dissipation,
which dominate at short and long times, respectively.
However, we suggest that the relaxation time can be an
oversimplification, because as a single-value measure, it
cannot reflect the full complexity of a liquid’s spatial and
temporal dynamics.
In this paper, we seek a more detailed description of the

microscopic rearrangements in a strongly coupled plasma
by using a time-series curve called a survival function.
This approach improves upon the use of a single-value
measure like the relaxation time, and it allows us to de-
tect a previously unreported complexity: two distinct
time scales in the microscopic evolution for non-defects.
Defects, in contrast to non-defects, evolve with a nearly
exponential decay with a faster rate, which varies with
temperature and the type of defect.
A survival function [32] is a graph of the probability

that an entity or condition remains unchanged after a
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specified time [33]. Survival functions are used, for ex-
ample, in medicine, where a human’s probability of re-
maining alive can be plotted versus time, beginning when
a cancer is diagnosed [34]. In engineering, the probability
that a solid object under stress remains intact [35] can
be plotted as a survival function. In nuclear physics, a
radioactive decay graph is another example of a survival
function. Like all survival functions, these curves begin
at 100% and gradually diminishes with time.

The shape of a survival function can offer insight into
underlying processes. For example, in nuclear physics,
the shape is exponential, reflecting the stochastic nature
of nuclear decay. In demography, on the other hand, the
survival function of a wealthy country’s population has a
shape that is nearly flat from birth until about 65 years,
after which there is a large drop [36], reflecting how a
human body ages.

Preparing a survival function, in general, requires
tracking an entity or condition that can change, such as
radioactivity or human lives. In this paper, the condition
we track is coordination.

Coordination (also called coordination number) is an
instantaneous count of a particle’s nearest neighbors [37,
38]. This microscopic measure of structure is a famil-
iar tool of chemistry and material physics, and it has
also been applied to liquids [39–42] and strongly coupled
plasmas [27, 43, 44].

A particle is classified as either a defect or a non-defect

according the local microstructure [37]. In 2D, if a par-
ticle’s coordination is six-fold, then the microstructure is
non-defective, which is the case everywhere in a perfect
crystal. On the other hand, a defect is any coordina-
tion that is not six-fold [45]. We will use the term “all
defects” to include the common five- and seven-fold de-
fects, as well as the less common four- and eight-fold de-
fects. Only a slight displacement of particles is required
to convert a non-defect into a defect, and vide versa. De-
fects, which are expected to be unstable, are eliminated
constantly from a liquid. Of course, in a steady state,
new defects must be created to balance those that are
eliminated.

Coordination was found to be useful in obtaining a con-
nectivity time for simulations of simple liquids [41], liq-
uid metals [42], and strongly coupled dusty plasmas [27].
Such a connectivity time serves a single-value measure-
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FIG. 1. (color online). Illustrative example of our analysis method. (a) Images of consecutive video frames, which allow
measurements of particle positions. (b) Delaunay triangulation is applied to identify nearest neighbors, which are joined by
the drawn line segments. The number of line segments originating at the location of a particle is its coordination. (c) Particle
coordination maps are obtained by recording the coordination value of each particle at its position. Next, we track particles
and their coordinations from frame to frame, and identify the event when its coordination first changes. Until this event, that
coordination is considered to be a survivor, as identified by the outlining boxes. In each frame, we count the number of five-fold
coordinations (likewise for six and seven-fold coordination) that have survived since the initial frame. The resulting table of
data (d) is plotted in (e) as a time series, which are the survival functions. The images here were cropped for brevity; their
area is 1% of the camera’s full field of view.

ment of relaxation, which has been used for example to
gain physical intuition into the microscopic origins of
shear relaxation [27]. However, as a single-value mea-
sure, connectivity time has the shortcoming we men-
tioned above, that it cannot capture a complex temporal
evolution. Moreover, it also discards the distinction be-
tween defects and non-defects.

Our analysis method includes three advances in the use

of coordination to characterize relaxation. First, we dis-
till our structural measurements not into a single-value
measure but into a richer description presented as a sur-
vival function. Second, we analyze coordination data sep-
arately for defects and non-defects. Third, we base our
analysis on a more rigorous measure of coordination us-
ing Delaunay triangulation. With these advances, we are
able to make the discovery, presented below, that non-
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defects evolve with two time scales.

II. EXPERIMENT

Data from the 2D strongly coupled dusty plasma ex-
periment of Haralson et al. [46, 47] are further analyzed
here. This experiment, which was originally performed
to study other aspects of liquid physics [30, 47], is also
well suited for our analysis. About 104 polymer micro-
spheres of 8.69 µm diameter were introduced into a radio-
frequency discharge using argon at 6 mTorr. Particles
had a charge of −15 500e. The particles were levitated
in a single horizontal layer, and with a strong coupling so
great that they initially self-organized into a crystalline
triangular lattice structure [48–52]. For each experimen-
tal run, this lattice was melted using laser heating to in-
crease the particle kinetic energies [17]. The laser-heated
ensemble of particles was confirmed to exhibit steady-
state liquid-like behavior.

We analyze eight experimental runs. They had similar
conditions except for different kinetic temperatures T of
the particles, ranging from T = 96 800 K to 127 000 K;
the corresponding Coulomb coupling parameters ranged
from Γ = 139 to 104. Other parameters for the experi-
mental run analyzed in detail in this paper include: Ein-
stein frequency [53] ΩE = 50.2 s−1, nominal 2D dust
plasma frequency ωpd = 86 s−1, frictional damping rate
due to gas 1.1 s−1, particle spacing characterized by the
Wigner-Seitz radius a = 0.30 mm, and screening param-
eter κ = a/λ = 0.72, where λ is the screening length.

The primary diagnostic was video microscopy, using
a top-view camera imaging at 70 frames/s. Examples
images are shown in Fig. 1(a). Analysis of images, using
the moment method, yielded particle positions with sub-
pixel precision, in each video frame. Further details of
the experiment are provided in Refs. [46, 47].

III. DELAUNAY-BASED PARTICLE

COORDINATION

Our structural analysis of the particle position data in
a single video frame requires identifying nearest neigh-
bors. We use Delaunay triangulation, which is a rigorous
geometrical analysis method that accounts for not only
the distances between particles, but also their arrange-
ment [44]. In Delaunay triangulation, Fig. 1(b), a particle
is represented by a vertex, which connects line segments
that we count to obtain the coordination. A coordina-
tion map, as in Fig. 1(c), corresponds to a single video
frame. We prepare a sequence of these coordination maps
to observe the temporal development. In a liquid, the co-
ordination for a given particle does not remain static, but
evolves [54] as can be seen in the sequence of coordina-
tion maps in Fig. 1(c), and in the video provided in the
Supplemental Material [55].

The Delaunay approach improves upon a common
method of obtaining the coordination values that was
used to measure connectivity times for liquids [27, 38,
41, 42]. In that method, a specified search radius is used
in counting the nearest neighbors. The resulting count
depends on how the search radius is defined. We instead
count the nearest neighbors identified by Delaunay tri-
angulation, which has no adjustable parameters [56].

IV. SURVIVAL-FUNCTION ANALYSIS

METHOD

A starting time is selected as one frame of the video.
In this frame, we identify the coordination of a parti-
cle and track it until it changes to a different coordina-
tion value. Until that event, the particle is considered
as a survivor. The number of survivors are counted in
each frame, yielding a time series of counts that serves as
our survival function. To avoid systematic errors caused
by particles moving outside the camera’s field of view
(FOV), we track only those within a central region com-
prising 83% of the FOV at the starting time.
We prepare survival functions for four conditions: non-

defects, all defects, five-fold defects, and seven-fold de-
fects. In this way, we quantify how defects and non-
defects survive differently, and we differentiate between
the survival of five-fold and seven-fold defects. All the
steps in this method are illustrated in Fig. 1, where a
small sample of data is analyzed to yield four survival
functions.
Each experimental run provided a large sample, under

steady conditions, with typically 1100 particles that were
tracked at each starting time. Each run was so long that
we divided it into 40 non-overlapping 1 s time segments,
each with its own starting time. We consider each seg-
ment as a statistically independent ensemble, allowing us
to combine the survival functions for all 40 segments. In
the experimental run analyzed in detail in this paper, for
the 40 starting times combined, there were 30 210 six-fold
non-defects, 6982 five-fold defects, and 6910 seven-fold
defects. There were also 56 four-fold and 62 eight-fold
defects.

V. RESULTS

Survival functions are presented in Fig. 2. The vertical
axis is the fraction of survivors, while the horizontal axis
is the time elapsed since the starting time. These results
are shown for non-defects in Fig. 2(a), for all defects in
Fig. 2(b), and for five-fold and seven-fold defects sepa-
rately in Fig. 2(c). A single experimental run provided
the data in Fig. 2; the other seven runs are presented in
the Supplemental Material [55].
Unexpectedly, we find an elbow in the survival-

function curve for non-defects. We interpret this fea-
ture in the decay as a signature of a microscopic process
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FIG. 2. (color online). Particle-coordination survival functions, obtained with our structural analysis. For non-defects, the
curves in (a) have two exponential time scales, revealing a complexity in the microscopic rearrangements. For defects, on the
other hand, the survival-function curves in (b) are more nearly exponential. The defect survival function diminishes about
three times faster than the survival function for non-defects. Plotting survival functions separately for the common five-fold
and seven-fold defects in (c) reveals that they survive differently. Representative error bars due to counting statistics are shown
for survivor function data points. Separately, the decay times had uncertainties of < 1% from the exponential fits.

with dual time-scales. This elbow is seen in Fig. 2(a) at
t = 200 ms. It is also seen in the other seven experimen-
tal runs, giving us confidence in this result.

Defects, on the other hand, have survival-function
curves with a shape that is more nearly exponential.
This is especially the case for five-fold defects, Fig. 2(c).
Seven-fold defects also have a decay that starts expo-
nentially, although at longer times the seven-fold sur-
vival curve has a weak but detectable enhancement in
its tail. This weak non-exponential feature in the tail
for seven-fold defects [and in the tail for all defects com-
bined, Fig. 2(b)], suggests a slight difference in the sur-
vival of five and seven-fold defects; explaining this differ-
ence would require further study, for example by char-
acterizing departures from pairwise behavior of five and
seven-fold defects.

As a measure of stability, we now quantify the time
scales for the survival-function decay. We do this by fit-
ting the curves in Fig. 2 to exponentials. We expect that
non-defects will decay most slowly due to their greater
intrinsic stability, and we find that this is indeed so. The
exponential times for the dual decay of non-defects are
200 ms = 10.0 Ω−1

E = 17.2 ω−1
pd before the elbow and

260 ms = 13.1 Ω−1
E = 22.4 ω−1

pd after the elbow in

Fig. 2(a). Defects decay more rapidly; we find an ex-
ponential decay time of 78 ms = 3.9 Ω−1

E = 6.7 ω−1
pd

when all defects are considered in aggregate, in Fig. 2(b).
Distinguishing the defects, we find that seven-fold de-
fects survive slightly longer than five-fold defects, with

an exponential time scale that is about 10% greater, in
Fig. 2(c). These decay times for defects diminish with
increasing temperature, as shown in the Supplemental
Material [55]. The exponential fits for defects are for
the data points t < 145 ms, which excludes the slightly
enhanced tails.

VI. DISCUSSION OF NON-DEFECTS

The dual time-scale decay exhibited by non-defects in
our experiment indicates that their survival must be gov-
erned by a behavior more complex than for a simple
stochastic system. If survival had just one stochastic
process, as in nuclear decay, the survival function would
be exactly exponential. Our non-defects have a sur-
vival function with an elbow, and this signature of non-
stochastic behavior (or multiple stochastic processes), is
observed consistently in all our experimental runs [55].
While we cannot yet fully identify the microscopic pro-

cesses underlying the dual time scales, we have carried
out a test that allows us to identify a likely contribut-
ing factor: the abundance of defects near a non-defect.
As our test, we analyzed data separately for very long-
lived and very short-lived non-defects. We found that
non-defects that survived a short time had neighborhoods
that were richer in defects than for those that survived
a long time, likely due to the intrinsic instability of de-
fects. In particular, very short-lived non-defects (those
that survived < 140 ms) had neighborhoods that were
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34±1% defective, while very long-lived non-defects (those
that survived > 714 ms), had neighborhoods that were
only 21±3% defective [57]. The outcome of this test, that
a non-defect’s survival depends on its neighborhood, sug-
gests that its survival must be due to processes that in-
clude local effects, and not just effects with homogenous
probabilities.

VII. DISCUSSION OF DEFECTS

Although the literature for 2D liquids generally re-
lies on the idea that defects are eliminated as five-seven
pairs [58], we find that this not entirely the case. A sig-
nature of pairwise elimination would be survival-function
curves that diminishes identically for five- and seven-fold
defects. However, these two curves have detectable dif-
ferences in our experimental data: the decay for five-fold
defects is faster and more precisely exponential than for
seven-fold defects. Detecting such a difference might be
more difficult if one relied on a visual inspection of defect

maps instead of a survival-function analysis.

VIII. SUMMARY

We uncovered a complexity in the way a liquid gradu-
ally forgets its local microscopic structure. Unexpectedly,
two distinct time scales were found for the conversion
of non-defects into defects. The survival of defects, on
the other hand, has a simpler and faster decay, which is
nearly exponential and varies with temperature and the
type of defect.
Our findings for relaxation in a liquid were made pos-

sible by a new analysis method, in which particle coor-
dination data are distilled not into a single time-scale
parameter, but into survival functions. These survival
functions are time-series graphs of the number of particles
that have a coordination that has remained unchanged.
Survival-function analysis could be used also for other
liquid-like systems, including molecular-dynamics simu-
lations, colloidal experiments [59], and foams.
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