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One of the most intriguing features of Earth’s axial magnetic dipole field, well-known from the
geological record, is its occasional and unpredictable reversal of polarity. Understanding the phe-
nomenon is rendered very difficult by the highly non-linear nature of the underlying magnetohydro-
dynamic problem. Numerical simulations of the liquid outer core, where regeneration occurs, are
only able to model conditions that are far from Earth-like. On the analytical front, the situation
is not much better; basic calculations, such as relating the average rate of reversals to various core
parameters, have apparently been intractable. Here, we present a framework for solving such prob-
lems. Starting with the magnetic induction equation, we show that by considering its sources to be
stochastic processes with fairly general properties, we can derive a differential equation for the joint
probability distribution of the dominant toroidal and poloidal modes. This can be simplified to a
Fokker-Planck equation and, with the help of an adiabatic approximation, reduced even further to
an equation for the dipole amplitude alone. From these equations various quantities related to the
magnetic field, including the average reversal rate, field strength, and time to complete a reversal,
can be computed as functions of a small number of numerical parameters. These parameters in
turn can be computed from physical considerations or constrained by paleomagnetic, numerical,
and experimental data.

Understanding the generation and reversals of Earth’s
magnetic field is one of the enduring problems in geophys-
ical and planetary science. Although it is clear enough by
now that the source of the field is dynamo action in the
liquid iron outer core, vigorous convection leads to highly
unpredictable flow, making theoretical calculations of ba-
sic quantities, such as the average reversal rate, almost
impossible. In the last two decades, some light has been
shed by direct numerical simulations of Earth’s core [1–
3] that feature a self-sustaining dipole-dominated field,
that in many cases reverses at irregular intervals just like
the real system. However, the predictive power of these
calculations is severely hampered by the fact that they
do not have sufficient resolution to use Earth-like param-
eters due to the core’s very low viscosity. In these sim-
ulations, the Ekman number, a dimensionless measure
of viscous effects, and the Rossby number, a measure
of inertia, are orders of magnitude larger than what are
thought to be their true values. The situation is likely
hopeless for the Ekman number, but if the Rossby num-
ber could be brought into line then simulations might
eventually at least have the correct force balance.

An alternative approach is to model the geomagnetic
field as a stochastic process, and there have been many
models of this type over the years [4–12]. These are usu-
ally predicated on exploiting the qualitative similarity be-
tween paleomagnetic data and some well-understood or
easily-studied stochastic process. We aim here to develop
a stochastic differential equation that is derived directly
from the underlying equations of the system. That is, we
will not appeal to mean field magnetohydrodynamics, as
in a previous approach of Hoyng et al. [4], or impose a
Langevin form [9, 11]; rather, our starting point will be

the magnetic induction equation with a random source,
which, provided this random source accurately captures
the statistics arising from the chaotic dynamics, is ef-
fectively what the dynamo system is. This stochastic
equation was previously written down by Parker [13] but
to our knowledge its consequences have not been fully
explored. We show that, when one considers only the
slowest-decaying modes of the most important poloidal
and toroidal components and makes fairly generic as-
sumptions about the fluctuations, one can derive a dif-
ferential equation for the probability distribution, a type
of master equation. Furthermore, we show that assum-
ing small-amplitude fluctuations leads to a Fokker-Planck
equation in the toroidal and poloidal field amplitudes.
This equation can then be used to compute various av-
erages of interest in paleomagnetism, such as the time
between reversals, the strength of the dipole field, and
the duration of reversals, in terms of a small number of
parameters. Moreover, these are not merely fitting pa-
rameters but rather they are connected to the underlying
physical and stochastic properties of the system.

The starting point of our analysis is the induction
equation for the magnetic field in Earth’s core,

∂B

∂t
= ∇× (v ×B) + η∇2B (1)

where η = 1/(σeµ0), σe is the electrical conductivity of
the fluid outer core and µ0 is the permeability. The fluid
velocity, v(r, t), satisfies the Navier-Stokes equation with
source terms accounting for temperature or concentra-
tion gradients as well as the Lorentz force resulting from
the magnetic field. The difficulties associated with the
geodynamo problem stem from this complicated interac-
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tion between the magnetic, velocity, and temperature or
concentration fields.

We use the standard decomposition into poloidal and
toroidal fields,

B = BP + BT (2)

where

BP = ∇×∇× P (r, θ, φ, t)r̂ (3)

BT = ∇× T (r, θ, φ, t)r̂. (4)

The functions P and T are expanded in spherical har-
monics,

P (r, θ, φ, t) =

∞∑
l=0

l∑
m=−l

bPlm(r, t)Ylm(θ, φ) (5)

T (r, θ, φ, t) =

∞∑
l=0

l∑
m=−l

bTlm(r, t)Ylm(θ, φ). (6)

We will focus our attention on the poloidal dipole field,
l = 1,m = 0, which is by far the dominant field seen at
the surface, and a quadrupolar toroidal field from which
the dipole is generated. Our system might be thought
of as an α2 dynamo or an α − ω dynamo in which the
shears that generate the poloidal field are stochastic in
nature. However, our choices are not crucial; any num-
ber and variety of components may be considered here
(although at minimum one needs one toroidal and one
poloidal field). For example, in Ref. [7] it was argued
that reversals are triggered by the interaction between
the dipole and poloidal quadrupole terms. We could eas-
ily add this quadrupole term as well, but to illustrate the
basic idea we will consider the simpler system. The equa-
tions for the components are found by inserting their ex-
pansions into the induction equation [2], and after rescal-
ing the length by Ro, the radius of the outer core, and
the time by the diffusion time, R2

o/η, we find

∂

∂t
bP10(r, t)−

[
∂2

∂r2
− 2

r2

]
bP10(r, t) =

r2

2
fP10(r, t) (7)

∂

∂t
bT20(r, t)−

[
∂2

∂r2
− 6

r2

]
bT20(r, t) =

r2

6
fT20(r, t) (8)

The sources, fP10(r, t) and fT20(r, t), contain all the higher-
order magnetic and velocity field harmonics. We treat
these source terms as stochastic processes but, as we are
interested in fluctuating, as well as average, properties
we do not resort to mean field magnetohydrodynamics.
Rather, a formal solution of the stochastic differential
equation will be our starting point. To facilitate a further
simplification, we expand the fields in spherical Bessel
functions, the eigenfunctions of the induction operator,

bP10(r, t) =

∞∑
n=1

cPn (t)σnrj1 (σnr) (9)

bT20(r, t) =

∞∑
n=1

cTn (t)µnrj2 (µnr) (10)

where jn(r) is the nth spherical Bessel function of the first
kind and σn and µn are constants that are determined
from the boundary conditions. The condition that the
poloidal field must be continuous with the irrotational
field external to the outer core gives [13, 14]

σn = nπ, (11)

while the vanishing of the toroidal field at the core-mantle
boundary leads to

j2(µn) = 0. (12)

The first few µn = {5.76, 9.1, 12.3...}. The decay rate of
mode n is σ2

nη/R
2
o for the poloidal field, µ2

nη/R
2
o for the

toroidal, and n = 1 is by far the slowest-decaying mode
for both. Their amplitudes satisfy the equations

dcP1
dt

+
σ2

1

R2
o

cP1 (t) =

NP∑
i=0

gPi δ(t− tPi ) + ΓT (t) (13)

dcT1
dt

+
µ2

1

R2
o

cT1 (t) =

NT∑
i=0

gTi δ(t− tTi ) + ΓP (t). (14)

where ΓT (t) and ΓP (t) are noise terms, ti denotes the
times of convective events that add to the respective com-
ponent and gi their contribution. Here, we have assumed
that these events occur on a time scale much shorter (e.g.,
[11]) than those of interest in geomagnetism (hence the
delta functions), such as the average time between re-
versals. The occurrence times are taken to be Poisson
processes, to be described below, and the associated gi
are also random variables. To model the generation of
the two fields from each other, we assume the gi to be of
the form

gPi = APi c
T
1 (ti)fT (cT1 ) (15)

gTi = ATi c
P
1 (ti)fP (cP1 ). (16)

That is, to compute the source of the poloidal (toroidal)
field, a convective event is associated with an amplitude
AP (AT ) which we multiply against the present toroidal
(poloidal) field. These events are essentially flows of non-
zero helicity, and, although we will not consider any spe-
cific models of them, the amplitudes are related to the
various properties of these flows such as their energy and
angular momentum. Here, we will simply take the A to
be random variables. The functions fT and fP above are
quenching functions; if the fields become large, Lorentz
forces oppose regeneration and, for example, gPi → 0 as
cT1 →∞. It is necessary to model this effect in some way
for the system to have stable, non-zero magnetic fields.
Again, we will not be too specific about this, and assume
only that these are non-increasing functions of their ar-
guments. The noise terms in (13) and (14) represent
sources of fluctuations that do not contribute on average
to the magnetic fields. As such,

〈ΓP (t)〉 = 〈ΓT (t)〉 = 0. (17)
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Although this noise has zero average, its fluctuations can
be a significant influence on geomagnetic time scales, af-
fecting quantities such as the average reversal rate and
the time taken to complete a reversal. We shall make
the assumption that the noise is a Gaussian process with
correlation functions

〈ΓP (t)ΓP (t′)〉 = q2
P δ(t− t′) (18)

〈ΓT (t)ΓT (t′)〉 = q2
T δ(t− t′), (19)

i.e., that the correlation time of the noise is much shorter
than time scales of interest, such as the average polarity
duration. Given the episodic and chaotic nature of con-
vection in turbulent systems, this assumption is surely
reasonable. The noise strengths qP and qT can in princi-
ple depend on the magnetic fields, but as evidence from
both paleomagnetic [10] and numerical simulation data
suggests the dependence is likely weak, we do not explic-
itly include this here.

Equations (13) and (14) can be formally solved; for
example,

cP1 (t) =

NP∑
i=0

gPi e
−σ2

1(t−tPi ). (20)

That is, the mode is usually decaying at the rate σ2
1

but at the times tPi the finite quantities gPi are added
to cP1 (t). This process has two stochastic components;
the events occur at random times and they have random
amplitudes. The arrival times, tPi and tTi , are taken to
be Poisson processes. Three of the defining features of
such processes are [15] 1) the probability that exactly one
event occurs in an interval ∆t is ξ∆t where ξ is the rate
(or intensity), 2) the probability that more than one event
occurs is O(∆t2), and 3) events occur independently of
one another. These assumptions are reasonable if the
correlation time of the process is short compared to the
time scales we care about, which is surely the case for our
system. The events will actually be taken to be an en-
semble of Poisson processes, each member having its own
amplitudeA and rate function ξ(A)dA. It will not be nec-
essary to have explicit forms for these, but one feature
of the functions ξ(A) can be immediately deduced; they
are not symmetric under A → −A for the geodynamo.
The Earth’s magnetic field remains for long durations
in the same polarity between apparently sudden rever-
sals. This would seem to imply that regenerative events,
characterized by positive A, are far more common than
degenerative. As ξ(A)dA is the rate of processes with
amplitude between A and A + dA, the total rates of all
the different amplitudes are given by

ZP ≡
∫ ∞
−∞

ξP (A)dA (21)

ZT ≡
∫ ∞
−∞

ξT (A)dA (22)

so, for example, ZP∆t is the probability that an event of
any amplitude regenerates the poloidal field in the inter-
val ∆t.

With these preliminaries out of the way, we turn now
to the time evolution of the probability for the process.
The joint distribution, P (x, y, t)dxdy, is the probability
at time t that cP has a value between x and x+ dx, and
cT has a value between y and y + dy. In the following
analysis, we will set ΓT = ΓP = 0. We assume these noise
processes are uncorrelated with the fluctuations that re-
generate the field, and thus their contribution can sim-
ply be added to the diffusion coefficient at the end of the
derivation. Let us now think about what happens in this
process during a small time interval ∆t. With probabil-
ity 1 − (ZP + ZT )∆t, there are no regeneration events
in the interval. In this case, both fields simply decay at
their natural rates so that we have

P (x, y, t+ ∆t)dxdy = P (x′, y′, t)dx′dy′ (23)

where

x′ ≡ xeσ
2
1∆t (24)

y′ ≡ yeµ
2
1∆t. (25)

The other possibility for the interval ∆t is the occurrence
of either a poloidal or toroidal regeneration event, of am-
plitude between A and A+ dA. It is possible that more
than one event occurs in ∆t, but the probability of this
is of order (∆t)2 by the assumption of a Poisson pro-
cess, so we may neglect it. The probability of a single
poloidal source is ξP (A)dA∆t, and likewise ξT (A)dA∆t
for toroidal. Now, if an event of amplitude A adds to the
poloidal field we have

P (x, y, t+ ∆t)dxdy = P (x−AyfT , y, t)dxdy, (26)

that is, the probability that cP is at x at time t + ∆t is
simply the probability that it was at x − AyfT (y), that
is x minus the quantity added by the event, at time t.
A similar formula holds for the toroidal field. Putting
everything together we have,

P (x, y, t+ ∆t)dxdy = (1− ZT∆t− ZP∆t)

×P
(
xeσ

2
1∆t, yeµ

2
1∆t, t

)
eσ

2
1∆teµ

2
1∆tdxdy

+

∫ ∞
−∞

ξP (A)P (x−AyfT (y), y, t)dA∆tdxdy

+

∫ ∞
−∞

ξT (A)P (x, y −AxfP (x), t)dA∆tdxdy (27)

where we have integrated over all possible values of A
that can appear in the toroidal and poloidal amplitudes.
Expanding everything to first order in ∆t and taking the
limit ∆t→ 0, we have the integro-differential equation,

∂P

∂t
= σ2

1

∂

∂x
(xP ) + µ2

1

∂

∂y
(yP )− (ZP + ZT )P

+

∫ ∞
−∞

ξP (A)P (x−AyfT (y), y, t)dA

+

∫ ∞
−∞

ξT (A)P (x, y −AxfP (x), t)dA. (28)

This is a kind of master equation for the probability dis-
tribution. It is linear in P and conserves normalization,
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as it must. Although it is surely possible to study this
equation numerically, we will now discuss an important
regime, namely the one in which the quantities added
during an event, Af , are small. In this case, the distri-
bution function satisfies the more familiar Fokker-Planck
equation.

When Af � 1, the distribution can be expanded in A,

P (x−AyfT , y, t) ≈ P (x, y, t)−AyfT (y)
∂P

∂x

+
A2y2fT (y)2

2

∂2P

∂x2
(29)

and similarly for P (x, y − AxfP , t). The result is the
Fokker-Planck equation,

∂P

∂t
= − ∂

∂x
[D(1)

x (x, y)P ]− ∂

∂y
[D(1)

y (x, y)P ]

+D(2)
x (y)

∂2P

∂x2
+D(2)

y (x)
∂2P

∂y2
(30)

where the drift coefficients are

D(1)
x (x, y) = −σ2

1x+ 〈AP 〉yfT (y) (31)

D(1)
y (x, y) = −µ2

1y + 〈AT 〉xfP (x) (32)

and the diffusion coefficients, after we have added the
parts arising from the additive terms ΓT (t) and ΓP (t),

D(2)
x (y) =

1

2
〈A2

P 〉y2[fT (y)]2 +
1

2
q2
P (33)

D(2)
y (x) =

1

2
〈A2

T 〉x2[fP (x)]2 +
1

2
q2
T (34)

with

〈AP 〉 ≡
∫ ∞
−∞

ξP (A)AdA (35)

〈AT 〉 ≡
∫ ∞
−∞

ξT (A)AdA (36)

〈A2
P 〉 ≡

∫ ∞
−∞

ξP (A)A2dA (37)

〈A2
T 〉 ≡

∫ ∞
−∞

ξT (A)A2dA. (38)

It is rather interesting that in passing from the mas-
ter equation to the Fokker-Planck equation we no longer
need explicit forms for the rate functions, ξ(A). We only
need to know 〈A〉, which is non-zero by the asymmetry of
ξ(A), and 〈A2〉 for the poloidal and toroidal fields. Equa-
tion (30) contains all the information about the process,
and its solutions can be used to extract various proper-
ties, such as the rate of reversals, the average time of a
reversal and the variation of these with core parameters.

Although P (x, y, t) is the joint probability for the
poloidal dipole and toroidal quadrupole fields, only the
poloidal field is observed at Earth’s surface. A natural
question is now whether we can derive a Fokker-Planck
equation, P (x, t), for the dipole amplitude alone. In gen-
eral, the answer is no; if we can imagine reversing the sign

of only, say, the toroidal field, the statistics of the poloidal
field would then change dramatically (we may, for exam-
ple, have triggered a reversal of the poloidal field). How-
ever, given the somewhat disparate decay rates of the
poloidal and toroidal modes, we can derive an approxi-
mate P (x, t) using adiabatic elimination. The idea is that
because the toroidal field decays the faster of the two, we
can assume that it takes on a quasi-steady value that de-
pends only on the current poloidal field; it is sometimes
said that the fast variable is “slaved” to the slow one [16].
The systematic determination of P (x, t) from P (x, y, t)
under this approximation is straightfoward but somewhat
tedious so we omit the details here. Our calculation is es-
sentially identical to the one given in section 8.3 of Risken
[16]. Note that this procedure actually gives an expan-
sion in 1/λ where λ is the decay rate of the fast variable.
Because the disparity between the poloidal and toroidal
decay rates is only a factor of three, these 1/λ corrections
might prove to be important. However, in what follows
we keep only the leading-order term, neglecting those of
order 1/λ and higher. To carry this calculation through,
we assume the quenching functions have the form

fT (x) = e−γT x
2

(39)

fP (y) = e−γP y
2

. (40)

A more careful consideration of the effect of the magnetic
field strength on the convective upwellings would allow us
to calculate the parameters appearing in the quenching
functions, (39) and (40), or to relate them to other core
properties which can then be estimated from the data.
For now we leave them as fitting parameters. The result
is the Fokker-Planck equation for P (x, t),

∂P (x, t)

∂t
= − ∂

∂x

(
D

(1)
(x)P (x, t)

)
+
∂2

∂x2

(
D

(2)
(x)P (x, t)

)
. (41)

To get simple forms for the diffusion and drift coefficients,
we set γT = 0, and find

D
(1)

(x) = −σ2
1x+

〈AP 〉〈AT 〉
µ2

1

xe−γP x
2

(42)

D
(2)

(x) =
〈A2

P 〉
2µ2

1

(
〈A2

T 〉
2

+
〈AT 〉2

µ2
1

)
x2e−2γP x

2

+
1

2

(
q2
T

µ2
1

+ q2
P

)
. (43)

The drift term (42) describes the generation of the dipole
field. A typical example is shown in Figure 1. Where
the curve is positive, the regeneration rate of the field is
greater than its decay. The value of x = x0 > 0 such
that

D
(1)

(x0) = 0 (44)

is the typical value of the dipole field between reversals.
Note that if x0 is a solution of (44) then so too is −x0,
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FIG. 1. The drift coefficient, D
(1)

(x) in Eq. (42) fit to the
PADM2M data set. Where the curve is positive, regeneration
of the field is effective against its decay.
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FIG. 2. The diffusion coefficient, D
(2)

(x) in Eq. (43), fit to
the PADM2M data set.

consistent with the symmetry of the magnetohydrody-
namic equations. It is possible that there is no positive
region, and in this case dynamo action is not sufficient
to support the dipole field and there is no x0 > 0. This
would occur whenever

dD
(1)

(x)

dx

∣∣∣∣∣
x=0

< 0 (45)

and from (42) we can therefore show that the dipole field
is only regenerated when

〈AP 〉〈AT 〉 > σ2
1µ

2
1. (46)

The formulas (42) and (43) for the drift and diffusion
coefficients can be compared with data. In Fig. 1, we fit
our Eq. (42) to the drift coefficient calculated by one of
us [10] from the PADM2M model, a data set constructed

-1.0 -0.5 0.5 1.0
x

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

V(x)

FIG. 3. Double-well potential derived from Fig. 1 (after a
change of variable described in the text).

from observations of Earth’s dipole [17]. The fit appears
to be very good, and thus the formula we have derived is
well supported by the data (see also Figures 3 and 4 of

Ref. [11]). We stress that D
(1)

(x) must be odd in x by
the symmetry of the MHD equations, so if there was suf-
ficient small-field data available it would look similar to
our formula, at least qualitatively. We point out here that

for large x the drift coefficient becomes D
(1)

(x) ≈ −σ2
1x,

i.e., a line that passes through the origin. Determining
the slope of this line will allow an estimate of the con-
ductivity of the core (the conductivity appears when we
convert from dimensionless units). It seems from Figure
1 that we do not yet have sufficient data in this linear
regime, but perhaps this will change in the future.

In Fig. 2 we plot the diffusion coefficient, where the
fit uses the same parameters as those that produced Fig.
1. Once again, our formula seems to capture the main
features of the PADM2M model. However, here it is not
as clear what will happen in the small-field region where
there is no data. The diffusion coefficient is even in x
and the shape of our curve arises from the assumption
that the noise amplitudes qT and qP do not depend on
the field. This is apparently a reasonable approximation
for larger fields, but whether it holds as x goes to zero is
unclear.

Finally, we turn to the question of the reversal rate.
For this, we can exploit the analogy between (41) and
the equation for a heavily-damped particle in a potential,

V (x) [16], where D
(1)

(x) = −∇V (x). A slight complica-
tion here is that in order to make contact with existing
theory, we must transform from x to a new variable in
terms of which the diffusion coefficient is a constant, D.
Details of this transformation are omitted but the proce-
dure is laid out in Ref. [16]. Choosing D = 1, we find the
potential plotted in Fig. 3. The Kramers escape formula
gives the approximate reversal rate in the limit of a deep
well [16] in the sense that ∆V ≡ V (0)− V (xmin)� D,

r =
1

2π

√
|V ′′(0)|V ′′(xmin) exp(−∆V/D). (47)
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Using an electrical conductivity σe = 1.2 × 106 Ω · m
(needed to convert from dimensionless time), consistent
with recent density functional theory calculations (DFT)
[18], we find r ≈ 0.7 Myr−1. This r is a bit low, but
there are many areas of uncertainty here. For example,
numerical [18, 19] and experimental [20, 21] results have
produced a range of electrical conductivities for the core,
and the issue appears far from settled. Halving the con-
ductivity doubles the computed reversal rate, although
this is still lower than the current paleomagnetic esti-
mates of 3-4 Myr−1 [22, 23]. A much greater source of
uncertainty lies in the noise amplitudes, qT and qP . As
demonstrated in Ref. [12], estimates of these kinds of
quantities are highly error-prone and can vary widely be-
tween data sets. If, for example, qT and qP are doubled,
then, using the conductivity from DFT, r ≈ 4 Myr−1.
We can therefore obtain a realistic reversal rate by mak-
ing plausible variations to the conductivity and noise, and
perhaps a more sophisticated calculation will eventually
be used to constrain those quantities.

The single-variable Fokker-Planck equation cannot be
used to study every quantity of interest. For example, if
we wish to examine the issue of which field leads during a
reversal, we must drop the slaving assumption that led to

(41) and instead track the evolution of both components
using the coupled formulation (30).

Starting with the magnetohydrodynamic equations for
Earth’s core, we have derived a set of stochastic differen-
tial equations, characterized by a handful of parameters,
governing the evolution of the dominant poloidal and
toroidal fields. From these, we further found a Fokker-
Planck equation satisfied by the dipole field, the coeffi-
cients of which we were able to compare directly with
data. The parameters that appear in our model all arise
from consideration of the underlying properties of the dy-
namo system and, in principle, finding their values from
fits to data can give important information about the
core. We believe that this framework will prove useful
in analyzing and characterizing observations, laboratory
experiments, and numerical simulations. There are also
many ways in which this work can be extended, such
as including more modes beyond just the dipole poloidal
and quadrupole toroidal, and considering a more detailed
physical model of the core.
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485, 355 (2012).
[19] J. Xu, P. Zhang, K. Haule, and R. E. Cohen,

arXiv:1710.0356 (2018).
[20] K. Ohta, Y. Kuwayama, K. Hirose, K. Shimizu, and

Y. Ohishi, Nature 534, 95 (2016).
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