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Abstract 

A simplistic model of atomic dynamics in liquid, based on the concept of dynamic fluctuations in 

local atomic connectivity, is proposed to elucidate the temperature variation of the viscosity of a 

material in its liquid phase.  Within the simplifications and hypothesis made to define the model, 

it is possible to explain the crossover from a simple liquid to a cooperative liquid and covariance 

of viscosity near the glass transition temperature.  The model is a mechanical analog of the 

Drude model for the electric transport in metal. 
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1. Introduction 

Viscosity, η, of a liquid near the melting point is of the order of 10-3 Pa.s, whereas the 

glass transition is defined by η reaching 1012 Pa.s [1].  The origin of this rapid change in 

viscosity over a relatively small range of temperature is crucially related to the unsolved problem 

regarding the nature of the glass transition [2, 3].  In spite of numerous attempts to explain its 

origin [4-9] there is no broad agreement on this subject.  Whereas much attention is currently 

focused on the behavior of highly viscous supercooled liquids, in our view the most important 

feature of the viscosity is the crossover from the Arrhenius to super-Arrhenius behavior which 

occurs at a temperature, T*, much higher than the glass transition temperature, Tg.  Kivelson 

noted that the temperature dependence of the activation energy is universal if T* is used to scale 

temperature [6].  The functional form of the universal behavior explains quite well the measured 

viscosity of a large number of metallic alloy liquids [10].  Once the temperature dependence of 

the viscosity becomes super-Arrhenius and the activation energy keeps increasing with 

decreasing temperature, and it is a natural course of action that viscosity diverges at a finite 

temperature.  The glass transition is merely a consequence of this crossover.  Therefore in this 

line of argument the crucial element for understanding the glass transition is not the glass 

transition itself but the nature and origin of this crossover phenomenon. 

Kivelson proposed that T* is the freezing temperature of a phase to which the liquid 

never reaches because of frustration [6].  Because of its intrinsic frustration long-range order of 

such a phase cannot be achieved, but short-range dynamic fluctuations into this phase become 

more prevalent as temperature is lowered, resulting in increased viscosity and ultimate jamming 

into a glassy state.  An example of the frustrated phase is the icosahedral state [4, 11].  Whereas a 

quasi-crystal is a solid with icosahedral symmetry, it is a stoichiometric crystalline compound in 

six dimensions which is formed only for a number of specific compositions [12].  For a liquid 

with a composition other than these specific compositions the icosahedral order is geometrically 

frustrated [4], and cannot form long-range order.  But the particular local order of the frustrated 

phase depends on composition.  For instance for a poly-dispersed hard-sphere colloids the 

fluctuating phase is a mixture of the icosahedral phase and the f.c.c. phase [13].  However, the 

hypothesis that T* is the freezing temperature of the frustrated phase has not been confirmed.  

On the other hand different interpretations of the crossover phenomenon were proposed 

based upon the idea that the atomic dynamics become more collective below T*  [14, 15].  Such 
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crossover is observed in colloidal system as well, as a function of colloid density, from non-

interacting colloid below the critical density to interacting colloid above [16, 17].  In our view 

the crossover occurs when the mean-free path of shear phonon, ξ = cTτM, where cT is the velocity 

of a transverse phonon and τM is the Maxwell relaxation time, becomes shorter than the mean 

atomic distance, the bulk of shear phonons are localized [15].  In other words above the 

crossover temperature, TA = T*, the structure is fluctuating so fast that phonons cannot propagate 

and become overdamped.  Only below TA atoms can interact via phonons and atomic dynamics 

becomes cooperative.  In this paper we propose a simple model to quantify this dynamic 

crossover phenomenon based on the dynamics of atomic connectivity network.  We define the 

structure of liquid in terms of the atomic connectivity network [18], and describe its dynamics by 

the action of cutting and forming the atomic bond [19].  The crossover occurs as a consequence 

of competition between phonons and bond cutting.  This model is a mechanical analog of the 

Drude model for the electric transport in metal.  The work presented here is a small brick added 

to the knowledge, hoping that it will open the door to a more accurate theory liable to explain the 

mystery of glass transition. However, several evidences point toward this model providing some 

universal results: (a) it explains the crossover phenomenon, (b) it introduces a parameter that 

permits to distinguish between strong and fragile glasses, and (c) it explains the precipitous 

increase in viscosity below the crossover temperature.  In addition, while being first motivated 

by the study of bulk metallic glasses, it could be relevant in other areas, such as colloids [20], 

usual glassy materials in their liquid phase, or even quantum fluids [21].       

 

2.  The model 

2.1. Structure and dynamics of liquid  

Liquid and glass has no symmetry in the atomic structure.  Thus it is difficult to describe 

the structure and relate it to properties, even when we know the positions of all atoms at time t, 

Ri(t).  Experimentally the only the pair density correlation function (PDF), g(r), can be readily 

obtained through the Fourier-transformation of the structure function, S(Q), which can be 

determined by diffraction [22].  However, the PDF is a one-dimensional function, and does not 

have sufficient informational content to determine a three-dimensional structure.  To describe the 

three-dimensional structure usually a model is constructed using a phenomenological interatomic 

potential, and the results are analyzed in terms of the Voronoi polyhedra [18, 23], which is an 
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example of the Delone set [24, 25], as discussed in Appendix 1.  The atomic connectivity is 

defined by atoms which share a Voronoi face.  The state of atomic connectivity is expressed in 

terms of the Delone graph.    

 Now the Delone graph describes the state of atomic connectivity at a time.  We now 

consider how it evolves with time to describe its dynamics.  The action of changing the 

connectivity of the Delone graph, by cutting one bond and forming a new one, is called Pachner 

moves discussed in Appendix 2 [24 – 27].  Such a move requires local atomic rearrangement 

which squeezes atoms and increases the potential energy.  It represents a move from one local 

equilibrium to another, crossing over an energy barrier.  In terms of the energy landscape it 

corresponds to crossing a saddle point [7].  In high temperature liquid the action of cutting or 

forming a bond was shown to be the elementary process of excitation [15, 19], and was named 

“anankeon” [19].  A typical Pachner move represents a bond exchange and involves two 

anankeons.  They happen at unpredictable times, so that their dynamic is more efficiently 

described in terms of a Markov process.  Hence the corresponding stress felt by each atom is 

constantly varying under the stress of circumstances, a concept that can be translated by the word 

“anagkeia” in Greek.  Associated with this concept was the Greek goddess Ananke, expressing 

the fate or destiny, due to uncontrollable forces, constraints, and necessity.  Hence the name 

“anankeon” associated with these stress-induced unpredictable atomic moves. 

 

2.2. A Toy Model.  

What happens in the liquid state?  Phonons still exist in liquids as in solids. However 

phonons with short wave lengths, comparable to the inter-atomic distance, are strongly damped 

in the liquid phase at high temperature.  Whenever the typical time scale characterizing the 

anankeon dynamics is comparable to the phonon period, the phonon has no time to oscillate and 

it is overdamped.  The present model investigates this damping more quantitatively.  To proceed, 

the same intuition will be followed as in the original paper of Drude on electronic transport in 

metals [28].  In order to make the model computable, it will be assumed that it describes the 

mechanical fate of a given atom: (i) as long as the topology of atomic connectivity remain 

unchanged, this atom is located near the minimum of a local potential well, and it will oscillate, 

harmonically, with a frequency given by the local curvature of the well, (ii) then at random times 

(Poissonian distribution) the atom jumps, finding itself, after the jump in a new potential well, 
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with a new local curvature and a new initial location relative to the new equilibrium position and 

a new initial velocity (phase-space position).  Hence, the curvature of potential well (expressed 

in terms of the frequency of oscillation) will be considered as a random variable with a fixed 

average and a given covariance δ, which will be shown to be the most important parameter.  

Similarly, the new relative initial phase-space position, after the jump, will also be chosen 

randomly according to a Maxwell-Boltzmann distribution.  To make the model even more 

computable, it will be assumed that only one degree of freedom of oscillation is allowed (local 

Einstein model).  It will be seen that, even though this model is so simplistic, it exhibits a 

transition between two time-scales as δ decreases. The computation of correlation functions, like 

viscosity, shows that this change of scale may affect the viscosity in an essential way.   

 

2.3. Anankeons in Glass: the STZ-Theory.  

The deformation behavior of metallic glass was successfully described by the shear 

transformation zone (STZ) theory, proposed by Argon [29] and extended by Langer [30 – 33].  

The idea is that during plastic deformation, the local groups of atoms form droplets, STZ, in 

which the solid really behaves like a liquid for a short time.  Using the density of STZ as a 

variable, Langer et al. proposed a system of effective equation at the macroscopic scale that are 

modeling the behavior of the material under stress with a good accuracy.  At the atomic scale 

numerical simulation show that these STZ's are the result of a cascade or avalanche of many 

atomic swaps, namely of anankeons, [34], starting at a random site, called the germ.  Anankeon 

involves only two atoms which define the bond to be cut or formed, whereas STZ involves many 

(30 – 300) atoms [35, 36].  The initial anankeon action induces other anankeons in its 

neighborhood, because of the disruption created by the propagation of the stress induced by such 

swaps.  The cascade looks like a local catastrophic event, occurring during a very short time, 

leading to the building of the local liquid-like droplets.  The time scale representing the time 

necessary to create an STZ is however long in comparison with the typical time scale of the 

anankeon.  Thus the cascade is not a collective phenomenon, but simply a succession of separate 

anankeon events induced by the stress field created by the preceding deformation events.  A 

model for such a cascade of event was proposed in [34, 37]. 

 

3. Liquids at High Temperature as a Perfect Anankeon Gas 
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  In our approach the structure of glass or liquid is described by the Delone graph which 

specifies the topology of atomic connectivity.  The Delone graph, however, does not have an 

energy scale, whereas in order to calculate thermodynamic properties we need the knowledge of 

the energy scale.  A convenient way to introduce the energy scale to the Delone graph is to use 

the concept of the atomic-level stresses [38].  The atomic-level stress tensor for an atom i, iσ , is 

defined by 

  
1

i ij ij
ji

f r
V

αβ α βσ = ∑  ,         (1) 

where α and β refer to Cartesian indices, Vi is the local atomic volume of atom i, and fij
α and rij

β 

are the α and β components of force and distance between atoms i and j [39, 40].  Its trace gives 

the atomic-level pressure 

( )1
3

xx yy zz
i i i ip σ σ σ= + + ,           (2) 

whereas five other combinations give the shear, or deviatory, stresses, τni, n = 1 …5.  The origin 

of the atomic-level stress is the atomic-level misfit between the size of the atom and the size and 

shape of the atomic site [38].  For instance if the atom is larger than the site it is placed it is 

under compressive pressure.  Thus they are directly connected to the topology of the neighboring 

atoms which defines the size and shape of the atomic site.  For instance the pressure is linearly 

related to the number of nearest neighbors, the coordination number [41].   

The stress tensor has six components for each atom, however, because of the identity fij = 

- fji, the total number of free components is 3N, equal to the positional degree of freedom.  For 

this reason the equi-partition theorem holds for the stress in liquid [42, 43]; 
2 2

2 2 4
np kT

B G
τ

= = ,          (3) 

where B and G are the bulk and shear moduli.  The distribution of local stress is Gaussian [44].  

In the liquid state the atomic-level stresses fluctuate with time because the neighbors are 

dynamic.  In high-temperature liquid phonons are overdamped, and the mechanism of structural 

change is anankeon excitation.  Therefore a high-temperature liquid can be modeled as a free gas 

of anankeons.  The degree of freedom associated with each anankeon will be given in terms of an 

atomic stress tensor.  Their Gaussian distribution observed in the numerical results can be 
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interpreted in terms of a Gibbs state describing the thermal equilibrium in a statistical mechanical 

approach.  If the atomic stress are uncorrelated, it becomes possible to compute the partition 

function Z(T;N) of a volume of liquid containing N atoms.  Note, however, an anankeon 

excitation affects the stress tensors at two atoms involved in each atomic bond.  Thus the part of 

the partition function regarding the potential energy is Z(T;N) = Z1(T)N/2, where 

 ( )
2 22 2

1
1,

n
n

p B G

B

Z T e d
k T

β τ

σ β
⎛ ⎞
⎜ ⎟− +⎜ ⎟
⎝ ⎠

∑
= =∫  .      (4) 

The domain of integration is the space of all real symmetric d × d matrices, representing a 

possible stress tensor.  This Gaussian integral is easy to compute giving Z1(T) = � Td(d+1)/4, where 

� is a constant depending on B and G, but independent of the temperature.  The Clausius entropy 

is given by S = kB ln(Z(N; T)) leading to the following expression of the contribution of the 

potential energy to the heat capacity, Cv,p = cdNkB/2 where cd = d(d+1)/4, which is 3 in 3D.  

Adding the contribution from the kinetic energy, Cv,k = cdNkB/2, we obtain the total specific 

heat, Cv = cdNkB.  Accordingly the system follows a Law of Dulong-Petit, just as the contribution 

of phonons in crystal.  However, the physical origin is different in liquid, because the main 

degree of freedom associated with atoms are the atomic stress.  Hence a liquid at high 

temperatures can be seen as a perfect gas of anankeons.  This prediction gave a satisfactory 

answer to the experimental observation [45] of the saturation of the heat capacity at high 

temperature. 

 

4. Phonon-Anankeon Interaction 

What happens at lower temperature, below the crossover temperature?  The following 

model will show that as the temperature decreases, the vibration modes are constraining the 

shape of local clusters, so as to change the viscosity is a non-trivial way. 

 

4.1.   Time Scales  

Because the dynamics plays such an important role in explaining the difference between 

solids and liquids, the various relevant time scales ought to be discussed. The most elementary is 

τLC, where LC stands for local configuration, representing the time required between two 

consecutive Pachner moves [14].  It corresponds to the anankeon relaxation time.  The next time 

scale is called Maxwell relaxation time τM = η/G∞ [46] where η is the viscosity and G∞ is the 
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high frequency shear modulus.  The Maxwell relaxation time represents the time scale below 

which the system behaves like a solid and beyond which it can be considered as a liquid.  

Through classical as well as ab initio molecular dynamics simulation on various metallic liquids 

it was found that τM = τLC at high temperatures [17].  They obey the Arrhenius law, 
BW k T

M LC eτ τ τ∞= = .          (5)  

However, below the crossover temperature, TA (= T*) the equality τM = τLC breaks down, and τM 

becomes super-Arrhenius, whereas τLC remains Arrhenius [47].  Near the glass transition point, 

there is a significant discrepancy between τM and τLC.  This is the discrepancy that the present 

model is going to describe.  It seems natural, then, to choose τLC as the basic time scale for 

modeling. 

 

4.2.   The toy model for anankeon-phonon interaction 

There are two modes of dynamics for the atomic-level stresses.  At high temperatures it is 

dominated by phonons.  To describe phonons we adopt the Einstein model, and assume ωE,i is 

the local Einstein frequency of the atom i.  Below TA local configurational dynamics takes over 

[48].  For simplicity we also use the same Einstein model, but the values of {ωE,i} descrease 

rapidly with decreasing temperature.  Around an atom anankeon excitation occurs randomly with 

the average interval of τLC.  Thus the distribution of the time interval between anankeon 

excitation should have an exponential distribution.  Then the probability that anankeon is excited 

within the time τ is, 

 ( )
0

1
LCt

LC

P e dt
τ ττ

τ
−= ∫ .         (6) 

Anankeon excitation involving the bond between atoms i and j changes the atomic-level stress 

tensor of the atom i and j, iσ  and jσ , and ωE,i and ωE,j by Δωi,n and Δωj,n.  Here n denotes the 

sequence of anankeon excitation (-∞ < n < ∞).  It is reasonable to assume that Δωi,n is also a 

random variable.  Its average and variance are given by 

 ( )
1 2

2
, ,

1 1,E i i n
i iN N

ω ω ω ω⎛ ⎞= Δ = Δ⎜ ⎟
⎝ ⎠

∑ ∑ .      (7) 

 

4.3.   Viscosity 



9 
 

  The viscosity is given by the fluctuation-dissipation theorem as [46] 

 ( )
B

V C t dt
k T ση = ∫ ,         (8)  

where V is the volume of the liquid, T temperature, and Cσ is a shear stress correlation function, 

 ( ) ( ) ( )0xy xyC t tσ σ σ= .        (9)  

In terms of the atomic-level stresses, eq. (1) [39], 

 ( ) ( )1xy xy
i i

i
t V t

V
σ σ= ∑ .        (10) 

Therefore,   

 ( ) ( ) ( )2
,

1 0xy xy
i j i j

i j

C t VV t
Vσ σ σ= ∑ .       (11) 

Using the approximation in Ref. 48, 

 ( ) ( ) ( ) ( )2
2 0xy xy

i i i
i

C t V t
Vσ
ν σ σ= ∑ ,       (12) 

where ν ≈ 2.  In the liquid state the thermal average is equal for all atoms.  Thus 

 ( ) ( ) ( )0xy xy
i iC t tσ ν σ σ= .        (13) 

We will show that Cσ(t) ~ exp(-t/τM).  For this purpose we compute the Laplace transform, 

 ( ) ( )
0

tLC e C t dtς
σ σς

∞ −= ∫% .        (14)   

Detailed derivation is given in Ref. 49 and summarized in Appendix 3.  The result is 

 ( ) ( )
( ) ( )2 2

2
ˆ 4

21 rp r

a
LC

a e
σ

τ ς
ς

ς − +
=

−
% ,       (15) 

where  

 ( ) ( ) ( )2 2
1

1 1 1
11 2 1j

a O
i

ς
τςτ ς ω τς−

⎛ ⎞
= + ⎜ ⎟

⎜ ⎟++ + +⎝ ⎠
      (16) 

To calculate a2(ζ) explicitly we need to know the distribution of {ωj}.  Here for simplicity we 

assume that {ωj} are distributed evenly within the range of ω±√3δ.  Then, 

 ( ) ( )
( )2

1 2 2 31 ln
4 3 1 2 2 3

i i z
a

i z i i z
τ ς ω

ς
τ ς ω

⎧ ⎫+ + +⎪ ⎪= ⎨ ⎬
+ + −⎪ ⎪⎩ ⎭

 ,      (17) 
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and z = δτ.  The value of z varies with temperature.  At high temperatures the system samples 

wide space of potential energy landscape (PEL), so that the range of {ωj}, Δω, is large, resulting 

in the value of z of the order of unity.  As the system is cooled it gets settled in certain local 

basins in PEL, and the dynamics becomes more cooperative, dominated by configurational 

fluctuations because phonons are averaged out over the time τ.  Thus the values of {ωj} and δ 

decrease rapidly with decreasing temperature.  Thus cooling the system results in reducing the 

value of z.  Now using the polar coordinates in the complex plane, 

 ( )1 Re 2 3ie i zθρ τ ς= + + ,        (18) 

 ( ) ( )2
2 3, tan

1 Re2 3
za

z
θς θ

τ ς
= =

+
.      (19) 

Thus the solution critically depends on the value of z.  If 2 3 2z π≥ ,  

τM = τLC,           (20) 

whereas if 2 3 2z π< ,  

 ( )
2 31

tan 2 3
LC

M

z
z

τ
τ

= −  .         (21) 

The value of z varies with temperature, and  

 
4 3cz z π= = ,          (22) 

defines the viscosity crossover temperature TA = T*.  Above TA eq. (20) holds, whereas below TA 

eq. (21) applies. 

  

5. Interpreting the Results 

5.1.   Crossover condition 

Above TA phonons are overdamped [17], so that at the critical value of z, ωτ = 1.  Then 

from eq. (22) the crossover condition is given by 

  0.45
4 3c

ω π
ω

Δ = ≈ .         (23) 

The phonon frequency ω depends on volume through the Grüneisen formula, 

 ln
ln

d
d V

ω γ= .          (24)  
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The Grüneisen constant is about 2 for many materials.  Now for metallic systems with the 

random close packed (DRP) structure the coordination number NC close to 12 (~ 4π [50]), the 

volume strain, lnv Vε = Δ , for changing the coordination number NC by ½ is [38, 51] 

 0.11crit
vε = ,          (25)  

thus activation of anankeon which changes NC by unity will result in the volume strain of 

2 0.22crit
vε = .  Therefore the change in ω due to anankeon excitation is 

 ln 2 0.44crit
v

ω ω γε
ω

Δ = Δ = = ,        (26)  

for γ = 2, quite close to the value in eq. (23).  This agreement illustrates the reasonableness of the 

result expressed in eq. (21). 

 

5.2   Glass transition 

At low temperatures below the crossover temperature atomic dynamics become more 

correlated and cooperative.  Therefore the anankeons become correlated, and the assumption of 

random sequence which led to eq. (21) breaks down.  For instance when two atoms are 

surrounded by a glassy solid, breaking of a bond creates strong back stress field around the 

atoms which tries to restore the bond.  In other word unlike the liquid above the crossover the 

system now has a memory and behaves like an anelastic solid.  Consequently the effective value 

of z becomes smaller.  It is difficult to estimate how z varies with temperature, but it should go to 

zero at the glass transition because the system is no longer dynamic.  Therefore the overall 

change in ω due to localized anankeon is of the order of 1/NC.  For small values of z, 

( ) 2

12 31 1 ....
4tan 2 3

M

LC

z
zz

τ
τ

⎛ ⎞
⎜ ⎟= − = +
⎜ ⎟
⎝ ⎠

      (27) 

Thus τM diverges at Tg (z = 0), as expected.  Strictly speaking, therefore, Tg is the ideal kinetic 

glass transition temperature where τM diverges rather than the conventional glass transition 

temperature where τM becomes comparable to the experimental time-scale.  Also this result is 

based upon the lowest order term in eq. (16).  In deeply supercooled liquid we will need to take 

higher order terms which make the results more complicated. 

 



12 
 

5.3   Fragility 

 Angell  classified liquids into fragile and strong liquids, by plotting viscosity in the 

logarithmic scale against Tg/T, the so-called Angell plot [1].  In a very strong liquid, such as 

silica, the Arrhenius temperature dependence persists well above the glass transition up to very 

high temperatures.  In our model this means z > zc up to high temperatures.  This is consistent 

with our model [51] in which the critical strain increases with decreasing NC.  Whereas there is 

no simple way to estimate the value of z, because the square of the phonon frequency is 

proportional to the local elastic constant C which scales with NC, we may argue that,  

 1

C

Cz
C N

ω
ω

Δ Δ= ≈ ≈  .        (28) 

For NC = 4 we obtain z = 0.5, higher than the critical value zc.  Because silicate has an open 

structure cutting one bond does not affect other bonds even below TA; there is no back-stress 

effect.  Thus the value of z should remain high through the supercooled state down to low 

temperatures, resulting in the Arrhenius behavior of viscosity with no crossover to the super-

Arrhenius behavior.     

 

5.4   Comparison with simulation 

 It is difficult to estimate how z depends on temperature.  At the moment theories are not 

available to make such estimates, whereas it will require extensive simulation effort to do so.  On 

the other hand, it is possible to gain some insight through the comparison of eq. (21) with the 

results of simulation in Ref. 17.  We found that scaling of z by 

  
11
1c g

z t
z t

γ
⎛ ⎞−− = ⎜ ⎟⎜ ⎟−⎝ ⎠

 ,         (29) 

where t =  T/T*, tg = Tg/T*, T* = 1.3 TA, γ = 4, of eq. (22) fits well to the simulation data as shown 

in Fig. 1.  Because the physical meaning of this scaling is unclear, this agreement merely 

suggests that our model captures some features of the crossover phenomenon in spite of its 

simplicity.  Here T* >  TA, but this merely reflects the ambiguity of defining TA from the viscosity 

data through the deviation from the Arrhenius behavior. 

 

6. Conclusion 
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The origin of glass transition has long been debated, without satisfactory resolution.  

Whereas many research works focus on the glass transition itself, it is equally important to 

examine the crossover behavior of viscosity in a liquid at high temperatures.  Below the 

crossover temperature, TA, cooperative atomic dynamics leads to super-Arrhenius temperature 

dependence of viscosity, culminating inevitably to the glass transition.  In our view this 

crossover occurs because of the competition between phonons and local configurational 

fluctuations represented by the action of cutting or forming atomic connectivity, called 

anankeons.  In this article we propose a simplistic model of atomic dynamics in liquid, based on 

the concept of dynamic fluctuations in local atomic connectivity (anankeons), to elucidate the 

viscosity crossover phenomenon in the liquid phase.  With this model it is possible to explain the 

crossover from a simple liquid to cooperative liquid and the divergence of viscosity near the 

glass transition temperature.  The model is a mechanical analog of the Drude model for the 

electric transport in metal.   
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Figure caption: 

 

Figure 1.    Plot of τM/τLC against T/TA, symbols by simulations for various models from Ref. 17, 

the line by eq. (21) with the temperature scaling of eq. (29). 

 

 
Fig. 1 
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Appendix I.  The Delone Hypothesis and the Ergodic Paradox.  

An instantaneous snapshot of the atomic arrangement can be described as a set of points 

L, representing the position of atomic nuclei.  With a very good approximation L is efficiently 

described as a Delone set.  Namely it is characterized by two length scales 0 < rR < 1 defined as 

follows: (i) any open Euclidean ball of radius r contains at most one point of L, (ii) any closed 

Euclidean ball of radius R contains at least one point of L. The first condition is equivalent to 

having a minimum distance 2r between any pair of distinct atoms.  The second condition is 

equivalent to forbidding holes a diameter larger than 2R.  However, the principles of Equilibrium 

Statistical Mechanics and the ergodicity with respect to translations contradict such a hypothesis. 

This is the content of the so-called Ergodicity Paradox [26].  This is because in the infinite 

volume limit, the ergodic theorem implies that with probability one, given any ε > 0, somewhere 

in the atomic configuration two atoms are at a distance shorter than ε. Similarly, with probability 

one, given any ε > 0, somewhere in the atomic configuration there is a hole of size larger than 

1/ε. However, such local arrangement are rare, so that dynamically there lifetime is so short that 

they are unobservable. Hence restricting the atomic configurations to make up a Delone set is a 

reasonable assumption called the Delone Hypothesis 

 

Appendix 2. Voronoi Tiling, Delone Graphs and Local Topology.  

Given a Delone set L and a point x ∈ L, the Voronoi cell V(x) is defined as the set of 

points in space closer to x than to any other point in L.  V(x) can be shown to be the interior of a 

convex polyhedron containing the open ball centered at x of radius r and contained in the ball 

centered at x of radius R [24, 25].  The closure T(x) of the Voronoi cell is called a Voronoi tile. 

Two such tiles can only intersect along a common face. In particular two Voronoi cells centered 

at two distinct points of L do not intersect. The entire space is covered by such tiles, so that the 

family of Voronoi tiles constitute a tiling, the Voronoi tiling. The vertices of the Voronoi tiles 

will be called Voronoi points. Their set L* is usual called the dual lattice. For a generic atomic 

configuration, a Voronoi point has not more than d + 1 atomic neighbors in space-dimension d (3 

in the plane and 4 in the space).  In particular, the Voronoi points are the center of a ball with d + 

1 atoms on its boundary, a property called by Delone (who signed Delaunay) the “empty sphere 

property" [11]. It means that it is at the intersection of d + 1 Voronoi tiles. The d + 1 atoms 
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located at the center of those tiles are the vertices of a simplex (triangle for d = 2, tetrahedron for 

d = 3) that generates the so-called Delaunay triangulation. 

Two points x; y ∈ L will be called nearest neighbors whenever their respective Voronoi 

tiles are intersecting along a facet, namely a face of codimension 1. The pair {x, y} will be called 

an edge. In practice, though, using physical criteria instead of a geometrical one, an edge might 

be replaced by the concept of bond, to account for the fact that the atoms associates with x and y 

are strongly bound [18, 23]. The term “strongly" is defined through a convention about the 

binding energy, so as to neglect bonds between atoms weakly bound to each other. Whatever the 

definition of an edge, geometrical or physical (bonds), this gives the Delone graph G = (L, E), 

where L plays the role of the vertices and E denotes the set of edges or of bonds. At this point the 

Delone graph needs not being oriented. 

Along a graph, a path is an ordered finite set of edges, each sharing a vertex with its 

successor or with its predecessor. The number of such edges is the length of the path. The graph-

distance between two vertices is the length of the shortest paths joining them. A graph-ball 

centered at x of radius n will be the set of all vertices at graph distance at most n from x. Such 

graph balls correspond to local clusters. Two graph balls are called isomorphic if there is a one-

to-one surjective map between their set of vertices, which preserve the graph distance. As a 

result, if the atomic positions is slightly changed locally in space, the graph balls might still be 

isomorphic.  Therefore graph ball, modulo isomorphism are encoding what physicists called the 

local topology 

of the atomic configuration.  The transition between two graph balls can be described precisely 

through the concept of Pachner moves [24, 25, 27]. This concept was created by experts of 

computational geometry, to describe the deformation of manifolds via a computer. A Pachner 

moves can only occur if at least one Voronoi point becomes degenerate, namely it admits at least 

d + 2 atomic neighbor at some point during the move. Such moves correspond to a local change 

in a graph ball, namely an edge disappear another may reappear. A Pachner move corresponds 

exactly to the concept of anankeon. It can be described through using the Delaunay triangulation 

as explained in Fig. A1.  A recent simulation [52] indeed show that the average number of atoms 

involved in the saddle point (a mid-point of Pachner move) is five for d = 3. 
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(a)       (b) 

 

Figure A1.  (a) A Pachner move in the plane. (b) A Pachner move in the 3-space.  In 3D-space 

such a move involves at least five atoms moving quickly to deform the Delaunay triangulation, 

changing the nature of the Delone graph, namely the local topology. This number five has been 

seen in numerical simulations [52]. 

 

 

Appendix 3.  Derivation of eq. (16) [see [49] for full details] 

 

We assume that the atomic-level shear stress varies with time for two different ways, by phonon 

and by anankeon.  The phonon dynamics is harmonic, and for simplicity we use one local 

phonon frequency for each atom, ωEi (Einstein model).  The anankeon excitation produces local 

change in the value of ωEi  by ΔωEi.  To describe the temporal evolution of the atomic-level shear 

stress, σi
xy(t), we define X(t) = (u, v), where u = σi

xy(t) and v = du/dt.  We also define f(X) = u.  

The continuous evolution of X(t) is given by 

 ( ) ( ) ,dt
u vt dt e t v uω−+ = − = ∂ − ∂JX X J  .      (A1) 

We now consider a series of anankeon operations at time τj, (j = 0, 1, 2,…., n).  By definition 

<τn+1 − τn> = τLC.  For each anakeon excitation X makes a jump; 

 ( ) ( )0 0j j jτ τ+ = − +X X ξ  .        (A2) 

Therefore, 

 ( ) ( ) , u vf e f a bξξ ξ⋅∇+ = ⋅∇ = ∂ + ∂X X  ,      (A3) 

where ξ = (a, b).  Then, 
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 ( )( ) ( )( ) ( ) ( )( )1 1

1

0j j j j n n
n

J t J

j

f t e e e fτ τ ω ξ τ ω− −− − ⋅∇ − −

=

= ∏X X .     (A4) 

Now we break up the Laplace transform, eq. (15), into time segments of τn, 

 ( ) ( )( ) ( )( )1

0

0 n

n

t

n

LC f e f t dt
τ ς

σ τ
ς ν +

∞
−

=

= ∑ ∫X X% .     (A5) 

From eq. (A4), 

 ( ) ( )( ) ( )( ) ( ) ( )( )1 1

0 1

0 0j j j j n n
n

J t J

n j

LC f e e e fτ τ ω ξ τ ω
σ ς ν − −

∞
− − ⋅∇ − −

= =

= ∑ ∏X X% .  (A6) 

Because {τj} obeys the Poisson statistics, 

 ( )1

0

1
1

j j A s sA dse e
A

τ τ τ

τ τ
−

∞− − − −= =
+∫ .       (A7) 

where τ = <τj − τj-1 > = τLC.  This is a crucial step in this theory.  Then eq. (A6) becomes, 

 ( ) ( )( ) ( ) ( ) ( )( )
0 1 1

1 10 0
11

j
n

n j nj

LC f e f
JJ
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τ ς ωτ ς ω
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∑ ∏X X% . (A8) 

Because ξj’s and ωj’s are statistically independent, averages are, 

 
2 2Bk T me e⋅∇ ∇=jξ .         (A9) 

Defining, 
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1
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,        (A10) 

we obtain, 
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Now, using the polar coordinate 

 ( ) ( )if e fθ=X Xl
l ,         (A12)  

and choosing l = ±2 for the symmetry of shear, we find that the kernel of (A10), 1/(1+τ(ζ+ωj-

1J)), has a pole at 

 2 1
1 2 jiς ω
τ± −
⎛ ⎞= − ±⎜ ⎟
⎝ ⎠

.         (A13) 

Thus, 
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1

1 1 1
11 2 1j

a O
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ς
τςτ ς ω τς±

−

⎛ ⎞
= + ⎜ ⎟

⎜ ⎟++ ± +⎝ ⎠
 ,    (A14) 

To calculate a2(ζ) explicitly we need to know the distribution of {ωj}.  Here for simplicity we 

assume that {ωj} are distributed evenly within the range of ω±√3δ.  This assumption leads to 

eqs. (18) to (21). 

 


