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It has been shown recently that changing the fluidic properties of a drug can improve its efficacy
in ablating solid tumors. We develop a modeling framework for tumor ablation, and present the
simplest possible model for drug diffusion in a porous spherical tumor with leaky boundaries and
assuming cell death eventually leads to ablation of that cell effectively making the two quantities
numerically equivalent. The death of a cell after a given exposure time depends on both the con-
centration of the drug and the amount of oxygen available to the cell, which we assume is the same
throughout the tumor for further simplicity. It can be assumed that a minimum concentration is
required for a cell to die, effectively connecting diffusion with efficacy. The concentration threshold
decreases as exposure time increases, which allows us to compute dose-response curves. Further-
more, these curves can be plotted at much finer time intervals compared to that of experiments,
which may possibly be used to produce a dose-threshold-response surface giving an observer a com-
plete picture of the drug’s efficacy for an individual. In addition, since the diffusion, leak coefficients,
and the availability of oxygen is different for different individuals and tumors, we produce artificial
replication data through bootstrapping to simulate error. While the usual data-driven model with
Sigmoidal curves use 12 free parameters, our mechanistic model only has two free parameters, al-
lowing it to be open to scrutiny rather than forcing agreement with data. Even so, the simplest
model in our framework, derived here, shows close agreement with the bootstrapped curves, and
reproduces well established relations, such as Haber’s rule.

I. INTRODUCTION

Historically, cancer has been treated using either
generic-global drugs or by cutting away the infected
cells via surgery. While success rates have increased,
these types of treatments tend to have unwanted
side-effects and are often quite expensive. This ne-
cessitates a new paradigm for cancer treatment. In
recent years there has been a shift towards develop-
ing individualized and targeted drug therapy [1, 2].
However, there are still many technical and finan-
cial hurdles [3] to overcome before truly personalized
medicine can be implemented in real-life situations.
In an effort to alleviate these hurdles, data analy-
sis techniques with statistical models have been em-
ployed [4]. With enough accurate data these models
are able to make remarkable predictions, however
one cannot expect the patient specific data to al-
ways be available and accurate. Furthermore, the
mechanisms driving the phenomena are not cap-
tured in these statistical models. A reliable mech-
anistic modeling framework may alleviate the fi-
nancial hurdles by simulating various treatment op-
tions, based on the physical rather than statistical
properties of a patient’s tumor, before administering
drugs. While data analysis has yielded promising re-
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sults and should still be employed whenever possible,
mechanistic models serve as another weapon in the
fight against cancer.

In the seminal work of Sugiura et al. [5] it was
shown that ethanol can successfully deteriorate ma-
lignant tissue. In fact, Ryu et al. [6] showed a
comparable survival rate to surgery in a statistical
survey of hepatocellular carcinoma patients treated
with ethanol injections. As with any type of treat-
ment, safety supersedes efficacy. An early work on
the safety of injecting ethanol into parathyroid tu-
mors was conducted by Solbiati et al. [7]. For the
past decade there have been numerous studies on the
safety and efficacy of ethanol ablation for different
types of tumors [8–12]. Some major drawbacks of
the technique include the need for multiphase treat-
ments, large amounts of fluid, and the rapid escape
of ethanol in non-capsulated tumors [13]. Tradition-
ally these drawbacks were greater for larger tumors,
but more recently it has been shown by Kuang et
al. [11] that a single-session high-dose ethanol injec-
tion can ablate hepatocellular carcinoma tumors of
diameters up to 5 cm.

Recently, Morhard et al. [13] developed a new
method employing ethyl cellulose for which single-
phase small-volume treatments suffice to trigger ab-
lation. Their goal is to maximize distribution of the
ethanol throughout the tumor while minimizing the
necessary solution volume. In essence, by changing
the viscosity of the drug mixture, and hence its rate
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of diffusion, they are able to increase efficacy and
decrease toxicity – the goal of cancer treatments.
While this type of optimization of fluidic properties
has only been used with ethanol injections, one may
see the potential of using it for other drugs as well.
After all, there is a wide variety of drug injection
therapies [14–16].

Although it may seem obvious that drug transport
occurs as a diffusive process, it is still worth noting
that there is an abundance of drug diffusion models.
Recent review articles have discussed diffusion-based
models of drug distribution from the blood stream
into solid tumors [17, 18]. In [18], Kim et al. ad-
vocate integrating mechanistic models with clinical
data to improve understanding and prediction. In
addition, quite sophisticated transport models have
been developed for penetration into a solid tumor
[19–21]. However, it is evident that drug distribution
from an internal injection has not been investigated
mathematically. Further, it is often the case that
mathematical models describe either drug transport
or cell death, but seldom both. In this work we
endeavor to build a new modeling framework for in-
jected drug distribution in solid tumors and its effect
on tumor cell death, which we hope will facilitate in-
dividualized treatment. This is done by producing
the simplest possible model in this framework, and
laying bare the simplifying assumptions in order to
open it to scrutiny and improvement.

The remainder of the paper is organized as follows:
we start by discussing the modeling procedure, the
focus of the article, in Sec. II and III. Section II
contains the diffusion model for drug distribution,
and Sec. III relates the concentration profile from
diffusion to cell death. While the analytical solu-
tions to the diffusion equation would generally be
a linear combination of Bessel functions, since our
initial condition is not a Bessel function a numerical
code would be required to match the coefficients of
the Bessel functions. Instead we use finite difference
methods in Sec. IV to numerically solve the equa-
tion from the start, and using this solution for the
concentration profile the cell death is computed. In
Sec. V we compare our dose-response curves with
data points from experiments different from that of
Morhard et al. [13] since they did not include dose-
response curves in their article. Furthermore, using
a different experiment shows the robustness of this
type of modeling. Finally, we conclude with a dis-
cussion about applying our modeling framework to
individualized treatment in Sec. VI.

II. RADIALLY SYMMETRIC
CONCENTRATION DIFFUSION MODEL

In this section we derive the simplest possible
model for drug diffusion in a tumor with leaky
boundaries where injection occurs at a much faster
timescale than diffusion. First, let us assume a
spherical tumor with constant density. The drug
concentration is given as the ratio of the volume of
the drug to that of the tumor. Since this is a diffusive
process the initial condition is taken as a compact
Gaussian. Then the leak at the boundary is modeled
as “Newton’s law of cooling”[22]. Finally, we nondi-
mensionalize the equation and conditions to further
simplify the model.

Consider the radially symmetric diffusion equa-
tion in spherical coordinates with constant diffusiv-
ity

∂u

∂t
= D

(
∂2u

∂r2
+

2

r

∂u

∂r

)
(1)

where u is the concentration of the drug and D is
assumed to be the constant effective diffusivity of
transport through porous media, which is inversely
proportional to the viscosity of the drug mixture.
Since we are injecting a volume into the center of
the tumor and the diffusive timescale is fast, it is
reasonable to assume an initial compact Gaussian
distribution (i.e., a bump function) where the tail
just reaches the boundary

u(r, t = 0) =
V0
Vb

{
exp

(
1− R2

R2−r2

)
for r < R,

0 for r ≥ R;

(2)
where R is the tumor radius, V0 is the ratio of the
injected drug volume to the tumor volume, and Vb is
the volume of the bump function in spherical coor-
dinates used for the purpose of normalization; that
is,

Vb =

∫ π

0

∫ 2π

0

∫ R

0

exp

(
1− R2

R2 − r2

)
drdθdφ

The generic bump function takes the 1-dimensional
shape shown in Fig. 1, and by radial symmetry this
can be extended to 3-dimensions. At the boundary
we know the drug leaks due to the porosity of the
tumor. However, diffusion in the tumor is different
from diffusion outside of the tumor. In fact, the
tumor is far denser than healthy cells, and therefore
will hold onto the drug and let it accumulate as it
leaks at a much slower rate. We assume the drugs
start leaking at the boundary of the tumor according
to “Newton’s law of cooling”[22],

D
∂u

∂r

∣∣∣∣
r=R

= −γu(r = R, t), (3)
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FIG. 1. A generic bump function with normalized height.

where γ is the leak coefficient.

A. Nondimensionalization

In order to simplify the model and reduce the
number of parameters into only the essential rela-
tions we nondimensionalize the problem. The con-
centration u (ratio of drug volume to tumor cell vol-
ume) is by definition nondimensional. Therefore, we
need only do a change of variables on t and r. Let
r̂ = r/R and t̂ = t/τ , which gives us the derivatives

∂

∂t
=

1

τ

∂

∂t̂
;

∂

∂r
=

1

R

∂

∂r̂
⇒ ∂2

∂r2
=

1

R2

∂2

∂r̂2
.

Then our PDE becomes

∂u

∂t
=
Dτ

R2

(
∂2u

∂r2
+

2

r

∂u

∂r

)
,

where τ = R2/D is the diffusive time-scale, which
is directly proportional to the viscosity of the fluid
mixture. Our initial condition becomes

u(r̂, t = 0) =
V̂0

V̂b

{
exp

(
1− R2

R2−r̂2R2

)
for r̂ < R/R,

0 for r̂ ≥ R/R;

=
V̂0

V̂b

{
exp

(
1− 1

1−r̂2

)
for r̂ < 1,

0 for r̂ ≥ 1;

where V̂0 is the injected nondimensional volume and
V̂b is the volume of the nondimensional bump func-
tion. Furthermore, the boundary condition becomes

D

R

∂u

∂r

∣∣∣∣
r̂=1

= −γu(r̂ = 1, t)

⇒ ∂u

∂r

∣∣∣∣
r̂=1

= −Rγ
D
u(r̂ = 1, t) = −εu(r̂ = 1, t),

where ε = Rγ/D is the nondimensional leak coeffi-
cient, which is directly proportional to the viscosity
of the drug mixture.

Removing the hats gives us the full nondimen-
sional problem

∂u

∂t
=
∂2u

∂r2
+

2

r

∂u

∂r
; (4a)

∂u

∂r

∣∣∣∣
r=1

= −εu(r = 1, t); (4b)

u(r, 0) =
V0
Vb

{
exp

(
1− 1

1−r2

)
for r < 1,

0 for r ≥ 1;
(4c)

III. RELATING CONCENTRATION TO
CELL DEATH

Once we have a model for drug distribution, we
may use it to analyze cell death. In biological ex-
periments this is done through dose-response curves
(amount of drug administered vs percent cell death
at a specific time after administration) [23, 24]. The
dose-response is recorded by measuring the effect of
a drug at various doses. A mathematical model al-
lows us to do the same, but for far more finely spaced
doses and exposure times, thereby allowing an ob-
server to find an optimal treatment strategy for a
specific individual.

It should be noted that diffusion happens on a
very fast timescale, on the order of seconds, in con-
trast to the exposure timescale, which is on the order
of days. Diffusion provides the amount of exposure
the tumor has to the drug, which then triggers the
mechanism for cell death (e.g. apoptosis) [25]. If the
concentration of a drug in a certain region of the tu-
mor is high enough to trigger cell death, most of the
cells in that region will most likely die after some
exposure time η, but often this is not instantaneous
and may take days.

While varying oxygen levels are a concern [26–
29], as a first approximation and “proof of concept”
model, we assume that the oxygen concentration
throughout the tumor is constant for a given time.
Therefore, the same amount of drug will kill a tumor
cell no matter where in the tumor it is. We define a
drug concentration threshold that is required to kill
a cell for a given time, which is dependent on dose
strength.

Definition 1. The minimum concentration uT (η, d)
required to kill one cell after an exposure time η
hours at a given dose d is said to be the concen-
tration threshold of the tumor at time η.
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Variable oxygen availability may be implemented
by prescribing a threshold uT with radial depen-
dence in addition to temporal and dose dependence,
which is the focus of a future study.

Now we must relate the threshold uT to time at a
given dosage explicitly in order to compare against
experimental data. Since log time is often used
for time-response curves and time-dose-response sur-
faces, we assume the threshold to be related to
time in a negative exponential manner, uT (η, d) =
uT (η) = a − b exp(−cη). Employing the three most
used time points in oncology, η = 24, 48, 72 hours,
we solve for the constants at a fixed initial concen-
tration to get

uT (η) = a− be−cη;

a =
uT (24)uT (72)− uT (48)2

uT (24) + uT (72)− 2uT (48)
;

b =
(a− uT (24))2

a− uT (48)
;

c =
1

24
ln

(
a− uT (24)

a− uT (48)

)
.

(5)

The plot of (5) is shown in Fig. 2. To produce Fig.
2, we use the specific data set in Sec. V, but this
can be done in general by using three dose points at
a given time. Once the three dose points are identi-
fied we numerically approximate the threshold uT re-
quired for the model to match the response given as
apoptosis fraction at the experimental dose points,
which is accomplished by simply varying uT until an
error of 0.01 is reached between the numerical and
experimental apoptosis fraction.

FIG. 2. Relation between time and concentration thresh-
old from (5) for a ≈ 0.0471, b = −1.4629, and c = 0.0866.

This allows us to produce dose-response curves at
those three threshold values; i.e. curves that go
through those data points. Then the other data
points are plotted at appropriate concentrations.

FIG. 3. The relation between initial injected volume of
the drug and the toxicity of the drug as defined in (6).

In addition to tumor cell death, most drugs also
kill healthy cells, which contributes to toxicity.
While the current format does not handle toxicity
as the leakage equation (3) assumes the drug leaks
into a vacuum. However, in real life the drug would
leak into healthy cells that have completely different
physical properties from tumor cells. This would
require analyzing what is effectively two-phase dif-
fusion, which is the subject of a future work. Re-
gardless, one näıve approach to handling toxicity
as a function of injected volume is to define it as
the maximum distance at the boundary between the
concentration profile of the drug u(η, r = 1), and a
prescribed toxicity threshold utoxicity. That is,

Toxicity(V0) := max(u(η, r = 1)− utoxicity), (6)

whenever u(η, r = 1) > utoxicity, and zero otherwise.
Again, since the drug is leaking into a vacuum, the
leakage is a linear process, and hence we expect tox-
icity to be linear with V0 as shown in Fig. 3

IV. NUMERICAL SIMULATION OF
SINGLE-TIME DOSE-RESPONSE CURVE

In order to simulate the dose-response curves one
must first solve (4). Since our problem is radially
symmetric, we may solve it on the spacial domain
r ∈ [0, 1] by adding an additional “boundary” con-
dition at the origin, namely ∂

∂ru(0, t) = 0. Although
a Bessel function solution can be found, matching it
with the initial conditions in the model would not
yield analytical solutions, and it would be necessary
to solve the integrals from the inner products nu-
merically. Therefore, we implement finite difference
schemes to solve (4) instead of solving for the con-
stants in the Bessel function solution.
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We compare the solutions from three stencils: For-
wards in Time Centered in Space (FTCS), Back-
wards in Time Centered in Space (BTCS), and
Crank-Nicolson. For diffusion problems, Crank-
Nicolson is often used, however diffusion is only the
base of our model, and we often need to run diffusion
105 to 108 times for one plot, which renders Crank-
Nicolson inefficient. This application requires a fast,
accurate, and stable solver. FTCS is certainly fast,
but it is at the mercy of the CFL condition [30]; i.e.,
we require ∆t/(∆x)2 ≤ 1/2. For the videos illustrat-
ing the scheme we do not need high accuracy, but we
do need a fast scheme for high spatial resolution, so
FTCS is employed. To produce the dose-response
curves in Sec. V we employ BTCS since it is not
much slower than FTCS and almost as accurate as
Crank-Nicolson. This way we get high temporal res-
olution, which has the added benefit of providing ac-
curate dose-response curves, without sacrificing sta-
bility.

Once a solution for u from the finite difference
schemes is obtained, the dose-response curves can be
plotted. As outlined in Sec. III, in biological exper-
iments the dose-response is recorded by measuring
the effect of a drug at various doses. In our model we
implement a threshold uT defined as the drug con-
centration required to kill a single cell. When the
concentration u is above this threshold on some in-

terval r ∈ [0, rdeath], we may calculate the volume of
tumor death, which we assume eventually ablates.
Dividing this volume by the total nondimensional
volume of 4π/3 outputs the fraction of dead tumor
cells, namely

Pdead :=
Vol. Dead

Total Vol.
=

4πr3death/3

4π(r = 1)3/3
= r3death. (7)

This is demonstrated in Fig. 4. Where the concen-
tration profile (blue curve) intersects the threshold
uT (η, d) is the radius of cells killed after exposure
time η, which we denoted as rdeath.

There are three possible cases for the percent of
the tumor that is killed, and hence eventually ab-
lated, at an exposure time of η: no ablation, partial
ablation, and full ablation. These are shown in Figs.
5-8.

In Fig. 5, the initial volume is so low that the
height of the bump function does not exceed the
threshold. This provides an opportunity to calculate
the least effective dose at a given exposure time; i.e.
when the height of the bump function is equivalent
to the threshold (illustrated in Fig. 6a). Notice
that the height of the bump function (4c) at the
center r = 0 is V0/Vb, where V0 is the initial volume
scaled as a fraction of the tumor volume and Vb is
the volume of the bump function. If we let the height
be uT then the least effective dose is

uLED = uT · Vb = uT
1

4π/3

∫ π

0

sinφdφ

∫ 2π

0

dθ

∫ 1

0

exp

(
1− 1

1− r2

)
r2dr

= 3uT

∫ 1

0

exp

(
1− 1

1− r2

)
r2dr = 3

(
a− be−cη

) ∫ 1

0

exp

(
1− 1

1− r2

)
r2dr. (8)

From this analytical formula we may plot the least
effective dose as a function of exposure time in Fig.

6b. Furthermore, we observe that the steady-state
least effective does is given by

u∗LED = u∗ · Vb = 3 · a · Vb =
3(uT (24)uT (72)− uT (48)2)

uT (24) + uT (72)− 2uT (48)

∫ 1

0

e

(
1− 1

1−r2

)
r2dr. (9)

Figure 7 shows the death of a fraction of the tumor
cells, and hence, by our initial assumption, partial
ablation. An exaggerated initial condition (Fig. 7a)
is used to illustrate the diffusion of the drug. In or-
der to present a profile similar to that of (4c) (Fig.
7b), we let the volume diffuse until the concentration
at the boundary is above a small, but appreciable,

amount of u = 0.01. This is due to the discrepancy
between diffusion in real life, which happens in fi-
nite time, and mathematical diffusion, which occurs
infinitely fast. After a maximum radius of death is
attained (Fig. 7c), the percent cell death is calcu-
lated using the volume filled at this radius. After
this maximum, the drug leaks out (Fig. 7d) and
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FIG. 4. Hypothetical concentration profile used to
demonstrate percent tumor death calculation. The blue
(solid) curve represents the concentration profile of the
drug, and the red (dashed) line represents the concentra-
tion threshold required to kill a cell. The radius rdeath
is taken at the intersection of the two curves and is used
to calculate the percent volume and hence percent cell
death.

FIG. 5. No ablation occurs, at time η, when the height
of the initial profile is lower than the threshold uT . This
leads to an explicit formula for least effective dose shown
in (8).

eventually contributes to toxicity, which is left for a
future study.

Finally, Fig. 8 shows complete tumor death for a
threshold uT at an exposure time η. As in Fig. 7,
an exaggerated initial condition (Fig. 8a) is used,
and later a snapshot of a profile similar to (4c) (Fig.
8b) is shown. Since the concentration in the entire
tumor exceeds the threshold, the entire tumor dies
after a time η.

Eventually all of the drug leaks out, but for the
full ablation case the toxicity would be higher than
with partial ablation. Then we have a balancing act
between efficacy and toxicity. We may calculate the
smallest dose required to kill the entire tumor at an
exposure time η using the threshold uT . Since the
diffusion and leak are linear, we would expect the

(a)

(b)

FIG. 6. Least effective dose. (a) A sample profile illus-
trating the least effective dose. (b) A sample relation-
ship between the exposure time η and the least effective
dose uLED. The blue (solid) curve represents (8) and the
stars mark the least effective doses for η = 24, 48, 72,
and 96 hours.

relation between the threshold and smallest dose to
be linear as well, which is precisely what we observe.
If we let Γi be the smallest dose required to kill the
tumor after a time ηi we get the following relation
between the ratios of the smallest dose and the re-
spective threshold

Γi
Γj

=
uT (ηi)

uT (ηj)
. (10)

Since uT → u∗ as T →∞, we may define an optimal
steady-state dose as the smallest dose required to
kill the tumor assuming we wait infinitely long and
the tumor growth is completely inhibited. By this
definition we notice that we may calculate Γ for any
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(a) (b)

(c) (d)

FIG. 7. Partial ablation at an exposure time η. The left column represents the diffusion viewed as a projection
onto R2. The right column represents the concentration profile (blue solid curve) compared to the threshold (red
dashed line). An exaggerated initial condition was used in order to illustrate the diffusion of the drug in (a), but
the initial condition from the model (4) is more like the profile in (b). (a) Exaggerated initial condition to illustrate
the diffusion of the drug. (b) Profile similar to that used for the initial condition in (4c). (c) Maximum radius of
effective concentration is attained. (d) The drug eventually leaks out contributing to toxicity. See ref. [31] for the
corresponding animation.

time η

Γ

Γ∗
=
uT
u∗

⇒ Γ =
Γ∗
u∗
uT =

[
a− be−cη

] Γ∗
u∗
, (11)

which is precisely the modified Haber’s rule [33] be-
cause Γ∗/u∗ is constant. In addition, we may fix a
threshold uT , and observe how the optimal dose for
that threshold varies with the nondimensional leak
coefficient ε, which we recall is directly proportional
to the viscosity of the drug mixture. We may calcu-
late the “optimal dose” for different leak coefficients,
which represents different tumors and drugs, by us-
ing a bisection method as the leak coefficient ε is
varied. We observe in Fig. 9 that this relation, rep-
resented by the blue curve, is not linear although
it may seem linear without the presence of the red
dashed line from the lowest to the highest point of
the blue curve in that plot.

V. COMPARISON WITH CLINICAL DATA

While there was no data on the rate of cell death
in the study by Morhard et al. [13] because it fo-
cused on tumor shrinkage, we may use other clini-
cal/experimental data sets to show qualitative agree-

ment. This would indicate the modeling framework
is reasonable, and then the models may be modified
for different applications. In this light, a “proof of
concept” comparison is made between the model and
a sample data set obtained from the LINCS database
(http://lincs.hms.harvard.edu/db/) which, among
other things, offers cellular responses to chemical
and genetic pertubations [34]. In this article we
consider apoptosis fraction as the cellular response
observed under different dosage of different com-
pounds. So, our experimental data consists of a set
of dose-response pairs observed for several cell-lines
and compounds at 24, 48 and 72 hours.

Since the experiments are so different and don’t
report all the necessary physical properties, calibra-
tion between the two types of dosage and the model
is necessary. The Morhard et al. [13] experiments
vary the injection volume (as a percentage of tumor
volume), and the LINCS database [34] varies the mo-
larity. Morhard et al. also run the experiments for a
variety of viscosities, but the LINCS database does
not include information about the fluidic properties
of the drug. As we wish to have as few free parame-
ters as possible, let us keep the viscosity, and hence
the leak coefficient constant. Then we simulate dose
as an injected volume in Sec. V A and molarity in
Sec. V B.
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(a)

(b)

(c)

FIG. 8. Full ablation at exposure time η. The left col-
umn represents the diffusion viewed as a projection onto
R2. The right column represents the concentration pro-
file (blue solid curve) compared to the threshold (red
dashed line). (a) An exaggerated initial condition was
used in order to illustrate the diffusion of the drug in
(a), but the initial condition from the model (4) is more
like the profile in (b). (a) Exaggerated initial condition
to illustrate the diffusion of the drug. (b) Profile similar
to that used for the initial condition in (4c). (c) Full
ablation is attained, but just as in Fig. 7, the remainder
of the drug will leak out and contribute to toxicity. See
ref. [32] for the corresponding animation.

A. Simulating dose as injected volume

In the experiments of Morhard et al. [13], for a
given viscosity, the volume of the solution is varied.
Since no information is given about the molarity in
the Morhard et al. experiments and no information
about the volume is given in the LINCS data [34], we
need to assume a correlation between molarity and
volume. In order to simulate dose as injected vol-
ume we match the 1µM dose from the LINCS data
[34] with an injected volume of 1/12 tumor volume.
By employing (5) we find the concentration thresh-
olds at the three time points for this initial injected

FIG. 9. Relationship between the optimal dose Γ for
a given threshold uT = 0.25 and the leak coefficient ε.
The blue (solid) curve represents the optimal dose at the
given threshold, and the red (dashed) curve represents a
straight line from the lowest point of the blue curve to the
highest demonstrating the nonlinearity of the optimal
dose curve.

volume. Furthermore, we match two other doses by
varying the initial volume until the distance between
two out of the three time points is minimized. We
choose to match two time points since it is evident
that the data set is quite noisy and it has outliers
that do not obey the Hill equation [23]. One concern
may be the nonuniformity of the initial volume - dose
relation, but this is to be expected since the relation
is dependent on the tumor size and concentration of
the drug in the solution. The dose-response curves
from the model and the observed data points are
shown in Fig. 10.

In this section, using a leak coefficient of ε = 5, we
illustrate the performance of the model for cell line
“C32” and drug “Selumetinib” (the performance for
the remaining cell lines are illustrated in Appendix
A). Since the data is quite noisy for low doses a trun-
cated data set, shown in Table I, is much more reli-
able for comparisons with the model. The responses
for a dose of 1µM from the pair is matched with 1/12
tumor volume from the model. Equation 5 gives us
the relation between the three time points (24, 48,
and 72 hours) and the thresholds (uT (24), uT (48),
and uT (72)). These thresholds are then used to pro-
duce the simulated dose-response curves in Fig. 10.
The data from the 1µM dose will match up exactly
with the curves. In order to match the data from the
0.316µM and 3.16µM doses with the respective ini-
tial concentration in the model we identify the con-
centration for which the difference between the re-
sponse in the data and the model of two time points
is minimized. For example, in Fig. 10, the 0.316µM
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TABLE I. Truncated data set for cell line “C32” with drug “Selumetinib”

Dose (micromole) Time (hours) Response (apoptosis fraction)

0.316
24 0.2148
48 0.262
72 0.4026

1.000
24 0.2365
48 0.5982
72 0.7591

3.160
24 0.2716
48 0.8303
72 0.8621

FIG. 10. Simulated dose-response curves for cell line
“C32” and drug “Selumetinib” compared to experimen-
tal data points (stars). The blue curves and markers are
at 24 hours (bottom), red is 48 hours (middle), and black
is 72 hours (top). Molarities from the LINCS data [34]
have been converted to initial volumes.

dose corresponds to an initial concentration of ap-
proximately 1/20 of the tumor volume since the 72
hour and 48 hour time points are closest to the curve
at that dose, and similarly the 3.16µM corresponds
to approximately 7/50 of the tumor volume since the
72 hour and 24 hour time points are closest. Since
72 hours is near the steady state of this process, the
curves often match the data at that time point. For
the 24 and 48 hour time points, the data becomes
quite noisy with outliers and responses that would
not be possible to achieve, indicating possibly large
errors. If the distance between all three points were
minimized, these outliers would have a stronger ef-
fect.

Besides the foregoing three dose points we assume
that at a dose of zero the response should be around
zero. Once we match the original concentration lev-
els with the tumor volumes, we empirically fit a sig-
moidal curve to the experimental dose-response data
observed at 72 hours. The empirical model is given

by

Apoptosis fraction = a+
∆

1 +
(

δ
concentration

)θ (12)

where a is the lower asymptote of the response curve,
∆ is the range of response, δ is typically interpreted
as EC50 and θ is the Hill coefficient. The param-
eters of the Hill equation (12) are estimated using
a non-linear least squares fit. We then generate
50 replicates from the fitted sigmoid curve using a
parametric bootstrap procedure with errors drawn
from a Gaussian process with an exponential corre-
lation function. The noise variance is comparable to
the residual variance obtained from the least square
fit (12) and the range parameter is chosen to en-
sure smoothness and monotonicity of each replicate.
Figure 11 shows 50 bootstrap replicates for cell line
“C32” and drug “Selumetinib”. It should be noted
that molarities from the LINCS data [34] have been
converted to initial volumes.

FIG. 11. Fifty sigmoidal curves, defined as (12), fitting
the empirical data, which is given a Gaussian spread to
simulate error at each dose point, for cell line “C32”
and drug “Selumetinib” at 72 hours of exposure time.
Molarities from the LINCS data [34] have been converted
to initial volumes.

From these bootstrap replicates of sigmoidal
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curves we compute the point-wise 95% confidence
intervals at each matched dose, then join them into
a piece-wise linear approximate confidence band. An
example of this is shown in Fig. 12 for the forego-
ing illustrative case. The dose-response curve pro-
duced by our model is represented as the black curve,
and the point-wise empirical quantiles are connected
by the piece-wise linear dashed curves. Observe
that the curve produced by our model is contained
within the 95% pointwise confidence interval, indi-
cating statistical adequacy of the the deterministic
model. The remainder of the data pairs are relegated
to Appendix B.

FIG. 12. Theoretical dose-response curve for cell line
“C32” and drug “Selumetinib” within a 95% confidence
band at 72 hours of exposure time. The black (solid)
curve represents the dose-response from the model. The
blue (bottom) and red (top) dashed lines represent the
piece-wise linear curve connecting the lower and upper
quantiles of each of the 95% confidence intervals. Molar-
ities from the LINCS data [34] have been converted to
initial volumes.

We would like to point out that since we are com-
puting pointwise confidence intervals, there could be
situations where for some dose levels our model out-
put lies outside the 95% confidence interval com-
puted at those doses. Rare occurrences (less than
5% of the times) of such instances do not necessarily
indicate statistical inadequacy of the posited model.
However, frequent occurrences of such events (more
than 10% of the times) would indicate statistical in-
adequacy.

Given the empirical evidence that our model
is statistically adequate to generate dose-response
curves from experimental data, we proceed to com-
pute the theoretical EC50s in terms of initial vol-
umes for this dataset. The model is cut off at
the maximum empirical response, and the EC50s,
by definition, are computed as the dose to achieve
half that response. We use a bisection scheme sim-
ilar to that of the optimal dose. EC50s are then

approximated within a maximum response error of
|uapprox−u(EC50)| < 0.0025. The spatial resolution
of the diffusion scheme will limit the error bound, so
this must be chosen to be equivalent or less than the
desired error. Table II shows the theoretical EC50s
and the associated errors.

B. Simulating dose as molarity

In contrast to the previous section, we may also
produce dose response curves for the molarity as op-
posed to the injected volume by making the assump-
tion that the amount of solution required to kill a
cell decreases as molarity increases. In other words,
if we increase molarity we lower the concentration
threshold. To calibrate this from the LINCS data
set [34], reliable data at a particular time point is
necessary, which for most drugs will be that of 72
hours. For that time point the required threshold
to match the data at three doses, uT (η = 72, d1),
uT (η = 72, d2), uT (η = 72, d3), can then be numeri-
cally approximated. It is assumed that the threshold
will obey the Hill equation [23],

uT (η = 72, d) = u∞ +
h− u∞

1 + (σ/d)θ
, (13)

where d is the dose and h is the height of the pro-
file of the initial condition (4c). The three free pa-
rameters to be fitted using the three dose points
uT (η = 72, di) are u∞, which is the lower asymp-
tote for the threshold as d → ∞, σ, and θ. The
lower asymptote, u∞, is approximated by first as-
suming u∞ = uT (η = 72, d = 3.16), but if this
were the lower asymptote, u(η = 72, d = 3.16) would
never match with the data. So uT is decreased until
u(η = 72, d = 3.16) is close to the data within the
chosen error tolerance. Further, the other terms are
given by,

σ = exp

(
Fi ln dj − Fj ln di

Fi − Fj

)
,

θ =
Fj

lnσ/dj
,

Fi := ln
h− uT (η = 72, di)

uT (η = 72, di)− u∞
;

where i and j denote two of the other dose points.
The function for (13) can be computed for cell line
“C32” and drug “Selumetinib” using data from Ta-
ble I in Sec. V A, which is illustrated in Fig. 13.

As in the previous section, the performance of the
model for cell line “C32” and drug “Selumetinib”
is illustrated using data from Table I (the perfor-
mance for the remaining cell lines are illustrated
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TABLE II. Theoretical EC50s with response errors

Cell line Drug EC50 Response error

C32

SB590885 0.0562 0.0006
PLX-4720 0.0684 0.0015

AZ-628 0.0596 0.0007
Selumetinib 0.0596 0.0007
Vemurafenib 0.0840 0.0017

COLO 858

SB590885 0.1055 0.0015
PLX-4720 0.1260 0.0005

AZ-628 0.0830 0.0019
Selumetinib 0.1035 0.0014

RVH-421
AZ-628 0.1191 0.0013

Selumetinib 0.1221 0.0002

WM-115
SB590885 0.1074 0.0021
AZ-628 0.0664 0.0008

M27-mel

SB590885 0.1191 0.0024
PLX-4720 0.0664 0.0008

AZ-628 0.0908 0.0003
Selumetinib 0.1006 0.0007
Vemurafenib 0.1230 0.0023

FIG. 13. Relation between dose and concentration
threshold from (13) for parameter values u∞ = 0.045,
σ = 0.1689, and θ = −2.0476.

in Appendix A). The 72 hour time point produces
the parameter values u∞ = 0.045, σ = 0.1689, and
θ = −2.0476. The dose-response curves may then be
produced by using (13) for the 72 hour time point
threshold values and multiplying it by the ratio of
the other thresholds to the 72 hour threshold at the
1µM dose point from (5); that is,

uT (η, d) = uT (η = 72, d)
uT (η, d = 1)

uT (η = 72, d = 1)
. (14)

The aforementioned dose-response curves are pre-
sented in Fig. 14.

Since the dosage has been changed from volume
to molarity the sigmoidal curves will also be slightly
different from those in Fig. 11. Using (12) we repro-

FIG. 14. Simulated dose-response curves for cell line
“C32” and drug “Selumetinib” compared to experimen-
tal data points (stars). The blue curves and markers are
at 24 hours (bottom), red is 48 hours (middle), and black
is 72 hours (top).

duce the fifty sigmoidal curves with Gaussian spread
using molarities for the dosage for cell line “C32” and
drug “Selumetinib” in Fig. 15.

Further, as was done in Sec. V A, we produce 95%
confidence intervals at each relevant dose point from
the sigmoidal curves of Fig. 15. These intervals are
then connected in a piece-wise linear manner to pro-
duce approximate 95% confidence bands, which have
less variance than a true 95% confidence band. Ob-
serve that in Fig. 16 the dose-response curve for cell
line “C32” and drug “Selumetinib” from the model
(in black) is contained within the confidence band
(dashed blue and red lines). The curves for the re-
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FIG. 15. Fifty sigmoidal curves, defined as (12), fitting
the empirical data, which is given a Gaussian spread to
simulate error at each dose point, for cell line “C32” and
drug “Selumetinib” at 72 hours of exposure time.

maining cell line and drug pairs are relegated to Ap-
pendix B.

FIG. 16. Theoretical dose-response curve for cell line
“C32” and drug “Selumetinib” within a 95% confidence
band at 72 hours of exposure time. The black (solid)
curve represents the dose-response from the model. The
blue (bottom) and red (top) dashed lines represent the
piece-wise linear curve connecting the lower and upper
quantiles of each of the 95% confidence intervals.

In Sec. V A the EC50s were numerically approx-
imated from the model due to the use of initial in-
jected volumes of the drug as the initial condition.
However, in this section we keep molarity for the
dosage, and hence the EC50s can simply be approx-
imated from the data directly without having to in-
voke the model.

C. Dose-threshold-response surface

While a dose-response curve may be easily fit to
the empirical data, a reliable dose-time-response sur-
face is much more difficult due to how noisy the data
is. With a mechanistic model we get a full dose-
threshold-response surface (Fig. 17) for a partic-
ular nondimensional leak coefficient (dependent on
the density of the tumor and fluidic properties of
the drug), which can be turned into an individual’s
dose-time-response surface by using (5) in Sec. III
to relate the threshold to time.

We observe that the surface in Fig. 17 is quali-
tatively similar to that of Miller et al. [33], where
they fit empirical data to Haber’s rule. This further
solidifies the agreement between our new model and
previous studies.

FIG. 17. Simulated dose-threshold-response surface for
a specific nondimensional leak coefficient, which is de-
pendent on an individual tumor density and viscosity of
the drug mixture. This can be converted into a dose-
time-response surface by calibrating the time-threshold
relation, (5) in Sec. III, for each cell line and drug.

VI. CONCLUSION

Cancer treatments have come a long way in terms
of their increased efficacy and reduced toxicity. How-
ever, it is still very much a “trial and error” process.
Since individuals contain such a variety of biological
properties, and in fact separate tumors in the same
individual are also quite different, we need to de-
velop better individualized treatments. While there
is an abundance of statistical models [4], there are
few mechanistic models detailing the distribution of
drugs inside a tumor leading to tumor cell death.
There has been recent work on transport models for
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drugs into solid tumors [17–21], but there are no
models in the literature that describe the diffusion
from an injection into a solid tumor causing it to
ablate.

In this investigation we developed a radially sym-
metric concentration diffusion model in a solid
porous spherical tumor with leaky boundaries in Sec.
II, which is then nondimensionalized to absorb the
constants (radius, diffusivity, leak coefficient) into
the nondimensional leak coefficient, effectively mak-
ing it a one parameter model. Then in Sec. III, the
concentration from the diffusion model is related to
cell death assuming a fixed constant concentration
required to kill a cell after an exposure time η, which
we call the concentration threshold, uT . Three time
points for a cell line, at a specific initial dose, are
used to relate the threshold to time using (5). Nu-
merical simulations used to produce dose-response
curves are described in Sec. IV, and the curves
themselves are illustrated in Sec. V, where they
are tested against empirical data from the LINCS
database [34].

While [13] did not include dose-response curves in
their study, we use a different empirical data set to
show qualitative agreement and use it as a “proof of
concept” comparison. The comparison with a com-
pletely different data set solidifies the argument that
this is a modeling framework that can be applied
to other experiments and not just a model for the
Morhard et al. experiments [13]. In applications the
nondimensional leak coefficient would be found em-
pirically from the individual tumor’s porosity, den-
sity, and tortuosity, and the drug mixture’s viscosity.
We envision that the effective diffusivity and dimen-
sional leak coefficient may be empirically calculated
by using a nontoxic fluid with the desired viscosity,
effectively bypassing the need to directly analyze the
tumor’s physical properties. Then the model can be
used to simulate the affect of the drug at varying
viscosity for that individual. In this study, due to
the lack of availability of such information, we fix the

nondimensional leak coefficient and approximate the
thresholds necessary to match three dose points at
a particular exposure time. This function for the
threshold is then used to produce the curves at all
other exposure times. Since this can theoretically
be done at all exposure times, if an individual tu-
mor/drug combination’s nondimensional leak coeffi-
cient is known, a dose-time-response surface can be
created.

It is true that, due to its simplicity, the model pre-
sented here misses some of the behavior associated
with the diffusion of a drug leading to cell death.
Critics may even suggest that it is näıve. It is com-
pletely legitimate to call into question the assump-
tion that the tumor is a uniformly dense sphere (i.e.,
constant diffusivity and radial symmetry). One may
also point to the use of a constant (in space, but
not in time) concentration threshold for the death
of a tumor cell since oxygen availability varies in the
tumor [26–29]. However, scrutiny is precisely what
we seek because this will lead to more sophisticated
models, but these will still be in the framework of
drug diffusion inside a solid tumor leading to tumor
cell death, and eventually ablation. We shall en-
deavor to develop more models in this framework,
and we hope that other researchers will as well.
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Appendix A: Dose-response curves

Here we present the remainder of the dose-
response plots from Sec. V A and Sec. V B.

For each of the curves in Fig. 18, an initial dose of
1µM is mapped to an initial concentration of 1/12
tumor volume. Equation 5 gives us the relation be-
tween the three time points (24, 48, and 72 hours)
and the thresholds (uT (24), uT (48), and uT (72)).
These thresholds are then used to produce the sim-
ulated dose-response curves in Fig. 18. Then the
two other initial doses are matched by varying the
dose until a minimum distance between two of the
time points and the curves is achieved. We choose
to match two time points since it is evident that the
data set is quite noisy and it has outliers that do not
obey the Hill equation [23].

In Fig. 19, the dose from the LINCS data [34] is
kept as is. The dose-response curves may then be
produced by using (13) for the 72 hour time point
data values and multiplying it by the ratio of the
other responses to the 72 hour response at the 1µM
dose point from (5).

Appendix B: Confidence bands

In this appendix, we present the remainder of the
confidence band plots from Sec. V A and Sec. V B.

For each of the curves in Fig. 20, an initial dose of
1µM is mapped to an initial concentration of 1/12
tumor volume. Equation 5 gives us the relation be-

tween the three time points (24, 48, and 72 hours)
and the thresholds (uT (24), uT (48), and uT (72)).
Then three other initial doses are matched by vary-
ing the dose until a minimum distance between the
72 hour time point and the curves is achieved. We
choose to study the 72 hour time points since the
least amount of noise is observed at this exposure
time and therefore more closely matches the Hill
equation [23].

In Fig. 21, the dose from the LINCS data [34] is
kept as is. The dose-response curves may then be
produced by using (13) for the 72 hour time point
data values.

For both figures we need one extra point in order
to fit a four parameter sigmoidal curve to the em-
pirical data points. Notice that at an initial dose of
zero the response must be around zero, and hence
we use that point as well. Using a bootstrap scheme
fifty sigmoidal curves fitting the data with a pre-
scribed probability spread at each dose point, are
produced (shown in Figs. 11 and 15 in Sec. V).
These curves give us an artificial replication study.
From the curves we find the 95% confidence intervals
at each matched dose point, and connect a piece-
wise linear curve to the lower and upper quantiles
of these intervals, which yields a confidence band.
Then the dose-response curves from the model are
plotted. Since the response from some data pairs
do not fit the Hill equation, the parameters for the
sigmoidal curve may not always be estimable, and
hence these pairs are not included.
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FIG. 18. Matrix of dose-response curves from the entire data set. The columns denote the drugs and the rows
denote the cell lines for the data pairs. Molarities from the LINCS data [34] have been converted to initial volumes.
Dose-response curves are produced in accordance with the techniques delineated in Sec. V A.
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FIG. 19. Matrix of dose-response curves from the entire data set. The columns denote the drugs and the rows denote
the cell lines for the data pairs. Dose-response curves are produced in accordance with the techniques delineated in
Sec. V B.
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FIG. 20. Matrix of dose-response curves within 95% confidence bands. The columns denote the drugs and the rows
denote the cell lines for the data pairs. Molarities from the LINCS data [34] have been converted to initial volumes.
Dose-response curves are produced in accordance with the techniques delineated in Sec. V A.
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FIG. 21. Matrix of dose-response curves within 95% confidence bands. The columns denote the drugs and the
rows denote the cell lines for the data pairs. Dose-response curves are produced in accordance with the techniques
delineated in Sec. V B.
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