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Many proteins assemble into homo-multimeric structures, with a number of subunits that can
vary substantially among phylogenetic lineages. As protein-protein interactions require productive
encounters among subunits, such variation might partially be explained by variation in cellular
protein abundance. Protein abundance in turn depends on the intrinsic rates of production and
decay of mRNA and protein molecules, as well as rates of cell growth and division. Using a stochastic
framework for prediction of the multimeric state of a protein as a function of these processes and
the free energy associated with interface-interface binding, we demonstrate agreement with a wide
class of proteins using E. coli proteome data. As such, this platform, which links protein quaternary
structure with biochemical rates governing gene expression, protein association/dissociation and cell
growth and division can be extended to evolutionary models for the emergence and diversification of
multimers. While it is tempting to think of multimerization as adaptive, the diversity of multimeric
states raises the question of its functional role and impact on fitness. As a force driving selection,
we consider the possible increase in enzymatic activity of proteins arising strictly as a consequence
of interface-interface binding – namely, enhanced stability to degradation, substrate binding affinity,
or catalytic rate of multimers with respect to monomers without invoking further conformational
changes, as in allostery. For fixed cost of protein production, we find a benefit conferred by multimers
that is dependent on context and can therefore become different in diverging lineages.

PACS numbers:

Many of the important features of cellular architecture
and function involve the action and interaction of pro-
teins. As such, a comprehensive understanding of the
evolution of cellular life necessitates an understanding
of the mechanisms by which proteins evolve. A ma-
jority of proteins function not as isolated units, but as
members of higher-order structures composed of two or
more subunits [1]. Many of these complexes are sym-
metrical and composed of multiple proteins, which are
either identical or encoded by the same genetic locus,
with each subunit retaining the same catalytic function.
These homooligomeric protein assemblies, common in
the cellular repertoire, constitute 35% of the bacterial
proteome [2]. A survey of the biological protein as-
semblies from the Protein Data Bank [3] indicates that
of the approximately 72,802 proteins examined, ∼ 53%
are homooligomers (ranging from dimers to heptamers)
[4]. Understanding the evolutionary factors driving ho-
mooligomerization is an important goal in the study of
protein complexes. While it is tempting to think of the
formation of protein complexes as adaptive, this may
not be universally the case. It has been observed that
in many cases the number of subunits involved in ho-
mooligomeric complexes varies among homologues across
lineages, with there being no apparent correlation be-
tween the size of the complex and the complexity of the
organism [5]. This raises the question of the functional
role of multimerization and possible impact on fitness.

In a growing cell, the rates of production, degrada-
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tion, and dilution determine the concentrations of various
molecular players, and in turn, the rates of the biochem-
ical reactions in which they take part. The formation of
an oligomeric protein requires that individual subunits
encounter each other in a crowded cellular environment.
Accordingly, oligomer formation depends on the cellular
rate constants related to gene expression, multimeriza-
tion, degradation, and cell growth. Given the stochastic
nature of these processes, the number of protein subunits
in a cell can fluctuate significantly across a population,
even in a homogeneous environment, with implications
for cellular functions [6, 7].

In bacterial population genetics, cell growth and divi-
sion are critical determinants of fitness. At the single-cell
level, the growth rate reflects the multidimensional cel-
lular physiological state, which in turns depends on the
cell’s macromolecular composition. Recent studies sup-
port a coarse-grained approach whereby fitness effects
of proteins can be mapped to variation in biophysical
properties rather than to sequences of mutated proteins,
significantly reducing the dimensionality of the genotype-
to-phenotype mapping [8–10]. The stochastic nature of
protein numbers and resulting effect of their activity on
fitness can lead to cell-to-cell variations in growth rate in
a genetically identical population of microbes, and this
variability can impact the population level fitness [11–13].

In this work, we use a stochastic framework to study
the state of homooligomeric proteins in growing and di-
viding cells and the possible impact of multimerization
on fitness. This article is organized as follows. In Sec-
tion I, we describe the biochemical model governing pro-
tein production and multimerization coupled to a realis-
tic model of cell growth and division. The prediction of
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the multimeric state is shown to agree well with a wide
class of homooligomers from the E. coli proteome data.
While we find that treating cell growth and division as
an effective loss term correctly captures the average num-
bers of monomers and multimers, the stochastic nature
of the underlying processes can lead to large variation
in protein numbers. Given that the activity of proteins
functioning as monomers versus multimers could be dif-
ferent, this variability ultimately impacts cellular fitness
and whether or not an emerging multimer is fixed.

In Section II we use this framework to investigate the
evolutionary forces driving changes in the multimeric
state of a protein across lineages. To highlight this diver-
sity of multimeric states, for the class of small molecule
metabolic enzymes of which approximately three hun-
dred are present in both E. coli and S. cerevisiae, we sum-
marize data across all species to show that most of these
shared enzymes exist in both monomeric and multimeric
forms. We examine the possible functional benefit to the
cell in switching from monomers to multimers while keep-
ing total protein production constant. We consider con-
sequences of multimerization on protein enzymatic activ-
ity that result directly from interface-interface binding –
namely, increased protein stability to degradation, en-
hanced ligand binding and catalytic rate. As such, we
do not invoke additional conformational changes, such as
in allostery, which may require subsequent mutations be-
yond those affecting only protein-protein interactions and
leading to the formation of a novel multimeric interface.

We show that the selective advantage conferred by mul-
timerization resulting from increase in enzymatic activity
at fixed cost of protein production depends on context.
Specifically, we consider a parsimonious set of param-
eters governing this fitness benefit (protein abundance,
relative stability of multimers to degradation, substrate
binding affinity, catalytic rate and concentration of the
substrate on which the protein acts) which can become
different in diverging lineages. We discuss how these re-
sults can account for the variability in the multimeric
states of homologous proteins. We conclude with future
computational and experimental extensions of this work.

I. GENE EXPRESSION AND
MULTIMERIZATION IN THE PRESENCE OF

CELL GROWTH AND DIVISION

A. Dimerization

Gene expression and multimerization is described us-
ing a four-stage model, depicted schematically in Fig. 1,
adapted from that used by Shahrezaei and Swain [14]a.
The first stage involves the promoter of the gene of in-
terest, which can transition between inactive and active
states, with transcription taking place only while the pro-
moter is active. Activation is followed by transcription
and translation, both modeled as first-order chemical re-
actions defined by a characteristic rate constant. Gene

FIG. 1: Biochemical model of gene expression and multimer-
ization. The promoter region of the DNA becomes active
(inactive) with probability κ0(κ1) upon binding of the tran-
scription factor (red). Rates of transcription and translation
are v0 and v1. mRNA (green) and protein (blue) monomers
and dimers degrade with probabilities d0, d1, and d2. Dimer
association and dissociation rates are given by kDa and kDd .

duplication is not explicitly treated, equivalent to using
an effective transcription rate. Degradation of mRNA
transcripts and proteins during these stages is modeled
similarly. Focusing on dimers, where homo-dimers con-
stitute the majority (41%) of oligomeric proteins [4], the
final stage consists of protein-protein interactions (PPI),
wherein two monomeric protein subunits can bind re-
versibly to form a dimer, with degradation rates specified
for each form.

Using this framework, we implemented a stochastic al-
gorithm to simulate the protein distributions in a lin-
eage of growing and dividing bacterial cells. The param-
eters v0 and v1 denote the probability per unit time of
transcription and translation, respectively; d0, d1 and d2
denote the probability per unit time of degradation of
mRNA, protein monomers, and protein dimers, respec-
tively. The association and dissociation of the promoter
with the DNA are represented, respectively, by κ0 and
κ1. The forward and reverse dimerization rates are given
by kDa and kDd , respectively.

Simulations were carried out using parameters summa-
rized in Table I (other parameter sets are given in Table
S1). For the dimerization kinetics, the dissociation rate,
kDd , was set equal to 2 × 10−1sec−1, while the associa-
tion rate, kDa , was allowed to vary over values ranging
from kDa = 2 × 10−4M−1sec−1 to 8 × 1010M−1sec−1,
with kDa = 109M−1sec−1 being a typical rate constant
[15]. In terms of the free energy of dimer association ∆G,
given by

∆G = RT ln
Kd

c0
, (1)

where c0 = 1 M is the reference concentration, the dimer
dissociation constant Kd = kDd /k

D
a ranged from 10−6

to 109 nM, with 10 nM being a value representative of
transcription factor homodimers [16].

The increase in cell volume over the course of the cell
cycle impacts dimerization by decreasing the concentra-
tion of interacting protein subunits, while cell division
impacts concentrations via the stochastic partitioning
of cellular contents among the two daughter cells. We
adopted a model of cell growth and division consistent
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Parameter Definition Value
v0 Transcription rate 5.0 × 10−4s−1

v1 Translation rate 2.0 × 10−1s−1

d0 mRNA decay rate 5.0 × 10−3s−1

d1 Monomer decay rate 5.0 × 10−4s−1

d2 Dimer decay rate ≤ d1

d3 Tetramer decay rate 1.3 × 10−4s−1

κ0 Promoter binding rate 3.0 × 10−4s−1

κ1 Promoter unbinding rate 1.0 × 10−4s−1

kDd Dimer dissociation rate 2.0 × 10−1s−1

kDa Dimer association rate (kDd /c0)e−∆G/RT

kTd Tetramer dissociation rate 2.0 × 10−1s−1

kTa Tetramer association rate (kTd /c0)e−∆G/RT

TABLE I: Summary of parameter definitions for Section I.

with cell size homeostasis, in which cell volume increases
at an exponential rate while the timing of cell division
is a stochastic process dependent on both the size and
age of the cell [17]. Other theoretical descriptions that
go beyond control of cell division based on cell age or
size alone, where a constant volume is added at each
generation, have also demonstrated agreement with ex-
perimental data [18, 19]. The placement of the bacte-
rial contractile ring in cell division has been shown to be
tightly controlled, with a standard deviation of 2.9% of
cell length in E. coli [20], assumed in our simulations.
Cellular contents were apportioned randomly according
to the binomial distribution, and only one daughter cell
was followed at each division. In Supplementary Fig.
S4A-C, we plot the resulting distributions of cell length
at birth (A) and interdivision time (B), as well as the cell
age distribution (C), demonstrating good agreement with
previous experimental and simulation results [17–19].

We verify our computational results in the absence of
cell growth and division by comparing protein distribu-
tions with analytical solutions from [14], as shown in Sup-
plementary Fig. S5. Importantly, we also demonstrate
that growth and division affect protein numbers as an ad-
ditional loss term, showing good agreement between our
simulations and analytical distributions in [14] modified
according to effective protein decay rates (see below), as
shown in the Appendix B and Fig. S6).

For the discrete stochastic chemical kinetics described
above, the classical deterministic reaction rate equations,
valid in the thermodynamic limit [21], are given by:

dm

dt
= v0Pon − d0m (2)

dM

dt
= v1m− d1M − kDf M (M − 1) + 2kDd D (3)

dD

dt
=

kDf
2
M (M − 1)− kDd D − d2D, (4)

where m, M , and D, represent the number of mRNA
transcripts, and protein monomers and dimers in the cell,
respectively; Pon = κ0/ (κ0 + κ1) is the probability that
the promoter for the protein-coding gene is active. As-

suming fast mRNA kinetics (relative to the time scale of
cell division), the number of mRNA transcripts reaches
equilibrium, giving the steady-state mRNA concentra-
tion, m̄ = v0Pon/d0, treated as a constant in Eq. 3. In
the above, kDf = kDa / (NAV ), where NA is Avogadro’s
number and V is the cell volume.

The population average of the protein concentration,
equivalent to averaging the concentration over cells and
time in a forward lineage (i.e., according to the popu-
lation age structure [22], as shown in Fig. S4C), can be
obtained as the steady-state solution of the deterministic
rate equations. The monomer concentration (in molar
units) is given by

c̄M =
1

2kDa

[(
kDf − (kDd d

′
1/d
′
2)− d′1

)
+

√(
kDf − (kDd d

′
1/d
′
2)− d′1

)2
+ 4kDf v1m

(
1 + kDd /d

′
2

)]
(5)

with d
′

1 = d1 +λ and d
′

2 = d2 +λ as effective degradation
rates; λ is the dilution rate due to cell division, account-
ing for the fact that in addition to the intrinsic protein
degradation rate, division confers a half-life to proteins
given by ln 2/ 〈T 〉, with 〈T 〉 given by the mean interdivi-
sion time (consistent with Supplementary Fig. S2). The
dimer concentration is given by

c̄D =
(v1m/V

′)− d′

1c̄M
2d

′
2

(6)

where V ′ = NA 〈V 〉.
In Fig. 2, we show the dependence of average monomer

and dimer concentrations on the free energy of dimer as-
sociation ∆G. The box plots show the distribution of
single cell averages, demonstrating the noise inherent in
gene expression, multimerization and cell division1. In
Supplementary Fig. S8, we show these results for other
parameter sets, including more stable monomers [23]. As
expected, the average protein concentrations show a pre-
dominance of monomers (dimers) for low (high) negative
values of ∆G.

Importantly, this figure shows that while treating cell
growth and division as an effective loss term in the deter-
ministic limit of the stochastic model correctly captures
the average numbers of monomers and multimers, the
stochastic nature of the underlying processes can lead to
large variation in their numbers. Given that the activ-
ity of proteins functioning as monomers versus multimers
could be different, this non-genetic variability results in

1 In a lineage of dividing cells, the statistics of daughter cells nec-
essarily exhibit correlations due to their shared heritage. In Sup-
plementary Fig. S7, we show the autocorrelation function of pro-
tein numbers, demonstrating cyclical variation due to the cell
cycle and decay due to noise.
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a wide range of phenotypes. The population level fit-
ness can be different from that of the mean phenotype
[11], with implications for whether or not an emerging
multimer is fixed, addressed in Section II. In Supple-
mentary Fig. S9, we quantify this variability as a func-
tion of transcriptional (v0/d1) and translational (v1/d0)
efficiency (Fig. S9A-B), demonstrating agreement with
previous works [24]. We also show that the mean and
variance of the protein number distributions follow a
quadratic relation, consistent with recent works demon-
strating this dependence for statistics of protein numbers
obtained from snapshots of populations of bacteria and
yeast as well as from temporal dynamics of single cells in
a lineage [25, 26] (Fig. S9C-D).
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FIG. 2: Average concentrations of monomers (blue/dark) and
dimers (red/light) as a function of dimer binding energy, ∆G,
for parameter values from Table I. Solid lines show analytical
solutions, given by Eqs. 5-6. Boxplots represent data from
stochastic simulations for concentrations averaged over indi-
vidual cell cycles. The central mark is the median, the circle
is the mean, and the edges of the box represent 25th and
75th percentiles. The mean concentrations in the box plots
agree with those obtained by averaging over the lineage age
distribution (Fig. S4C) to within 2.5%. Whiskers extend to
the most extreme data points. Data for parameter sets B-D
shown in Supplementary Fig. S8.

In all simulations, the decay rate of the dimeric form
of the protein is assumed to be lower than that of the
monomeric form. It has been argued that larger proteins
are more stable due to their extensive internal interac-
tions as well as reduced surface area/core ratio which
leads to reduced solvent exposure [27]. However larger
proteins are more difficult to maintain, given the greater
likelihood of transcript errors in a longer protein se-
quence, but the same stability advantage can be achieved
by oligomerization, resulting in a large protein composed
of several short-sequence monomeric subunits [2, 28, 29].
Our results show that with increasing rate of dimeriza-
tion, the total amount of protein present in the cell in-

FIG. 3: Dimer fraction as a function of ∆G and total protein
number Ptot. Ptot is adjusted by varying v1, with all other
parameters held fixed at values given in Table I.

creases, independent of the rates of transcription and
translation. This is due to the fact that dimerization
protects the enzyme from degradation, allowing larger
amounts to accumulate in the cell over the course of the
cell cycle. As discussed in Section II, this result also has
implications for the evolutionary dynamics of the protein
interface leading to multimerization, when the fitness of
the cell is related to the total enzymatic activity of the
protein. Under such circumstances, the transition from
a monomeric enzyme to a homomeric form could confer
a selective advantage simply by resulting in an increased
amount of enzyme present in the cell for fixed cost of pro-
tein production, even without any change in the catalytic
efficiency of the multimeric form.

In Fig. 3, the impact of the protein dimerization rate
(expressed in terms of the interface binding energy, ∆G)
and total expression level, Ptot, on the fraction of proteins
that exist as dimers is shown. For the governing parame-
ters given by Table I, the proteome transitions from a pre-
dominantly monomeric state to a predominantly dimeric
state at ∆G ≈ 10 kcal/mol, and this transition will shift
to moderately lower values of ∆G for higher expression
levels. Additionally, protein localization could promote
dimerization at lower ∆G values, though non-functional
interactions with other proteins may have the opposite
effect, requiring larger ∆G in order to achieve higher
specificity (see Table II). Overall, this framework, ex-
tended below to include tetramers, allows for prediction
of the predominant quaternary state of a protein given
the expression level of its coding gene and the strength
of multimerization.



5

B. Tetramerization

Higher-order complexes generally assemble via ordered
pathways [30], with monomers assembling into dimers,
which then assemble into tetramers, etc. If proteins
can be treated as having two independent and non-
overlapping interfaces that participate in the formation
of oligomers, the biochemical model is easily modified to
include tetramerization, characterized by rates of dimer
association and dissociation:

dM

dt
= v1m̄− d1M − kDf M (M − 1) + 2kDd D (7)

dD

dt
=

kDf
2
M (M − 1)−

(
kDd + d2

)
D

−kTf D (D − 1) + 2kTd T (8)

dT

dt
=

kTf
2
D (D − 1)−

(
kTd + d3

)
T (9)

where kTf = kTa / (NAV ) and kTd are the forward and
reverse tetramerization rates, and d3 is the decay rate
of tetramers. Coupled to cell growth and division, the
average abundance of monomers (M̄), dimers (D̄), and
tetramers (T̄ ) in the cell can be solved numerically as
before, from Eqs. 7-9, as shown in Supplementary Fig.
S10.

C. Comparison with E. coli proteome data

The output of the model was compared with E.
coli proteome data from [31] and ∆G values from the
PDBePISA database [32] (Table II). A sample of pro-
teins was chosen for which data on cellular abundance
and structure were available, and which had a recorded
assembly with either 1, 2, or 4 subunits. The recorded
assembly of each protein from the PDB was compared
with the distribution of monomers, dimers, and tetramers
predicted by our model. The model is in favorable agree-
ment with the experimental data, correctly predicting the
oligomeric assembly for 91% of the proteins tested.

Some discrepancies do exist between the model and
the reported oligomeric state of some enzymes. For in-
stance, glf (glucose facilitated diffusion protein) is re-
ported as a dimer in the PDB, however our model (as
well as PDBePISA) predicts a monomer. gpmA (gly-
colysis pathway protein) is also reported as a dimer, but
predicted to be a monomer by the model. In this case, the
assembly appears to be moderated by two chlorine ions
and four sulfates giving rise to an overall ∆G < −110
kcal/mol, with the protein-protein interface contributing
only −4.9 kcal/mol to the total. secB (molecular chap-
erone involved in protein export) simply fails the model,
as the reported ∆G is not strong enough to promote the
formation of dimers in our scheme.

These disagreements between the model prediction and
the given assembly could arise for a number of rea-

sons. The existence of post-translational modifications
(as in the case of gpmA) or ligand-induced conforma-
tional changes in the protein may impact oligomeriza-
tion in a way that is not captured by the model. Pro-
tein localization may lead to more oligomerization than is
predicted by effectively increasing the concentration, and
promiscuous PPI may interfere with functional interac-
tions. It is interesting to note that many dimers have free
energies well beyond the values at which dimers start
to outnumber monomers in the model, suggesting the
presence of a pressure toward stronger interfaces. This
could potentially reflect a selective benefit conferred due
to minimizing non-functional PPI that place limits on
gene expression and protein diversity [33]. Strengthen-
ing an interface in a multimeric enzyme beyond the ex-
tent necessary to ensure dimerization can also stabilize
the active site, thus improving substrate binding to the
protein [34].

A useful representation of these results is the composi-
tion of the proteome as a function of the two (potential)
interface free energies. If it is assumed that tetramers as-
semble via a single pathway (so that there exists only one
type of intermediate dimer complex), the characteristics
of the proteome can be predicted well by the model, as de-
scribed above. It has been shown that protein complexes
tend to assemble via specific ordered pathways with the
larger interface forming first [35], though this does not
always correspond to the interface with the larger free
energy gain [36].

Supplementary Fig. S11 shows the fraction of pro-
teins in each of the three multimeric states (monomer,
dimer, and tetramer) as a function of the free energy of
the two interfaces, ∆G1 and ∆G2. An interesting find-
ing is that for most values of ∆G1 and ∆G2, the proteins
exist almost entirely in one particular quaternary struc-
ture, rather than in an equilibrium consisting of signifi-
cant amounts of all three types of assembly. Deviations
from this result certainly exist, however, with one pos-
sible cause being phenotypic noise, which will be higher
for proteins with a higher translation rate (Fig. S9).

In summary, the results of Section I show that the
multimeric state of a protein can be predicted from the
relevant biochemical parameters. The interface energy
marking the transition from monomeric to multimeric
form varies inversely with abundance, suggesting a po-
tential tradeoff wherein a decrease in expression necessi-
tates a strengthening of the interface. In Section II, we
apply these results to the evolution of multimers from
monomeric subunits to address whether changes in the
underlying biochemical parameters affecting the multi-
meric state will impact cellular fitness. Once a mutation
occurs that alters protein abundance (through change in
transcription or translation rate) or the interface bind-
ing energy, this mutation may become fixed in a popula-
tion if the multimer is sufficiently beneficial. Stochastic
noise introduces significant variability in the numbers of
monomers and multimers, which in turn affects the pu-
tative strength of selection for multimers. We construct
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a measure of the fitness benefit for emerging multimers
and investigate its dependence on underlying governing
parameters to understand the observed variation in the
state of a particular protein from one species to another.

II. FUNCTIONAL ROLE OF
MULTIMERIZATION

Across the tree of life, homologous proteins with iden-
tical function can form complexes with differing num-
ber of subunits in different organisms, with there be-
ing no apparent correlation between organismal complex-
ity and number of subunits [5]. Examples include sev-
eral glycolytic enzymes (such as hexokinase, phospho-
fructokinase, and phosphoglucomutase) that form multi-
mers in some species but remain as monomers in others
[5], as well as other highly conserved enzymes involved in
nucleotide (such as dihydrofolate reductase, adenosime
deaminase, and guanylate kinase) and lipid metabolism
(such as acetyl-CoA carboxylase, hormonse-sensitive li-
pase, and dodecenoyl-CoA isomerase), and peptidogly-
can biosynthesis (such as peptidoglycan glycosyltrans-
ferase and glutamate racemase).

To further highlight this diversity of multimeric states,
in Table S2 we examine the class of small molecule
metabolic enzymes, of which 271 are present in both E.
coli and S. cerevisiae [37]. We find, using data across
all species from the PDB and BRENDA databases, that
as many as 65% of these shared enzymes exist in both
monomeric and multimeric forms across the tree of life,
with some orthologous enzymes ranging from one to more
than ten subunits. While it has been suggested that
protein-protein interfaces evolve to optimize association
with respect to the protein’s function [38], these data
bring under question whether multimerization presents
the organism with a functional advantage in turn affect-
ing fitness, which we address in this section.

A ubiquitous property of multimeric proteins is al-
lostery, where interactions between subunits result in co-
operativity in the function of the protein. In many cases
the role of cooperativity is to confer enhanced regulation
by allowing sensitive response to change in concentra-
tion of an internal or external signal in many cellular sig-
nal transducing systems as well as enzymes (where most
metabolic enzymes are allosteric [39]. Despite its impor-
tance in many biological processes, the structural princi-
ples underlying cooperativity in multimeric proteins and
the evolutionary origins of allosteric communication be-
tween subunits are not fully understood [40].

Recent work has shown that a small fraction of amino
acids comprise a spatially distributed but structurally
contiguous sub-network within the tertiary structure.
These co-evolving networks, dubbed “sectors”, have been
shown in several protein families to be associated with
allostery, where the spatial distribution of sectors effec-
tively “wires” the protein’s active site to multiple dis-
tant surface positions [41]. Hence, a mutation that cre-

ates a novel protein-protein interface would not neces-
sarily immediately bring with it ancillary effects con-
sistent with allostery. As a concrete example, the en-
zyme DHDPS (dihydrodipicolinate synthase) which ini-
tiates lysine biosynthesis, is primarily a homotetramer in
all species, but the architecture of the tetramer differs
across kingdoms, functioning allosterically in some but
not others [42, 43]. Rather, it is likely that the structural
basis of a protein’s cooperative function relies on subse-
quent mutations beyond the formation of a new PPI,
and therefore would not be manifest immediately upon
multimerization. Therefore, in addressing the functional
role of multimerization, we assume no allosteric effects
in the activity of proteins and consider only direct conse-
quences of interface-interface binding, as discussed below.
We are nonetheless able to show that even in the absence
of allostery, there can be a quantitative benefit to mul-
timerization that is context-dependent, and subsequent
mutations conferring allosteric advantages could further
solidify the advantage of the multimer, but might not
occur right away or in every case.

A. Fitness Advantage of Multimers

We connect multimerization to cellular fitness through
enzymatic activity assuming Michaelis-Menten kinetics,
with protein abundances in growing and dividing cells
given in Section I. We focus on enzymes in which each
subunit is catalytically active. For enzymes which require
a minimal multimeric form to be active, or enzymes in
which the active site forms as a result of a dimeric inter-
face, this analysis would be used to compare, for example,
dimers and tetramers, rather than monomers and dimers.
By examining the impact on cellular fitness under differ-
ent conditions determined by relevant governing parame-
ters, we make connection with the diversity of multimeric
states of a protein in different species.

Focusing on homodimers, which constitute the ma-
jority of multimeric proteins, we construct a de-
dimensionalized measure of activity, α̂ (in units of kcatM ·
KM
m ), which can be written as:

α̂(ĉ) = ĉM
ĉ

1 + ĉ
+ 2ĉD rcat

rĉ

1 + rĉ
, (10)

where r = KM
m /KD

m with KM
m and KD

m given by the
Michaelis-Menten constants for monomers and dimers,
respectively, such that KM,D

m = (kM,D
−1 + kM,D

cat )/kM,D
1

and kM,D
±1 are the respective binding/unbinding rates;

ĉM = cM/K
M
m and ĉD = cD/K

M
m are the monomer and

dimer concentrations, respectively, while ĉ = c/KM
m is

the free (unbound) substrate concentration; kcatM and
kcatD are the catalytic rates of the subunits in monomeric
and dimeric forms; and rcat = kcatD/kcatM , is the ratio
of catalytic rate of the dimeric form to the monomeric
form of the protein. We note that in Eq. 10, the con-
centration of free substrate, ĉ, will depend on the total
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substrate concentration, as well as on the concentrations
of bound monomers and dimers.

Manufacturing proteins consumes cellular resources,
both from the standpoint of using energy and nutrients
as building blocks and also by occupying common cellular
machineries such as ribosomes, polymerases, or chaper-
ones [44]. In turn, a given protein contributes to the cell’s
fitness through its function in the cellular repertoire. To
investigate the possible impact of multimerization on cel-
lular fitness, we consider the benefit to and cost incurred
by the cell in producing multimers, with benefit measured
in terms of total activity and cost in terms of total protein
production. Specifically, we consider two scenarios, with
and without multimerization, in which the total number
of proteins produced, Ptot, and hence the cost associated
with their production, is the same. However, the total
activity of functional proteins, and therefore the benefit
associated with their function, may be different in the
two cases. This is a relevant basis for comparison, as a
mutation that creates a dimeric interface is unlikely to
alter the amount of protein produced by the cell.

Defining the metric φ as the effective energetic advan-
tage of multimerization relative to the total proteome
energy budget of the cell:

φ =
β (α̂tot − α̂tot,0)

Etot
=
β∆α̂tot
Etot

, (11)

where α̂tot(= V α̂) represents the total enzymatic activ-
ity per cell with multimerization; α̂tot,0 represents the
corresponding activity in a hypothetical “reference cell”
in which there is no multimerization. The parameter β
characterizes the benefit of the protein of interest (given
in units of ATP produced, or equivalent), and Etot is the
total energy budget of the cell in units of ATP hydroly-
ses, approximately 27×109 for E. coli [45]. Here, we have
assumed a simple benefit function that is linear in pro-
tein activity, and cost that is linear in protein production
given by Ptot, assumed to be the same with and without
multimerization, where in E. coli, Ptot, ranges from < 1
to 8000 [31]. Other related approaches to assigning cost
and benefit for specific proteins [9, 46–48], and metabolic
networks [49] have been formulated.

In bacterial populations, the growth rate equates di-
rectly with fitness as faster growing cells outgrow com-
petitors. With the economy of protein production ulti-
mately linked to cell growth and division, we can relate
the duration of the cell cycle, tD, to a cellular (or micro-
scopic fitness function [47]), w = 1 + s, as

tD = tD,0/w = tD,0/ (1 + γφ) (12)

where the selection coefficient, s = γφ, is assumed to
be proportional to the energetic benefit of dimerization.2

2 We expect the energetic advantage of a given protein to be a
small fraction of the total proteome energy budget, φ � 1.

We consider w(s = 0) = w0 = 1 to be the fitness in the
absence of multimerization, with tD,0 giving the associ-
ated cell cycle duration. The relative increase in growth
rate due to multimerization is therefore

∆λ̃

λ̃0
≈ γφ = γβ

∆α̂tot
Etot

, (13)

where λ̃0 = 1/tD,0 is the cellular growth rate in the ab-
sence of multimers. Variation in growth rate is thus tied
to variation in activity, consistent with experimental re-
sults showing that fluctuations in expression of enzymatic
proteins can lead to fluctuations in cellular growth rates,
and vice versa [50].

Noting the proportionality of the growth rate advan-
tage to the product γβ, we therefore explore ∆α̂tot/Etot
as a function of governing variables, as described be-
low. We can interpret this expression, rewritten as
(∆α̂tot/νPtot) (νPtot/Etot), in terms of the increase in to-
tal activity per energy spent on manufacturing protein,
times the relative fraction of the cellular energy budget
consumed by the protein of interest, where the constant
ν represents the metabolic cost (per protein) to the cell
of manufacturing proteins (estimates for ν yield values
on the order of 5000 ATP per average protein [45]). This
results in a measure that is proportional to total activity
rather than activity per protein, which is consistent with
results showing that the fitness benefit of an increase in
catalytic efficiency can be offset by a decrease in protein
abundance [8].

In the absence of allosteric effects, there are three
mechanisms by which dimers can have increased activ-
ity with respect to monomers, leading to a growth rate
advantage. The first is through a decrease in the dimer
decay rate relative to that of monomers (d2 < d1), which
may occur if a dimer is more stable to degradation than
its individual subunits, or if the monomer is targeted by
a highly specific protease at a cleavage site that is covered
by the dimer interface. A more stable dimer will result in
a higher overall protein level in the cell, and thus higher
activity.

The second is enhanced enzymatic activity as a result
of increase in the rate of substrate binding, kD1 > kM1 .
How can this be achieved without requiring conforma-
tional change of the multimer or its monomeric subunits

Most generally, the selection coefficient will be a function of φ,
s = g(φ), relating the cell cycle duration to the energetic advan-
tage of producing multimers, and its form will depend in detail on
the mechanism(s) by which a given protein impacts the cell cy-
cle. However, we can approximate g(φ) = g′(0)φ+O(φ2) ≈ γφ,
where γ > 0 is a constant that measures how strongly the growth
rate varies in response to the production of a given protein. This
formulation is consistent with previous works on the impact of
the cost and benefit of protein production on growth rate, specif-
ically for Lac proteins [46] and MetE [48] in E. coli, where the
underlying parameters are determined from fits to experimental
data.
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as in cooperativity? It has been shown that the formation
[43, 51] or strengthening [34] of a protein-protein interface
can reduce dynamic fluctuations near the binding site,
thus increasing its specificity. Furthermore, as discussed
in Appendix A, if binding of substrate to its target site
on the protein (monomer or multimer) is governed by a
two-stage process – whereby three-dimensional diffusion
of substrate in the cytosol brings it within interaction dis-
tance of the protein, followed by adsorption to the protein
surface and subsequent diffusion in two dimensions to the
binding site – it is possible for the capture rate per bind-
ing site to be greater for multimers than for monomers
[52, 53]. This results in a lower Km for dimers, such that
r = KM

m /KD
m > 1, and increased dimer activity.

A third potential mechanism to increase dimer activity
could come from an increased catalytic rate, rcat > 1.
Indeed, stabilization of the active site upon interface-
interface binding can not only impact the substrate bind-
ing residues, leading to enhanced substate binding as dis-
cussed above, but also the catalytic residues involved in
modifying the substrate. As an example, this has been
postulated for the tetrameric enzyme DHDPS [43] (which
has been established to not be allosteric in E. coli), where
it is observed to have a higher catalytic rate in tetrameric
than dimeric form.

Below, we extend the results of Section I to investi-
gate the possible fitness advantage of multimerization as
a function of governing parameters. According to Eq. 10,
the total activity, α̂tot, depends on the monomer and
multimer concentrations. Both concentrations increase
with increasing total protein production, Ptot, while the
strength of multimerization, determined by ∆G, and ra-
tio of decay rates, d1/d2, set their relative concentrations
for given protein production. We also note the depen-
dence of enzymatic activity on the concentration of sub-
strate, ĉ, which is in turn controlled by internal and/or
environmental conditions. Indeed, protein production is
tightly coordinated with external conditions and intra-
cellular demands, and many enzymatic proteins are sat-
urated by their substrates because less protein is required
to achieve the same rate of product formation. By en-
suring that proteins are produced at a needed level, this
regulation, which we do not incorporate into our analysis
in this work, serves to minimize the overall cost of pro-
tein production. Finally, the ratio of Michaelis-Menten
constants, r ≥ 1, and catalytic rates, rcat ≥ 1, govern
the enzymatic kinetics. We explore the fitness advantage
as a function of parameters determining the relative con-
centration of multimers, d1/d2, Ptot, and ∆G, as well as
those governing enzymatic kinetics, namely r, rcat, and
ĉ.

B. Connection to Diversity of Multimeric States

To understand the potential benefit of multimeriza-
tion, we examine various mechanisms of increase in ac-
tivity separately. We first consider the case where en-

hanced dimer stability to degradation is the only source
of any fitness benefit (r = 1, rcat = 1 and d2 < d1)
as shown in Fig. 4A. When there is significant dimeriza-
tion (∆G < −10 kcal/mol), the fitness benefit increases
with substrate concentration, ĉ, saturating to a maxi-
mum when the proteins are saturated. This maximum
fitness benefit increases with increasing expression level,
Ptot. Similar trends result when only the increased cat-
alytic rate confers benefit (Fig. 4B).

On the other hand, if enhanced substrate binding to
dimers is the cause of increased activity (d2 = d1, rcat = 1
and r > 1), as in Fig. 4C, the benefit peaks at an op-
timum value of ĉ, then vanishes when ĉ becomes high
enough to saturate monomers in the reference cell. In
this case, the advantage conferred by multimerization
is highly dependent on substrate concentration; indeed,
ĉ spans several orders of magnitude for metabolites in-
volved in core metabolism in E. coli, with a majority
having values between 10−1 and 101 [54] as shown in this
plot. Therefore, a novel dimer may or may not confer
a selective advantage to reach fixation based on this ef-
fect alone. Fig. 4D shows the combination of the effects
in (B) and (C), resulting in a higher benefit that peaks
at lower values of ĉ. While in general these effects may
appear in combination, we make a parsimonious choice
of the functional consequences of multimerization in sub-
sequent plots, assuming no enhanced catalytic activity
(rcat = 1) which in some cases may require additional
conformational changes.

For fixed ĉ, the benefit will increase with increasing r
and Ptot (results not shown). For low Ptot, both α̂tot and
α̂tot,0 will be negligible, and the benefit will be small;
for large Ptot, all substrate will be bound in both scenar-
ios (with and without multimerization), and the benefit
will again be small. Thus, there will be an optimal value
of Ptot that maximizes the benefit, which occurs when
all substrate molecules are bound to protein in the pres-
ence of multimerization, but not yet in the reference cell.
This optimum Ptot (which for the parameters of Table I
lies outside the typical physical range of protein numbers
shown in Fig. 4) shifts to higher values with increasing
ĉ, as more protein is needed in order to bind all of the
substrate; the peak magnitude of the fitness advantage
increases in this case.

In Supplementary Fig. S12, we use data from
BRENDA to plot Km values for core metabolic enzymes
in E. coli, whose absolute metabolite concentrations were
measured in recent work [54]. We note that most have
KM
m values between 10−6 M and 10−2 M, with a median

value of 1.7× 10−4 M, which we use in our results. Since
approximately 83% have ĉ > 1 [54], this suggests that
for this class of proteins, enhanced substrate binding is
not a primary driver of increased dimer activity. Some
additional advantage such as higher dimer stability to
degradation or increased catalytic rate would be needed
to give a dimer-producing phenotype a significant selec-
tive advantage.

These results account for the apparent contradiction of
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FIG. 4: Contour plots showing increase in protein activity normalized to total cellular protein budget, ∆α̂/Etot, as a function
of total protein production. The first three plots show scenarios in which there is only one mechanism of increased activity:
(A) d2 = d1/2, r = 1, rcat = 1: As a function of ĉ, the benefit is negligible for small values when little substrate is bound, and
saturates to a maximum when all substrate is bound to protein. (B) d1 = d2, r = 1, rcat = 2: Trends are the same as in (A).
(C) d1 = d2, r = 5, rcat = 1: The benefit derives from enhanced substrate binding to the dimer; it peaks as a function of ĉ and
goes to zero at high concentrations when all dimers and monomers are bound. (D) r = 5 and rcat = 2: The trend is similar to
that in (A) and (B), except that the benefit peaks at a lower substrate concentration due to the enhanced binding. ∆G = −20
kcal/mol and KM

m = 10−4 M in all plots.

the putative advantage conferred by multimerization and
the persistence or even reemergence of monomery across
lineages, where dimerization (more generally, multimer-
ization) of a particular enzyme may be highly benefi-
cial in one species, but less so in another, perhaps even
closely related, species. Additionally, they demonstrate
how mutation bias affecting transcription or translation
rates, or substrate binding, may push an enzyme from a
regime in which dimers are clearly advantageous to one
in which the increase in activity is negligible. This can
result in a pressure to decrease the magnitude of ∆G,
since the formation of a dimer interface involves an in-
crease in surface hydrophobicity, which presents a risk of
promiscuous interactions; again, this risk may also vary
between species. Differences in protein abundance result-
ing from interspecies differences in expression level may
also make multimerization more likely to be beneficial in
some species than in others. These and other factors may
mitigate any adaptive benefit of multimerization and ac-
count for the observed variability in the multimeric states

of homologous proteins.
In Figs. 5 and 6, we consider the variability in the

fitness advantage as a result of the stochastic dynamics
of multimers in growing and dividing cells. The popula-
tion average of the fitness benefit from simulations agrees
well with the analytical result obtained using the protein
concentrations given by Eqs. 5-6. In Fig. 5, we show the
fitness benefit as a function of ∆G for r = 1, d1/d2 = 2
and ĉ = 1, 10. We note that while the mean population
response shows a clear difference between the monomer
and dimer fitness advantage, there is significant variabil-
ity within a population whereby fluctuations in monomer
and dimer numbers render this advantage ambiguous.
This ambiguity, coupled with the risk of promiscuous in-
teractions, may impact the long-term advantage of a mu-
tation that lowers ∆G. This variability will depend on
various biochemical parameters, such as transcriptional
and translational efficiency, as shown in Supplementary
Fig. S9.

In Fig. 6, we note that when the dimer fitness advan-
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FIG. 5: Increase in protein activity as a function of ∆G for
(A) ĉ = 1 and (B) ĉ = 10, with r=1, d1 = 2d2, and Ptot ≈
625 in both plots. Circles denote analytical results and the
box plot is from simulations. When derived from increased
dimer stability to degradation, this fitness benefit at fixed
cost increases as the relative abundance of dimers increases
(with increasing interface binding energy) and improves with
increasing enzyme saturation (increasing ĉ).

tage is due to enhanced substrate binding (d1 = d2, r =
5), it decreases significantly when ĉ = 10, consistent with
Fig. 4B: When the enzyme is saturated with substrate in
both dimeric and monomeric forms, any advantage due
to enhanced binding is diminished. On the other hand,
when the fitness advantage is due to enhanced stability of
dimers to degradation relative to monomers, Fig. 5 shows
that it is greater at higher substrate concentrations given
higher relative abundance of dimers. These results sug-
gest that the precise dependence of the fitness advantage
on ĉ will depend on the nature of the mechanisms confer-
ring the advantage, as well as on the specific biochemical
parameters.

In these plots, it is clear that the non-genetic variation
arising from stochastic dynamics of multimers results in
a wide range of phenotypes, with the fitness advantage
approaching zero in some individuals. This variability
can have profound implications for the evolutionary fate
of a newly formed multimeric interface. Even after a new
PPI has become widespread, the population-level perfor-
mance can be greater or less than that suggested by the
mean phenotype, depending on the nature (convexity or
concavity, respectively) of the function relating pheno-

FIG. 6: Increase in protein activity as a function of Ptot for
d1 = d2, r=5, ∆G = −20 kcal/mol, and (A) ĉ = 1 and (B)
ĉ = 10. Circles denote analytical results and the box plot is
from simulations. In the absence of relative stability of dimers
to degradation, at higher substrate concentrations such that
both monomers and dimers are saturated, the fitness benefit
is diminished.

type to fitness, as described by Jensen’s inequality [11].
This function will depend on the specific protein of inter-
est, and may vary across species for a given protein, with
implications for the evolutionary diversity in multimeric
state observed for many proteins.

III. DISCUSSION

Homooligomeric proteins form an important class of
protein complexes in the cellular repertoire. Their for-
mation on cellular time scales requires successful interac-
tions between subunits: Here, we build on previous work
[14] to develop a stochastic model of gene expression and
multimerization in growing and dividing cells, using an
experimentally realistic model of cell division. Cell pop-
ulation averages agree well with the steady state solution
of the deterministic limit of the stochastic model, with
the effect of cell division on protein numbers incorporated
as an additional, effective loss term. Furthermore, we
show that when this effective loss term is included, pre-
vious analytical results for the protein distribution absent
cell division [14] agree with distributions from our sim-
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ulations. The multimeric states predicted by the model,
obtained using biochemical parameter values from the ex-
perimental literature while adjusting the translation rate
to achieve the experimentally determined total protein
number, agree well with a wide class of homooligomers
from the E. coli proteome data.

Recent work has emphasized a coarse-grained approach
to genotype-to-phenotype mapping, where fitness effects
of mutations at the sequence level of a protein are pro-
jected onto a small number of axes representing its bio-
physical and biochemical properties [55], such as sta-
bility, substrate binding affinity and catalytic activity
[9]. Several arguments have been put forward to explain
the adaptive benefit of multimers, including increased
encounter rates between enzyme and substrate (where
diffusion-limited rates are proportional to the effective
radius of the enzyme [56]), stabilization of catalytic sites
[43] or the formation of new active sites [2], protein ac-
tivation [1], protection against denaturation [28], protec-
tion against aggregation in thermophilic organisms [55],
and allosteric regulation [57]. Despite these potential ad-
vantages, a number of counterarguments could be made
disputing the adaptive benefit of multimerization. First,
there exist multimers that appear to function no more
efficiently in their host organism than monomeric forms
of the same enzyme in other organisms [58]. Second, the
emergence of a new protein-protein interface can lead to
promiscuous PPI. This can lead to aggregation, which
has been implicated in a number of diseases [59]. It is
conceivable that mutations that create a new multimeric
interface will incur a cost due to increased surface hy-
drophobicity, which can lead to promiscuous interactions,
yet will become fixed as long as the novel multimer is suf-
ficiently beneficial. Otherwise, these mutations will have
an overall negative effect on fitness and be eliminated by
selection.

Here, we considered the role of total enzymatic activity
in driving multimerization. We show that for a fixed cost
of protein production, multimerization affects enzymatic
activity in a context-dependent manner. Focusing on ho-
modimers, we find that for given underlying parameters
governing protein production (namely rates of transcrip-
tion, translation and degradation) this fitness advantage
is necessarily dependent on (i) the relative concentration
of dimers, set by the free energy of dimerization, and rel-
ative stability of dimers to degradation, (ii) the binding
affinity for substrate and catalytic rate, which may be
higher for dimers than for monomers as a direct conse-
quence of stabilization of the active site upon interface-
interface binding, even without allostery, as discussed in
Sections II and IV, and (iii) the concentration of sub-
strate. This context-dependence of the fitness advantage
is consistent with the diversity of multimeric states of
some highly conserved enzymes, as the benefit can be-
come very different in diverging lineages. It can also
impact the fixation of mutations that change the mul-
timeric state; if a dimer interface forms in a cell in which
monomers and dimers lead to nearly identical fitness, the

fixation of the mutation will depend ultimately on ran-
dom genetic drift. The same factors could also lead to
a reversion of a dimeric enzyme to monomeric form, or
alternatively, progression to higher order multimers. In-
deed, as a relevant illustration of the diversity of multi-
meric states, our survey of PDB and Brenda databases
of small molecule metabolic enzymes shared between E.
coli and S. cerevisiae revealed that 65% exist in both
monomeric and multimeric forms across the tree of life,
with some orthologous enzymes ranging from one to more
than ten subunits.

In considering the possible fitness advantage of multi-
mers resulting from enhanced total activity, we note that
most generally, cellular processes do not work in isola-
tion, but rather the function of a given protein necessar-
ily interacts with the rest of the cell. Recent work cou-
pling gene expression to cellular and population growth
has considered fundamental tradeoffs, such as limitations
in levels of cellular energy, free ribosomes, and proteins,
that affect the evolution of the expression level of certain
proteins [60]. Future extensions of the present work on
the selective benefits of multimerization on fitness would
similarly consider mechanistic links between trade-offs,
gene expression and growth.

As expected, our results show that the noise inherent
in protein production, multimerization and cell division
introduces variability in the fitness benefit at the popula-
tion level. While the present work does not explicitly cou-
ple growth related parameters to the physiological state
of the cell – here, given in terms of the total activity of a
given protein of interest – within a clonal microbial pop-
ulation, this noise in protein levels and their associated
activity will introduce variability in growth rate among
individual cells.

Recent experimental [13] and theoretical [12] works
have addressed the effect of this heterogeneity on the
population growth rate, demonstrating that it can lead
to faster or slower population growth than the single cell
mean. In the context of the diversity of multimeric states,
these results suggest that the population level fitness can
be affected on the one hand by change in the mean single-
cell growth rate resulting from a possible functional ad-
vantage of multimers, and on the other hand by noise-
driven growth rate effects. The latter effect can be pos-
itive or negative, and has been shown theoretically to
depend on the growth rate variability and the strength
of the correlation between mother and daughter division
times [12]. This correlation may depend on several fac-
tors, including the expression level of the protein and
stability to degradation (which in turn affects how many
proteins are inherited as opposed to produced by each
cell), and the degree to which the protein of interest af-
fects growth rate. The present work – whereby stochas-
tic protein expression, multimerization and activity occur
in growing and dividing cells using a realistic model of
cell growth and division, necessarily with correlations be-
tween mother-daughter growth rates to account for cell
size homeostasis – provides a computational framework
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for future extensions that couple the single cell growth
rate to the multimeric state, allowing systematic investi-
gation of these effects on the population level fitness.

On the experimental front, our work suggests sev-
eral extensions. Site-directed mutagenesis aimed at al-
terring targeted sites in model homooligomeric enzymes
with well-characterized biochemistry can in principle al-
low systematic experimental studies of the possible rela-
tion between multimerization, stability to degradation,
enzymatic activity, and cellular growth rate. The ef-
fects of modifications to catalytic and substrate-binding
residues, as well as residues altering the interface bind-
ing energy ∆G and disrupting multimerization with [43]
or without [61] accompanying change in function can be
directly addressed within the framework presented here.
Furthermore, recent studies have highlighted the role of
“indirect mutations" at residues not at the interface itself
in changing the interface binding energy through change
in intersubunit geometry [29, 62]. If the distant residues
are involved in substrate binding, for example, our frame-
work can be extended to include an associated change in
∆G that would help or hinder multimerization.

Related to this, previous work, primarily on
monomeric enzymes, supports the idea that residues in a
protein that participate in catalysis are not optimized for
folding stability: Indeed, it has been shown that the exis-
tence of active sites introduces strain in the protein struc-
ture, making the folded state less stable, and conversely,
it is possible to stabilize proteins by sacrificing activity
[63–65]. Recent work postulated a fitness landscape for
a (monomeric) protein based on two biophysical traits
given by the folding stability and binding affinity to a
target molecule [66]. The evolutionary dynamics in this
fitness landscape simulated under the sequential model
demonstrated that as a result of the coupling between
folding and binding – where only folded proteins are able
to bind to their targets – these traits emerge as evolu-
tionary “spandrels", even if they do not confer an intrin-
sic fitness benefit. Evolutionary trajectories predicted
that proteins can evolve strong binding interactions that
have no functional role but serve to stabilize the protein
if the misfolded state is deleterious. Making connection
with the present work, it is possible that multimeriza-
tion could emerge from these binding interactions, not
just to ligand but also to other subunits. If additionally
the protein has functional binding, the evolutionary dy-
namics in [66] predicted that the protein initially gains
folding stability but partially loses it as the new binding
function develops. Extension of the framework in [66] to
include multimerization would similarly probe the inter-
play between the strength of protein-protein binding and
activity.

Understanding the evolution of higher-order protein
structure has been an important challenge in evolution-
ary cell biology. We have presented a computational
framework for quantifying the benefit of multimerization
in growing and dividing cells in a way that can be directly
tied to fitness through the growth rate. The precise fit-

ness benefit is context-dependent, and is determined by
the role of the protein of interest in the cellular reper-
toire, underlying biochemical parameters governing its
expression and activity, as well as environmental factors
acting as input to its function. As such, multimeriza-
tion while highly beneficial in one species may be less so
in another species. Additionally, mutation bias affecting
transcription or translation rates, or substrate binding,
may push an enzyme from a regime in which multimers
are clearly advantageous to one in which the increase
in activity is negligible. This can result in a pressure
to decrease the magnitude of ∆G, since the formation
of a protein-protein interface involves an increase in sur-
face hydrophobicity and risk of promiscuous interactions.
These factors may mitigate any adaptive benefit of mul-
timerization. Ultimately, the interplay between the mag-
nitude of the fitness advantage and the noise inherent in
protein numbers will determine the extent to which the
forces of selection, mutation, and drift affect the evolu-
tionary trajectory of the emerging PPI in growing and
dividing cells.

Appendix A: Substrate Binding and Two-stage
Capture

In this Section, we address the mechanism by which en-
hanced substrate binding may result directly from multi-
merization, strictly due to interface-interface binding of
monomeric subunits and without invoking any further
conformational modifications, such as allostery.

In a classic paper, Adam and Delbrück [52] first put
forth the hypothesis that the rate at which a surface-
bound trap reacts with a substrate diffusing in bulk phase
can be enhanced if the substrate first adsorbs to the sur-
face nonspecifically then diffuses in two dimensions before
being absorbed by the trap (or equivalently, being mod-
ified irreversibly into product). They went on to spec-
ulate that this reduction of dimensionality of diffusion,
from three to two dimensions, leading to shorter time
to capture of reactants by their target sites may have
“contributed to the evolutionary advantage of internal
membranes.”

Here, we extend this idea to the binding of a diffus-
ing substrate to its target region on the surface of a cy-
toplasmic protein, present as a monomer or multimeric
complex. There is often a significant size difference be-
tween reactants and the proteins to which they bind, for
example in metabolic pathways, where the substrates are
metabolites with a mass of less than 500 Da while the cor-
responding enzymes are usually about 100 times heavier
[67]. Hence, we can think of the reactant as first becom-
ing adsorbed nonspecifically to the surface of the pro-
tein through electrostatic, ionic, or hydrophobic interac-
tions, and then diffusing in two dimensions to its binding
pocket.

We follow Berg and Purcell’s subsequent re-derivation
of Adam and Delbrück’s results and treatment of the ef-
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fect of target density [53]. The rate of arrival of a sub-
strate molecule to its binding site on the surface of an
enzyme is treated as a two-stage process. First, bulk dif-
fusion, characterized by the diffusion constant D in three
dimensions, brings substrate molecules to the surface of
an enzyme of radius R. Substate molecules are then ad-
sorbed to the surface with mean number N̄a given by:

N̄a = 4πR2d c∞e
Ea/kBT , (A1)

where Ea denotes the energy of adsorption, d is given by
a molecular interaction distance, and c∞ is the constant
substrate concentration far from the enzyme. The aver-
age time to capture, t̄c, of a substrate molecule diffusing
on the surface of the enzyme by a binding site of size, s,
assumed to be a perfect absorber, is

t̄c =
1.1R2

ND′
ln

(
1.2R2

Ns2

)
. (A2)

whereD′ is the two-dimensional diffusion constant for the
substrate on the surface of the enzyme, and N denotes
the number of binding sites (for example, N = 1, 2 for
monomeric/dimeric forms of the enzyme, respectively).

The Berg-Purcell result is valid under the following as-
sumptions: 1) The equilibration of nonspecifically bound
substrate is rapid compared to the rate of absorption by
traps2; 2) Three dimensional diffusion in the bulk is fast,
and therefore in the enzyme-limited regime, the bulk sub-
strate concentration in the vicinity of the enzyme (which
in turn determines the surface adsorbed concentration
of substrate) is approximately given by c∞; 3) If the
reaction probability is low (or equivalently, many sub-
strate encounters with the target are required for the ir-
reversible reaction from substrate to product to proceed),
then the local surface concentration of substrate around
each target can approach the constant solute concentra-
tion more distant from any target, creating a very shallow
depletion zone (the “reaction limit”). In the Michaelis-
Menten (MM) kinetic scheme, this condition is equiva-
lent to the assumption that the association/dissociation
rates, k±1, for substrate-target complex formation are
much larger than the catalytic rate, kcat, at which the
substrate is irreversibly converted to product.

The average “current” of substrate molecules to their
binding sites (or equivalently, the number of substrate
molecules absorbed per unit time by perfect absorbing
patches on the surface of the enzyme), given by I ′, is:

I ′ = N̄a/t̄c. (A3)

2 We note that other works have considered extensions of reduc-
tion of dimensionality kinetics for diffusion-limited irreversible
targets, where the substrate depletion zones around targets are
explicitly treated [68], as well as in the reaction-limited regime for
both reversible and irreversible targets [69]. These works show
that in both regimes, the rate of two stage capture can depend
on the non-target region kinetic rate constants, and not just the
equilibrium constant as assumed in the Berg-Purcell result.

If an N -mer is treated as a sphere of radius RN = γRM ,
where RM is the radius of the monomer (for example
γ = N1/3, requiring the volume of a spherical N -mer to
be equal to that of N spherical monomers) then the ratio
of these currents for the same substrate concentration is

I ′N/I
′
1 = N

[
ln (1.2R2

M/s2)

ln (1.2R2
M/s2) + ln (γ2/N)

]
≈ N

[
1− ln (γ2/N)

ln (1.2R2
M/s2)

]
= N

[
1 +

1
3 lnN

ln (1.2R2
M/s2)

]
> N. (A4)

For example, considering dimers and monomers, where
the dimer is taken as a sphere with twice the volume of
a monomer, then γ = 3

√
2. Taking s/RM ∼ 0.1 [70], we

have I ′2/I ′1 = 2.05 > 2. In the MM scheme, the rate of
production formation is given by

dP

dt
= Nkcat c

tot
E

c∞
c∞ +Km

≡ ν, (A5)

where Km = (kcat + k−1)/k1 is the MM constant, and
ctotE is the total enzyme concentration (in its monomeric
or multimeric form). In terms of the current, I ′N , we have:
c∞ k1 = I ′N/N . To determine the possible functional ad-
vantage of multimerization in terms of the rate of prod-
uct formation, we can identify two relevant limits: In
the first limiting case, if c∞ � Km, and having assumed
k±1 � kcat, then dP/dt ≈ kcat k1 ctotE c∞/k−1. Therefore,
even in the absence of any dimer advantage in stability to
degradation (i.e., equal monomer and dimer decay rates,
d1 = d2), where the mean concentration of dimers is ex-
pected to be c̄totD = c̄totM /2, we have νD/νM ≈ 2.05/2 > 1:
Dimerization confers a functional advantage to the pro-
tein arising purely from diffusion. In the second limiting
case, if c∞ � Km, then dP/dt ≈ Nkcat ctotE , independent
of the details of binding kinetics. Hence, absent a stabil-
ity to degradation (or catalytic) advantage, in this limit,
multimers do not present a functional advantage.

Given the crowded nature of the cytopolasm and cost
of protein biosynthesis, it is advantageous for enzymes to
fulfill their required role in the cellular repertoire – for
example, in the case of metabolic enzymes to achieve the
requisite metabolic flux – with minimal enzyme concen-
trations. This is achieved for substrate concentrations
high enough to saturate enzymes. Indeed recent work
has shown that most measured metabolites in the cell
are present at concentrations higher than the Km for the
associated enzyme [54]. However, a downside of main-
taining substrate concentrations consistent with the sec-
ond limiting case considered above is insensitivity to sub-
strate concentration. It has been noted that mechanisms
such as allostery can allow for flux regulation in this limit.

Finally, we note that if the current were collected with-
out the aid of surface diffusion, as shown by Berg and
Purcell [53]

IN = 4πDc∞R
Ns

Ns+ πR
= Imax

Ns

Ns+ πR
, (A6)
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where Imax = 4πDc∞R is the diffusive current to a per-
fectly absorbing sphere of radius R. In the usual limit of
small absorbing patches/binding sites, Ns� R, we have
IN ≈ 4NDsc∞. Hence, without two-stage capture

IN/I1 = N, (A7)

and even in the first limiting case considered, without an
advantage in stability to degradation, multimers do not
present a functional advantage.

Appendix B: Comparison of Simulations Results
With and Without Cell Division With Analytical

Distributions of Shahrezaei-Swain [14]

In this Section, we show how the analytical distribu-
tions of Shahrezaei-Swain [14], modified according to an
effective loss rate due to cell growth and division, agree
with simulation results.

Shahrezaei and Swain [14] presented a three-stage
model of gene expression in a static cell that captures
the stochastic nature of gene activation, transcription,
translation, and mRNA and protein decay. The promoter
transitions between active and inactive states with rates
k0 and k1, respectively. Transcription of mRNA occurs
with rate v0 when the promoter is active, and transcripts
decay with rate d0. Translation and decay of protein oc-
cur with rates v1 and d1, respectively. For proteins that
are long-lived compared to mRNA, i.e., γ = d0/d1 � 1,
the steady-state probability P (n) of there being n pro-
teins in the cell at any time is given by [14]:

P (n) =
Γ (α+ n) Γ (β + n) Γ (κ0 + κ1)

Γ (n+ 1) Γ (α) Γ (β) Γ (κ0 + κ1 + n)

×
(

b

1 + b

)n(
1− b

1 + b

)α
× 2F1

(
α+n, κ0+κ1−β, κ0+κ1+n;

b

1+b

)
,(B1)

where α = 1
2 (a+ κ0 + κ1 + φ), β = 1

2 (a+ κ0 + κ1 − φ),
and φ2 = (a+ κ0 + κ1)

2 − 4aκ0, with a = v0/d1, b =
v1/d0, κ0 = k0/d1, and κ1 = k1/d1. The mean pro-
tein concentration is given by n̄ = abk0/ (k0 + k1). We
modify this result to account for the loss of protein and
mRNA due to cell division, where cellular contents are di-
vided approximately equally among daughter cells. This
is achieved by replacing the loss rates d0 and d1 with
d′0 = d0 + λ and d′1 = d1 + λ, respectively, where λ is an
effective degradation rate due to cell division.

To determine the decay rate due to cell division, λ, we
consider the following simplified description of protein
expression, as coupled differential equations describing
mRNA (m) and protein (n) number dynamics:

dm

dt
= v0 − d0m− f(t)

m

2
, (B2)

dn

dt
= v1m− d1n− f(t)

n

2
, (B3)

where f(t) is a Dirac comb function representing the loss
at division times, at which molecule numbers are (ap-
proximately) halved. We define T to be a random vari-
able representing the cell cycle length, and assume that
n(T−) = 2n(0) and n(t = T+) = n(0) at steady state,
where t = T− represents the instant in time just before,
and t = T+ is the instant in time just after the cell divi-
sion. Averaging over the cell cycle, where for a periodic
signal 〈dn/dt〉 = 0, Eq. B3 becomes

v1 〈m〉 − d1 〈n〉 −
〈
f(t)

n

2

〉
= v1 〈m〉 − d1 〈n〉 −

n(T )

2T
,

= v1 〈m〉 − (d1 + λ) 〈n〉 , (B4)

where

λ(T ) =
n(T )

2T 〈n〉
=

d0d1
[
d0Y

(
1− ed1T

)
− d1

(
1− ed0T

)
Z
]

d21 (1− ed0T )Z − d0d21TY Z + d20Y (d1TZ − (1− ed1T ))
, (B5)

with similar results from Eq. B2. In the above, Y =
1 − 2ed0T , Z = 1 − 2ed1T . The solutions m(t) and
n(t) are shown in Fig. S1, plotted against the mRNA
and protein numbers from simulation data averaged over
cells. As shown in Fig. S2, we note that λ(T ) given
by Eq. B5 agrees closely with the putative expression
λ0(T ) = ln 2/T , which represents the loss due to cell di-
vision with half-life equal to the doubling time of the cells
[22, 71, 72]. Importantly, we note from Eq. B4 that effec-

tive decay rates can be defined as d′ = d + λ to capture
loss due to cell division.

Using effective decay rates, the analytical probabil-
ity distribution of protein number from Shahrezaei and
Swain [14] absent cell division (Eq. B1) can be modified
according to a given value of λ, giving P (n|λ). The ef-
fective loss rate due to division, λ(T ), depends on the
cell cycle duration, T ; the distribution of λ, shown in
Fig. S3, is determined numerically from the simulated
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distribution of T (Fig. S4B), obtained from the model
of cell growth and division with cell size control used in
this work [17].

From these, we can construct

P (n) =
∑
λ

P (n|λ)P (λ), (B6)

Additionally, stochastic partitioning of cellular con-
tents is modeled by introducing the binomial random
variable X, whose value x represents the fraction of pro-
teins inherited from the previous cell division

B(x|n) =

(
2n

xn

)
2−2n. (B7)

The final protein number distribution accounting for
noisy partitioning is then given by that of the random
variable N ′ = N × X, , shown in Fig. S6 (green line).
We note good agreement between the modified analytical
result of Shahrezaei and Swain [14] and the distribution
of protein number from simulations with cell division.

A rigorous method of incorporating binomial partition-
ing would include in the master equation approach of [14]
an explicit loss term, as in Eq. B4 modified with a bino-
mial random variable with mean equal to 1/2. While this
formulation is beyond the scope of the present analysis,
recent work has addressed molecule number distributions
in a population of exponentially growing and dividing
cells taking into account its age structure [73].
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TABLE II: Model predictions based on experimental data. Solutions to Eqs. 7-9 are compared with experimental data for
a selection of E. coli genes. Mean total protein (P ) and mRNA (m) counts are taken from [31]. (m is determined by the
value of the composite parameter Ponv0/d0d1, so the values of the individual variables were not considered.) Interface ∆G
values are taken from PDBePISA and are given in kcal/mol, with ∆G1 representing the first (dimer-forming) interface and
∆G2, if applicable, being the secondary (tetramer-forming) interface. Translation rate v1 was chosen iteratively in order to
yield a calculated protein level sufficiently close to the literature value given in [31]. For this value of v1, the percentage of
monomers (M), dimers (D), and tetramers (T ) were obtained from Eqs. 7-9 and compared to the assembly recorded in the
PDB/PDBePISA. metK and gatZ are listed as dimeric in the PDB but analyzed as likely tetramers by PDBePISA.

Gene Name PDB ID P m ∆G1 ∆G2 Assembly M D T
map 1c22 125 1.64 -3.4 -1.6 Monomer 100.0 0.0 0.0
fabD 2g2o 5 0.36 -2.4 -2.4 Monomer 100.0 0.0 0.0
pgk 1zmr 564 0.70 -1.1 - Monomer 100 0.0 0.0
cspA 1mjc 715 0.39 0.3 - Monomer 100.0 0.0 0.0
livJ 1z16 8 0.44 -1.1 -0.2 Monomer 100.0 0.0 0.0
acnB 1l5j 232 0.06 -4.7 - Monomer 100.0 0.0 0.0
yhbY 1ln4 137 0.28 -4.7 - Monomer 100.0 0.0 0.0
adk 1ank 687 0.09 -3.7 - Monomer 100.0 0.0 0.0
pstS 2abh 3 2.2 -1.6 - Monomer 100.0 0.0 0.0
ybbN 3qou 128 0.09 -6.1 0 Monomer 99.8 0.2 0.0
hdeA 1bg8 21 6.08 -22.9 -6.7 Dimer 0.4 99.2 0.4
csrA 1y00 474 0.94 -24.9 - Dimer 0.2 99.8 0.0
hdeB 2xuv 8 1.5 -21.2 -7.7 Dimer 11.5 88.5 0.0
thrS 4p3p 784 0.82 -17.7 -1.4 Dimer 0.1 99.9 0.0
ppiB 2nul 385 0.29 -17.7 - Dimer 0.3 99.7 0.0
fabA 1mka 611 0.51 -16.8 2.9 Dimer 0.2 99.8 0.0
tktA 2r8o 290 0.10 -32 - Dimer 0.3 99.7 0.0
aceE 2qtc 843 0.78 -32.6 -1.8 Dimer 0.1 99.9 0.0
ybeX 4hg0 44 0.07 -22.6 -5.2 Dimer 2.2 97.8 0.0
serC 1bjn 188 0.39 -23.0 0.1 Dimer 0.5 99.5 0.0
purA 2gcq 310 1.09 -12.8 0.6 Dimer 5.3 94.6 0.0
pflB 1mzo 239 0.39 -12.3 1.7 Dimer 9.1 90.9 0.0
tpiA 1tmh 768 0.27 -14.4 -3.8 Dimer 0.9 99.1 0.0
aspC 1bqa 248 0.31 -21.5 - Dimer 0.4 99.6 0.0
fba 1b57 676 0.21 –30.4 - Dimer 0.1 99.9 0.0

gpmA 1e58 760 1.08 -4.9 - Dimer* 99.9 0.1 0.0
glf 1i8t 193 0.07 -3.7 -0.6 Dimer* 100.0 0.0 0.0

metK 1xra 347 0.58 -19.5 -7.0 Dimer/Tetramer 0.3 98.7 1.1
gatZ 2fiq 290 0.40 -10.0 -12.0 Dimer/Tetramer 22.5 12.8 64.8
fabI 1c14 342 0.29 -14.9 -11.9 Tetramer 0.5 14.6 84.9
tnaA 2c44 351 0.09 -16.4 -15 Tetramer 0.3 1.4 98.3
gapA 1gae 2380 2.11 -28.3 -12.8 Tetramer 0 2.7 97.2
secB 1qyn 673 0.38 -6.1 -10.2 Tetramer* 99.0 1.0 0.0


