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Most empirical studies of networks assume that the network data we are given represent a complete
and accurate picture of the nodes and edges in the system of interest, but in real-world situations
this is rarely the case. More often the data only specify the network structure imperfectly—like
data in essentially every other area of empirical science, network data are prone to measurement
error and noise. At the same time, the data may be richer than simple network measurements,
incorporating multiple measurements, weights, lengths or strengths of edges, node or edge labels,
or annotations of various kinds. Here we develop a general method for making estimates of network
structure and properties using any form of network data, simple or complex, when the data are
unreliable, and give example applications to a selection of social and biological networks.

I. INTRODUCTION

Networks are widely used as a convenient quantita-
tive representation of patterns of connection between the
nodes, units, agents, or elements in complex systems,
particularly technological, biological, and social systems.
There has been an explosion of empirical work in the last
two decades aimed at measuring and describing the struc-
ture of networks such as the Internet, the World Wide
Web, road and airline networks, friendship networks, bio-
chemical networks, ecological networks, and others [1].
A fundamental issue with empirical studies of net-

works, however, is that the data we have are often unre-
liable. Most measurement techniques for network struc-
ture suffer from measurement error of some kind. In bio-
logical networks such as metabolic or protein interaction
networks, for example, traditional laboratory experimen-
tal error is a primary source of inaccuracy. There exist
experimental methods for directly measuring interactions
between proteins, such as affinity purification or yeast
two-hybrid screens, but even under the best controlled
conditions the exact same measurement repeated twice
may yield different results [2–4]. Or consider the Inter-
net, whose network structure is usually determined by ex-
amining either router tables or collections of traceroute
paths. Both both router tables and traceroute paths,
however, give only subsets of the edges in the network.
Commonly one combines many tables or paths to provide
better coverage, but even so it is well established that
the resulting network structure contains significant er-
rors [5, 6]. Social networks, such as friendship networks,
provide another example. Such networks are typically
measured using surveys, and the resulting data can con-
tain errors of many kinds, including subjectivity on the
part of respondents in surveys, missing data, and record-
ing and coding errors [7–11].
Not all is bad news, however. Network data may be

error-prone but they can also be very rich. Many stud-
ies produce not just simple measurements of network
structure but multifaceted data sets that reflect struc-
ture from many different angles. A friendship network
might be measured repeatedly, for instance, or measured

in multiple ways using reported interactions, observed
interactions, online data, or archival records. An ecolog-
ical network such as a food web might combine field data
of many different types as well as input from curated li-
brary studies. A data set for the World Wide Web will
typically include not only the pattern of links between
web pages but rich data on page content including word
frequencies, headings, word positions, anchor text, and
metadata.
In this paper we consider the problem of network re-

construction, deriving and demonstrating a broad class
of methods that can be used to infer the true structure
and properties of a network from potentially error-prone
data in any format.
There has been a significant amount of previous work

on network error and reconstruction, including discus-
sion of the types of errors that can occur, for instance
in social networks [7–11], biological networks [3, 12], and
technological networks [5, 13], and studies of simulated
errors that aim to determine what effect errors will have
on estimates of network properties [14–19]. Methods for
estimating true network structure from error-prone mea-
surements have been developed in several fields, includ-
ing sociology, statistics, physics, and computer science.
Perhaps most closely related to the work reported here
is that of Butts [9], who developed Bayesian methods
for estimating how reliable social network survey respon-
dents are in the answers they give. Our technical ap-
proach is different from that of Butts, but some of the
example applications we consider address similar ques-
tions. The methods we develop generate a posterior dis-
tribution over possible network structures, and a num-
ber of other previous methods have been proposed for
doing this, by ourselves and others, albeit using differ-
ent approaches [20, 21]. Looking further afield, there
is also a considerable body of work on estimating net-
work structure from measurements of the evolution of
networked dynamical systems such as coupled oscilla-
tors [22] or spreading processes [23, 24]. There has also
been work on error correction strategies for networks,
which can be viewed as a form of network reconstruc-
tion. Link prediction in particular—the task of identify-
ing missing edges in networks—has received considerable
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attention [20, 21, 25–27]. In the study of citation and col-
laboration networks a number of methods have been de-
veloped for name disambiguation, which can be thought
of as a form of error correction for missing or extraneous
nodes [28–32]. And a combination of methods of these
kinds can be used to create hybrid “coupled classifier”
algorithms for processing raw network data into more ac-
curate and nuanced estimates of network quantities [33–
36], often with a focus on a specific domain of study. Of
particular interest is the large body of work on methods
for analyzing and processing high-throughput laboratory
data on biological and biochemical networks [37–42].
In a previous paper [43] we outlined a method for

making optimal estimates of network structure us-
ing expectation–maximization (EM) algorithms, and in
other work we and others have looked at methods for
estimating networks in the presence of community struc-
ture [44, 45]. Here we build on this previous work and lay
out a general formalism for inferring network structure
from rich but noisy data sets. We focus specifically on
the problem of inferring the positions of the edges in a
network of given nodes. There are interesting questions
to be asked about how one identifies the nodes in the first
place, but these we will not tackle here.

II. APPROACH

The approach we present, which builds on our previ-
ous work in [43, 44], is based on model fitting and has
two main components: a network model that represents
how the network structure is generated (or, more prop-
erly, our belief about how it is generated), and a data

model that represents how that structure maps onto the
observed data. Given a set of observations, the method
allows us to infer the parameters of both models as well
as the entire posterior distribution over possible network
structures. Features of interest in the network can also
be estimated, in one of two different ways: one can in-
spect the parameters of the network model (as is done
in community detection, for example) or one can calcu-
late expected values of network metrics over the posterior
distribution (as one might for things like degree distribu-
tions, path lengths, or correlations).
The requirement that we define network and data mod-

els is one aspect that distinguishes our method from other
network reconstruction approaches. One might consider
this requirement to be a disadvantage of the method,
since it obliges us to make assumptions about our net-
works, but we would argue that this is a feature, not
a bug. We argue that other methods are also making
assumptions, though one may not notice them because
they are often hidden from view. They may be implicit,
for instance, in the decisions a programmer makes in de-
veloping code, or they may be the result of subconscious
choices not even recognized by the researcher, but they
nonetheless still affect the calculations [46]. One might
implicitly assume, for instance, that edges are more likely

between nodes that share a common neighbor [25], or
that patterns of connections are similar between nodes
that have other features in common [26]. In the literature
on inferring network structure from dynamical processes
taking place on network nodes, the dynamics is often ef-
fectively assumed to be driven by a particular dynamical
model, although there have been efforts in recent years to
develop model-free approaches [47, 48]. We believe it to
be a desirable feature of the approach proposed here that
it obliges us to acknowledge explicitly what assumptions
we are making and formulate them in a precise manner.
Suppose then that we are interested in a particular

network of n nodes, whose structure we will represent by
an adjacency matrix A. In the simplest case of an un-
weighted undirected network the adjacency matrix is an
n × n symmetric matrix with elements Aij = 1 if nodes
i and j are connected by an edge and 0 otherwise. Our
methods can also be applied to directed networks (rep-
resented by asymmetric matrices), weighted networks
(represented by matrices containing values other than 0
and 1), and other more complicated forms if necessary,
but for the moment we will concentrate on the undirected
unweighted case.
We assume that the structure A of the network is ini-

tially unknown. This structure is sometimes called the
ground truth. Our aim is to estimate the ground truth
from the results of measurements of some kind. The
measurements could take many forms: measurements of
single edges, pathways, or subgraphs; repeated measure-
ments or measurements made from the point of view of
different participants or locations; metadata concerning
edges or nodes; nonlocal or global properties of the net-
work as a whole, such as densities, clustering coefficients,
or spectral properties, or any of many other measurement
types. Let us denote by D the complete set of data gen-
erated by the measurements performed on the system.
We specifically do not assume that the data are reliable
(they may contain errors of various kinds) or that they
are complete (some parts of the network may not be mea-
sured). Our goal is to make the best estimate we can of
the structure of the network given the available data.
This we do using probabilistic methods. We first define

a network model, which represents our prior knowledge
about the structure of the network. This model takes
the form of a probability distribution P (A|γ), where γ
denotes the parameters (if any) of the distribution. The
parameters are normally unknown; we will show how to
estimate their values shortly. The network model quan-
tifies what we know about the structure of the network
before we observe any data. The model could be a very
simple one. For instance, in the (common) case where we
know nothing about the structure of the network ahead
of time, the model could be just a uniform (maximum-
entropy) distribution, all structures being equally likely.
In fact, we usually know at least a little more than this.
For instance, almost all empirically observed networks
are relatively sparse, meaning that only a small fraction
of their possible edges are present. Armed with this addi-
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tional knowledge, we might choose to employ a network
model, such as a random graph, that favors (or at least
can favor) networks with low edge density. We use mod-
els of this kind in several calculations in this paper. More
complex choices are also possible and may be useful in
some cases. If we are interested in performing community
detection on our network, for example, then we might
hypothesize that the network is drawn from a stochas-
tic block model [49]. The parameters of the fitted block
model can then tell us about the community structure,
if any, in the observed network [44, 45, 50, 51].
Second, we hypothesize a measurement process or data

model that describes how our empirical data D are
generated from observations of the network, such that
P (D|A, θ) is the probability of the data given the true
structure of the network A and model parameters θ.
Combining probabilities and applying Bayes rule, we
then have

P (A, γ, θ|D) =
P (D|A, θ)P (A|γ)P (γ)P (θ)

P (D)
, (1)

where P (γ), P (θ), and P (D) are the prior probabilities
of the parameters and the data (which we assume to be
independent). Summing over all possible values of the
unknown adjacency matrix A (or integrating in the case
of continuous-valued matrix elements), we get an expres-
sion for the posterior probability of the parameter val-
ues γ, θ given the data:

P (γ, θ|D) =
∑

A

P (A, γ, θ|D). (2)

Our first goal will be to find the most likely values of the
parameters by maximizing this posterior probability with
respect to γ and θ, a so-called maximum a posteriori or
MAP estimate.
In fact, as is often the case, it is convenient to max-

imize not the probability itself but its logarithm, which
has its maximum in the same place. We make use of
Jensen’s inequality, which states that for any set of pos-
itive quantities xi,

log
∑

i

xi ≥
∑

i

qi log
xi

qi
, (3)

where qi are an equal number of nonnegative quantities
satisfying

∑

i qi = 1. Applying this inequality to the log
of Eq. (2) we have

logP (γ, θ|D) = log
∑

A

P (A, γ, θ|D)

≥
∑

A

q(A) log
P (A, γ, θ|D)

q(A)
, (4)

where q(A) is any nonnegative function of A satisfying
∑

A
q(A) = 1. It will be convenient to think of q(A) as

a probability distribution over networks A.

It is straightforward to see that the exact equality
in (4) is achieved, and hence the right-hand side of the
inequality maximized, when

q(A) =
P (A, γ, θ|D)

∑

A
P (A, γ, θ|D)

. (5)

Since this choice makes the right-hand side equal to
logP (γ, θ|D), a further maximization with respect to γ
and θ will then give us the MAP estimate that we seek.
To put that another way, maximization of the right-hand
side of (4) with respect both to q and to γ and θ will give
us the optimal values of the parameters.
This leads to a natural iterative algorithm for deter-

mining the values of the parameters: we perform the
maximization by maximizing first over q with the pa-
rameters held constant, then over the parameters with q
held constant, and repeat until we converge to the final
answer.
The maximum over q is given by Eq. (5). The maxi-

mum over the parameters we find by differentiating. Tak-
ing derivatives of the right-hand side of Eq. (4) while
holding q(A) constant, we get

∑

A

q(A)∇γ logP (A, γ, θ|D) = 0, (6)

∑

A

q(A)∇θ logP (A, γ, θ|D) = 0, (7)

where ∇γ ,∇θ denote derivatives with respect to the sets
γ, θ of parameters of the two models. Alternatively, mak-
ing use of Eq. (1), we have

∇γ logP (γ) +
∑

A

q(A)∇γ logP (A|γ) = 0, (8)

∇θ logP (θ) +
∑

A

q(A)∇θ logP (D|A, θ) = 0. (9)

The solution of these equations gives us our values
for γ, θ. Note that Eq. (8) depends only on the net-
work model and its solution gives the parameter values
for that model. Similarly, Eq. (9) depends only on the
data model and gives the parameters for that model.
This is an example of an expectation–maximization or

EM algorithm [52, 53], a standard tool for statistical in-
ference in situations where some data are unknown or
hidden from us—in this case the network structure A.
Implementation of the algorithm involves choosing ran-
dom initial values for the parameters γ, θ and then iter-
ating Eq. (5) and Eqs. (8) and (9) until convergence is
reached. The EM algorithm can be proved to converge
to a local maximum of the posterior probability, but not
necessarily to the global maximum we would like to find.
In practice, therefore, one often performs repeated runs,
starting from different initial values, to test for consistent
convergence.
The output of the EM algorithm is a set of values for

the parameters γ, θ. These are “point estimates,” repre-
senting the single most likely values for the quantities in
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question. There exist other (Bayesian) methods that can
compute entire posterior distributions over parameters
but in most of the applications we consider such an ap-
proach is unnecessary. The quantity of data embodied in
the networks we study is typically large enough that the
parameter values are quite precisely determined, mean-
ing that the posterior distributions are sharply peaked,
and hence the EM algorithm tells us everything we want
to know. Just as in traditional statistical mechanics, the
fact that we are studying a large system makes the point
estimates highly accurate. (One exception occurs when
we use a model that has an extensive number of param-
eters. In this case a Bayesian approach may give addi-
tional information that cannot be derived from the EM
algorithm, but we will not pursue such approaches in this
paper.)
After calculating the parameter values the next step

would normally be to use them in Eq. (1) to find the prob-
ability distribution over networks A. It turns out, how-
ever, that this is unnecessary, since the network structure
can be deduced from results we have already calculated.
Note that Eq. (5) can be written as

q(A) =
P (A, γ, θ|D)

P (γ, θ|D)
= P (A|D, γ, θ). (10)

In other words, q(A) is the probability that the network
has structure A given the observed data and our val-
ues for the parameters γ, θ. Thus the EM algorithm al-
ready gives us the entire posterior distribution over possi-
ble ground-truth network structures. In many cases this
posterior probability distribution is the primary object
of interest in the calculation, capturing both the network
structure itself and the uncertainty in that structure.
Once we have this distribution, any other network

quantity we are interested in, including degrees, corre-
lations, clustering coefficients, and so forth, can be esti-
mated from it. Specifically, for any quantity X(A) that
is a function of the network structure A, the expected
value, given the observed data and the parameter esti-
mates, is

µX =
∑

A

X(A)P (A|D, γ, θ), (11)

and the variance about that value is

σ2
X =

∑

A

[X(A)− µX ]2P (A|D, γ, θ). (12)

It is not always possible to perform the sums over A

in these expressions analytically. In cases where they
cannot be done, numerical approximations using Monte
Carlo sampling can give good answers in reasonable time.
The values of the model parameters may also be of

interest, both for the network model and for the data
model. In cases where the parameters of the network
model correspond to meaningful network quantities, they
can give us useful information, as in the case of commu-
nity detection using the stochastic block model [44, 45].

More commonly, however, it is the parameters of the data
model that are of interest because they quantify the mea-
surement process and hence can give us insight into the
reliability of the data and the types of error they may
contain.

III. NETWORK MODELS

Applying the methods of the previous section requires
us to choose the models we will use: the network model,
which describes the prior probability distribution over
networks, and the data model, which describes how the
data are related to the network structure. In this and
the following section we give some examples of possible
choices, starting with network models.
The network models most commonly used for struc-

tural inference in networks are random graph models in
which the edges are (conditionally) independent random
variables. The best known examples are the (Bernoulli)
random graph, the configuration model, the stochastic
block model, and their many variants.

A. The random graph

The simplest of network models is the standard ran-
dom graph, in which every pair of distinct nodes i, j is
connected by an edge with equal probability ω. For this
model the probability P (A|γ) becomes

P (A|ω) =
∏

i<j

ωAij (1− ω)1−Aij . (13)

Despite its simplicity, this model works well for many
of the calculations we will look at. In the absence of
evidence to the contrary, simply assuming that all edges
are equally likely is a sensible approach. We do need to
choose a prior probability P (ω) for the parameter ω. In
the calculations we perform we will assume that all values
of this parameter are equally likely, so that P (ω) = 1.

B. Edge types

Various extensions of the simple random graph are pos-
sible. For instance, one could have a model in which
instead of just two edge states (present/not present) we
have three or more. In a social network, for instance, one
might divide pairs of individuals into those who are not
acquainted, somewhat acquainted, or well acquainted.
Such states could be represented by adjacency matrix el-
ements with values 0, 1, and 2, with corresponding prob-
abilities ω0, ω1, and ω2. More generally any number k
of states could be represented by Aij = 0 . . . k − 1 and
probabilities ω0 . . . ωk−1, subject to the constraint that
∑k−1

m=0 ωm = 1. Then the probability of a particular net-
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work is

P (A|ω) =
∏

i<j

ωAij
=

∏

i<j

k−1
∏

m=0

ω
δm,Aij
m . (14)

A variant of this type of model is one in which the
edges are signed, meaning that they can have both posi-
tive and negative values. Such signed networks are some-
times used, for instance, to represent social networks in
which interactions can be both positive and negative—
friendship and animosity [54]. In the simplest case the
elements of the adjacency matrix take three values 0, +1,
and −1, and the probability P (A|ω) is an obvious varia-
tion on Eq. (14).

C. Poisson edge model

In many calculations with network models one assumes
not Bernoulli (i.e., zero/one) random variables for the
edges but Poisson ones. That is, rather than placing
edges with probability ω or not with probability 1 − ω,
one places a Poisson distributed number of edges with
mean ω. This results in a network that can contain more
than one edge between a given pair of nodes—a so-called
multiedge—which is in a sense unrealistic since most ob-
served networks do not have multiedges. However, the
probability of having a multiedge is of order ω2, which
is typically negligible in the common case of a sparse
network where ω is small, and hence the Poisson and
Bernoulli models generate essentially the same ensem-
ble in the sparse case. At the same time the Poisson
model is often significantly easier to work with and has
become favored for many applications. Commonly, in ad-
dition to multiedges, one also allows self-edges, placing
a Poisson-distributed number of such edges at each node
with mean 1

2ω. By convention a self-edge is represented
by an adjacency matrix element Aii = 2 (not 1). The
factor of 1

2 in the density of self-edges compensates for
the 2 in the definition of Aii, so that the expected value
of all adjacency matrix elements is simply ω.
For this model the equivalent of Eq. (13) is

P (A|ω) =
∏

i<j

ωAij

Aij !
e−ω

∏

i

(

1
2ω

)Aii/2

(

1
2Aii

)

!
e−ω/2, (15)

and the log of this probability is

logP (A|ω) = 1
2

∑

ij

(

Aij logω − ω
)

−
∑

i<j

logAij !−
∑

i

[

1
2Aii log 2 + log(12Aii)!

]

.

(16)

Here we have separated out terms that do not depend
on ω. When we perform a derivative as in Eq. (8),
these terms will vanish, leaving an especially simple re-
sult for ω.

Note also that this model and the previous one both
use values of Aij other than zero and one, but the values
have different meanings. In the model of Section III B
they represent different types of edges; in the model of
this section they represent multiedges.

D. Stochastic block model

A more complex model, well studied in the networks
literature, is the stochastic block model. First proposed
in the 1980s by Holland et al. [49], the stochastic block
model is a model of community structure in networks,
although with large numbers of blocks it can also func-
tion as a model of very general kinds of network struc-
ture [55, 56]. In essence, the model consists of a set of
random graphs stitched together into a larger network.
We take n nodes and divide them into some number k
of groups labeled by integers 1 . . . k, with µr being the
probability that a node is assigned to group r. Then we
place undirected edges between distinct nodes indepen-
dently such that the probability of an edge between a
given pair of nodes depends only on the groups that the
nodes belong to.
The model is simplest when written using the Poisson

formulation of Section III C: between nodes i, j belonging
to groups r, s we place a number of edges which is Poisson
distributed with mean ωrs, except for self-edges i = j for
which the mean is 1

2ωrr. The edge frequencies ωrs thus
dictate the relative probabilities of within- and between-
group connections. In the most widely studied case, the
diagonal elements ωrr are chosen to be larger than the off-
diagonal ones, so that edges are more likely within groups
than between them, a type of structure known as assor-
tative mixing or homophily. Other types of structure
are also possible, however, and are observed in some net-
works, such as disassortative structure in which between-
group edges are more likely than in-group ones [57].
Let us denote by gi the label of the group to which

node i is assigned. Then, given the parameters µr

and ωrs, the probability of generating a complete set of
group assignments g = {gi} and a network A in this
model is

P (g,A|µ, ω) =
∏

i

µgi

∏

i<j

ω
Aij
gigj

Aij !
exp

(

−ωgigj

)

×
∏

i

(

1
2ωgigi

)Aii/2

(

1
2Aii

)

!
exp

(

− 1
2ωgigi

)

.

(17)

which has logarithm

logP (g,A|µ, ω) =
∑

i

log µgi +
1
2

∑

ij

(

Aij logωgigj − ωgigj

)

−
∑

i<j

logAij !−
∑

i

[

1
2Aii log 2 + log

(

1
2Aii)!

]

.

(18)



6

Again this separates terms that involve the parameters µ
and ω from those that do not, making derivatives like
those in Eq. (8) simpler.
In the formalism considered in Section II, the struc-

ture of the network is the only kind of unobserved data,
but in the stochastic block model there are two kinds:
the network A and the group assignments g. Our EM
algorithm carries over straightforwardly to this case, but
with the joint distribution of g and A taking the place
of the distribution of A alone. When combined with a
suitable data model, this approach allows us to infer both
the network structure and the community structure from
a single calculation. An alternative approach, considered
by Le and Levina [45], is to assume that the community
structure is known via other means and only the network
structure is to be inferred using the EM algorithm. In
that case, Eq. (17) is replaced with

P (A|g, µ, ω) =
∏

i<j

ω
Aij
gigj

Aij !
exp

(

−ωgigj

)

×
∏

i

(

1
2ωgigi

)Aii/2

(

1
2Aii

)

!
exp

(

− 1
2ωgigi

)

,

(19)

and g is treated as “data” with known values. Then the
EM algorithm once again gives a posterior distribution
on the network structure alone. In their work Le and
Levina found the community structure using a traditional
spectral algorithm.

E. The configuration model and degree correction

A potential issue with the models of the previous sec-
tions is that they all generate networks with Poisson de-
gree distributions, which are quite unlike the strongly
right-skewed degree distributions seen in many real-world
networks [58, 59]. We can circumvent this issue and cre-
ate more realistic models using degree correction.
The simplest example of a degree-corrected model is

the configuration model, a random graph model that al-
lows for arbitrary degree distributions [60, 61]. In the
configuration model, one fixes the degree of each node
separately and then places edges at random, but respect-
ing the chosen node degrees. The standard way to do
this is to place “stubs” of edges at each node, equal in
number to the chosen degree, then join pairs of stubs
together at random to create complete edges. It can
be shown [1] that the number of edges falling between
nodes i and j in such a network is Poisson distributed
with mean didj/

∑

k dk, where di is the degree of node i.
In our calculations we make use of a variant of the

configuration model, similar to one proposed by Chung
and Lu [62], in which, rather than employing edge stubs,
one simply places a Poisson distributed number of edges
between each pair of nodes with the appropriate mean.
We define a set of real-valued parameters φi, one for each

node i, then place a number of edges between each pair of
nodes i, j which is Poisson distributed with mean ωφiφj ,
or half that number if i = j. Note that, like the model
of Section III C, this model can produce networks with
self-edges or multiedges (or both), which is somewhat
unrealistic. One commonly allows them nonetheless be-
cause it leads to technical simplifications and does not in
practice make much difference in the common case of a
sparse network.
As defined, the parameters φi and ω are not identifi-

able: one can increase all φi by any constant factor with-
out changing the model if one also decreases ω by the
square of the same factor. We can fix the values of the
parameters by choosing a normalization for the φi. This
can be done in several ways, all of which ultimately give
equivalent results, but for present purposes a convenient
choice is to set the average of the φi equal to 1:

1

n

∑

i

φi = 1. (20)

This choice has the nice feature that the average of the
elements of the adjacency matrix is then given by

1

n2

[

∑

i6=j

ωφiφj + 2
∑

i

1
2ωφ

2
i

]

=
ω

n2

∑

ij

φiφj = ω. (21)

Thus ω is the average value of an adjacency matrix ele-
ment, just as in the earlier model of Section III C.
Given the parameters of the model, the probabil-

ity P (A|φ, ω) of generating a particular network is

P (A|φ, ω) =
∏

i<j

(ωφiφj)
Aij

Aij !
e−ωφiφj

×
∏

i

(12ωφ
2
i )

Aii/2

(

1
2Aii

)

!
e−ωφ2

i/2, (22)

and its log is

logP (A|φ, ω) = 1
2

∑

ij

Aij logω +
∑

ij

Aij logφi −
1
2n

2ω

−
∑

i<j

logAij !−
∑

i

[

1
2Aii log 2 + log(12Aii

)

!
]

,

(23)

where we have made use of Eq. (20).
One can apply the same degree correction approach

to the stochastic block model of Section IIID, which
leads to the so-called degree-corrected stochastic block
model [51]. In this model we again divide nodes among k
groups with probability µr of assignment to group r, but
now between each pair of nodes i, j we place a number
of edges that is Poisson distributed with mean ωrsφiφj ,
where r and s are respectively the groups to which nodes
i and j belong. The additional factor of φiφj allows us
to control the degrees of the nodes and give the network
essentially any degree distribution we desire. We can fix
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the normalization of the parameters in various ways, for
example by choosing the mean of φi to be 1 within each
individual group thus:

1

nr

∑

i

δr,giφi = 1 (24)

for all r, with nr =
∑

i δr,gi being the number of nodes
in group r.

IV. DATA MODELS

We now turn to data models, meaning models of the
measurement process. These models represent the way
the data measured in our experiments depend on the
underlying ground-truth network.

A. Independent edge measurements

Perhaps the simplest data model is one in which obser-
vations of edges are independent identically distributed
Bernoulli random variables, conditioned only on the pres-
ence or absence of an edge in the same place in the
ground-truth network. That is, we make a measurement
on a node pair i, j and it returns a simple yes-or-no an-
swer about whether the nodes are connected by an edge,
which depends only on the adjacency matrix element Aij

for the same node pair and any parameters of the pro-
cess, and is independent of other matrix elements or any
other measurements we may make. That is not to say,
however, that the answers we get need be accurate, and
in general we will assume that they are not. In an error-
prone world, our measurements will sometimes reflect the
truth about whether an edge exists and sometimes they
will not.
Consider the simplest case in which Aij takes only the

values zero and one. We can then parametrize the pos-
sible outcomes of a measurement by two probabilities:
the true-positive rate α, which is the probability of ob-
serving an edge where one truly exists, and the false-
positive rate β, which is the probability of observing an
edge where none exists. (The two remaining possibilities,
of true negatives and false negatives, occur with probabil-
ities 1−β and 1−α respectively, so no additional param-
eters are needed to represent the rates of these events.)
The probability of observing an edge between nodes i
and j can then be succinctly written as αAijβ1−Aij and
the probability of not doing so is (1−α)Aij (1− β)1−Aij .
We give an application of this model to an example

data set in Section VC.

B. Multiple edge types

In Section III B we introduced a network model in
which edges have several types, representing for instance

different strengths of acquaintance in a social network.
The k edge types were represented by integer values of
adjacency matrix elements Aij = 0 . . . k − 1. Observed
data for such a network could take several forms. For
instance, one can imagine situations in which it might
be possible, via a measurement of some kind, to deter-
mine not only whether an edge exists between two nodes
but also what type of edge it is. Such a situation could
be represented by a set of variables that parametrize the
probability of observing an edge of type j between a pair
of nodes if there is an edge of type k in the ground truth.
This, however, leads to a rather complicated data model.
A simpler set-up is one in which measurements return
only a yes-or-no answer about whether two nodes are
connected by an edge and no information about edge
type. This can be represented by a model with separate
parameters α0 . . . αk−1 equal to the probability of observ-
ing an edge given each of the different ground-truth edge
states. Then the probability of observing an edge be-
tween nodes i and j is simply αAij

and the probability
of not observing one is 1− αAij

.

C. Multimodal data

There are many cases where the data for a network con-
sist not merely of one type of measurement but of two
or more. For instance a social network might be mea-
sured by surveying participants using traditional ques-
tionnaires or interviews, but also by collecting social me-
dia data, email or text messages, or using observations of
face-to-face interactions [63–65]. A protein–protein inter-
action network might be measured using a combination of
co-immunoprecipitation, affinity purification, yeast two-
hybrid screens, or other methods [66]. When represented
as networks, such data are sometimes called multilayer
or multiplex networks [67, 68].
Measurements of different types can be governed by

different probabilities and errors. Assuming a ground-
truth network represented by a simple binary adjacency
matrix with Aij = 0 or 1, one could define separate true-
and false-positive probabilities αm, βm for each type of
measurement. That is, αm is the probability that a
measurement of type m will reveal an edge between two
nodes i, j where an edge truly exists (Aij = 1), and βm is
the probability that such a measurement will reveal an
edge where none exists (Aij = 0). Then the total proba-
bility of observing an edge between i and j using a mea-

surement of type m is α
Aij
m β

1−Aij
m and the probability of

not observing one is (1− αm)Aij (1− βm)1−Aij .

D. Directed edges and individual node errors

The models we have described so far assume undirected
edges, but it is straightforward to generalize them to the
case of directed networks. Directed versions of the basic
network models exist already, such as directed versions
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of the configuration model [61] or the stochastic block
model [69]. Data models for directed networks are a nat-
ural generalization of the undirected versions. For in-
stance, one could assume that the empirical observations
of interactions between nodes in a directed network are
independent directed Bernoulli random variables that de-
pend on the underlying ground-truth edges, with appro-
priately defined true- and false-positive rates. In most
cases the equations for the models are straightforward
generalizations of those for the undirected case. We give
an example in Section VD.
In some cases it is possible for the observations of edges

to be directed even if the underlying ground-truth net-
work is undirected, or vice versa. Perhaps the most
prominent example of this phenomenon arises in the
study of social networks such as friendship or acquain-
tance networks. In studies of these networks, by far the
most common method for collecting data is simply to
ask people who their friends or acquaintances are. This
results in directed edge measurements in which the fun-
damental unit of data is a statement by person i that they
are acquainted with person j. Often, however, we would
consider the underlying network itself to be undirected—
either two people are acquainted or they are not. This sit-
uation can again be represented with a relatively straight-
forward generalization of earlier data models in which di-
rected observations depend on the underlying undirected
ground truth, with appropriately defined true- and false-
positive rates.
Directed measurements like these give rise to the pos-

sibility that two people may make contradictory state-
ments about whether they are acquainted: person i may
claim to know person j but person j may claim not to
know i. Such unreciprocated claims are in fact common
in social network studies [70]. In surveys of friendship
among schoolchildren, for instance, only about a half of
all claimed friendships are reciprocated [71]. Such a sit-
uation can arise naturally in the data model: if the true-
and false-positive rates for observations are α and β as
before, the probability of both of two individuals claim-
ing acquaintance is α2Aijβ2(1−Aij), the probability of one
but not the other doing so is 2[α(1−α)]Aij [β(1−β)]1−Aij ,
and the probability of neither is (1−α)2Aij (1−β)2(1−Aij).
An interesting alternative formulation, proposed by

Butts [9], considers the case in which some individuals
are more reliable in the reports they give than others.
Variations in reliability could arise simply because some
people take surveys more seriously than others, are more
cooperative survey subjects, or take more care with their
responses. But they could also arise because people have
different perceptions of what it means to be acquainted:
one person could have a relatively relaxed view in which
they consider people to be acquaintances even if they
barely know them, while another could adopt a stricter
definition.
Such a situation can be represented by a data model in

which there is a separate true-positive rate αi and false-
positive rate βi for each node i. Then the probability for

instance of i saying they are friends with j but j saying
they are not is [αi(1− αj)]

Aij [βi(1− βj)]
1−Aij , and sim-

ilar expressions apply for other patterns of observations.
Using this kind of model allows us to infer not only the
structure of the underlying network but also the individ-
ual true- and false-positive rates, which themselves may
reveal interesting behaviors—see Section VF.
Surveys of social networks are not the only context

in which directed measurements of undirected networks
arise. For instance, there have been many studies of
messaging behavior within groups of people: who calls
whom on the telephone, who emails whom, who sends
text messages to whom, and so forth [65, 72–74]. One
can hypothesize that observations such as phone calls or
emails are a noisy measurement of an underlying network
of acquaintance, and hence use models such as those de-
scribed above to infer the structure of the network from
the observed pattern of messages.

E. Networks with multiedges

Some ground-truth networks may be multigraphs,
meaning that they contain multiedges. True multigraphs
are rare in real-world applications, but there are many
networks which, though composed of single edges only,
may nonetheless be conveniently represented as multi-
graphs, for instance using the Poisson formulation of
Section III C. How should we define a data model for
a multigraph? There are a number of types of data a
measurement of such a network could return. It could,
for instance, return an estimate of the multiplicity of an
edge. In our work, however, we make a simpler assump-
tion, similar to that of Section IVB, in which measure-
ments return only a yes-or-no answer that there either is
or is not an edge at a given position. This situation is
most completely represented by a model with an infinite
set of parameters αk, representing the probability that
upon making a measurement of a particular pair of nodes
we observe an edge between them if there are exactly k
edges in the corresponding position in the ground-truth
network. In practice, however, since multiedges are rare
in the examples we consider, only the first two of these
parameters are of interest: α0, which is the false-positive
rate, and α1, which is roughly, though not exactly, the
true-positive rate.

V. COMPLETE ALGORITHMS AND EXAMPLE

APPLICATIONS

Building a complete algorithm for inferring network
structure from noisy data involves combining a suitable
network model with a suitable data model. There are
many such combinations we can construct from the mod-
els introduced in the previous sections. Here we give a se-
lection of examples, along with illustrative applications.
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A. Random graphs and independent measurements

Perhaps the simplest example of our methods is the
combination of the standard (Bernoulli) random graph
of Section III A with the independent edge data model of
Section IVA. This turns the problem of network recon-
struction into a standard binary classification problem.
We will go through this case in detail.
To derive the EM equations for this combination of

models, we first take the probability P (A|ω) for the ran-
dom graph from Eq. (13) and the uniform prior probabil-
ity P (ω) = 1 and substitute them into Eq. (8). Perform-
ing the derivative with respect to the single parameter ω,
we get

∑

A

q(A)
∑

i<j

[

Aij

ω
−

1−Aij

1− ω

]

= 0. (25)

Swapping the order of the summations and defining

Qij =
∑

A

q(A)Aij , (26)

we find that

ω =
1
(

n
2

)

∑

i<j

Qij , (27)

where n is the number of nodes in the network, as previ-
ously.
The quantity Qij is equal to the posterior probability

that there is an edge between nodes i and j—it is our
estimate of the ground truth for this node pair given the
observed data. Qij can be thought of as a generaliza-
tion of the adjacency matrix. When it is exactly zero
or one it has the same meaning as the adjacency ma-
trix element Aij : there definitely either is or is not a
ground-truth edge between nodes i and j. For other val-
ues between zero and one it interpolates between these
limits, quantifying our certainty about whether the edge
exists. Equation (27) thus has the simple interpretation
that the probability ω of an edge in our network is the
average of the probabilities of the individual edges.
Turning to the data model, a crucial point to notice

is that if measurements of different edges are truly in-
dependent, so that an observation (or not) of an edge

between one node pair tells you nothing about any other
node pair, then single measurements of node pairs are
not enough to estimate the parameters of the model. It
is well known that you cannot estimate the error on a
random variable by making only a single measurement.
You have to make at least two measurements. In the
present context, this means that at least some edges in
the network must be measured more than once to obtain
an estimate of the true- and false-positive rates α and β.
Let us assume that we make some number Nij of

measurements of node pair i, j. Each measurement
returns a yes-or-no answer about whether the nodes
are connected by an edge, but repeated measurements
may not agree, precisely because the measurements are
noisy. So suppose that out of the Nij measurements
we make, we observe an edge on Eij of them, and no
edge on the remaining Nij − Eij . Plugging these defini-
tions into the data model of Section IVA, we can write
the probability of this particular set of observations as
αEij (1 − α)Nij−Eij if there is truly an edge between i
and j, and βEij (1− β)Nij−Eij if there is not. Taking the
product over all distinct node pairs, the probability for
the entire data set can then be written

P (D|A, α, β) =
∏

i<j

[

αEij (1− α)Nij−Eij
]Aij

×
[

βEij (1− β)Nij−Eij
]1−Aij

.

(28)

Taking the log and substituting into Eq. (9), assuming
that the priors on α and β are uniform, we get

∑

A

q(A)
∑

i<j

Aij

[

Eij

α
−

Nij − Eij

1− α

]

= 0, (29)

∑

A

q(A)
∑

i<j

(1−Aij)

[

Eij

β
−

Nij − Eij

1− β

]

= 0, (30)

which can be rearranged to give

α =

∑

i<j QijEij
∑

i<j QijNij
, β =

∑

i<j(1−Qij)Eij
∑

i<j(1 −Qij)Nij
, (31)

where Qij is as in Eq. (26) again.

It remains to calculate the value of Qij , which we do from Eq. (5). Combining Eqs. (1), (13), and (28) and
substituting into (5), we find the following expression for q(A):

q(A) =

∏

i<j

[

ωαEij (1 − α)Nij−Eij
]Aij

[

(1− ω)βEij (1− β)Nij−Eij
]1−Aij

∑

A

∏

i<j

[

ωαEij (1 − α)Nij−Eij

]Aij
[

(1− ω)βEij (1− β)Nij−Eij

]1−Aij

=
∏

i<j

[

ωαEij (1− α)Nij−Eij
]Aij

[

(1− ω)βEij (1− β)Nij−Eij
]1−Aij

ωαEij (1 − α)Nij−Eij + (1− ω)βEij (1− β)Nij−Eij
. (32)
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Then

Qij =
∑

A

q(A)Aij =
ωαEij (1− α)Nij−Eij

ωαEij (1− α)Nij−Eij + (1− ω)βEij (1− β)Nij−Eij
. (33)

The posterior distribution q(A) can be conveniently
rewritten in terms of Qij as

q(A) =
∏

i<j

Q
Aij

ij (1−Qij)
1−Aij . (34)

In other words, the probability distribution over networks
is (in this special case) simply the product of indepen-
dent Bernoulli distributions of the individual edges, with
Bernoulli parameters Qij .
The complete EM algorithm now consists of the it-

eration of Eqs. (27), (31), and (33) from suitably cho-
sen starting conditions until convergence. Typically one
chooses random values of ω, α, and β for the initial con-
ditions and proceeds from there.
Once the algorithm has converged we can estimate net-

work quantities of interest using Eqs. (11) and (12). As a
simple example, consider the average degree c of a node
in the network. For a known network with adjacency ma-
trix A the average degree is given by c = (1/n)

∑

ij Aij .

The mean (expected) value of the average degree given
our posterior distribution q(A) is thus

µc =
∑

A

q(A)
1

n

∑

ij

Aij =
1

n

∑

ij

∑

A

q(A)Aij

=
1

n

∑

ij

Qij . (35)

The estimated variance about this value is given by
Eq. (12) to be

σ2
c =

∑

A

q(A)

[

1

n

∑

ij

Aij − µc

]2

=
1

n2

∑

A

q(A)
∑

ijkl

AijAkl − µ2
c

=
1

n2

∑

ij

Qij(1−Qij). (36)

The approach of this section generalizes straightfor-
wardly to the variant random graph of Section III C in
which there is a Poisson distributed number of edges be-
tween each pair of nodes and the network can contain
multiedges. Taking Eq. (16) and substituting into (8) we
get

∑

A

q(A)
∑

ij

[

Aij

ω
− 1

]

= 0. (37)

Here we have again assumed a uniform prior on ω, which
is not strictly allowed in this case, since ω has an infinite

range from 0 to ∞. One can, however, assume a uniform
prior over a finite range and then make that range large
enough to encompass the solution for ω.
Rearranging Eq. (37) for ω now gives

ω =
1

n2

∑

A

q(A)
∑

ij

Aij =
1

n2

∑

ij

∑

A

q(A)
∞
∑

k=0

kδk,Aij

=
1

n2

∑

ij

∞
∑

k=0

kQij(k), (38)

where

Qij(k) =
∑

A

q(A)δk,Aij
(39)

is the posterior probability that there are exactly k edges
between nodes i and j (or 1

2k edges when i = j). Alter-
natively, and perhaps more conveniently, we can write
the estimated value of Aij as

Âij =

∞
∑

k=0

kQij(k), (40)

in which case

ω =
1

n2

∑

ij

Âij . (41)

As discussed in Section IVE, we will assume that, mul-
tiedges notwithstanding, measurements on node pairs i, j
continue to return yes-or-no answers about the presence
of an edge, with αk being the probability of a yes if there
are k ground-truth edges between i and j. Let Eij rep-
resent the number of yeses out of a total of Nij measure-
ments, except for self-edges, for which the most natural
definition is that Eii represents twice the number of yeses
and Nii twice the number of measurements, by analogy
with the definition of the adjacency matrix.
With these definitions, the equivalent of Eq. (28) for

this model is

P (D|A, α) =
∏

i<j

∞
∏

k=0

[

α
Eij

k (1− αk)
Nij−Eij

]δk,Aij

×
∏

i

∞
∏

k=0

[

α
Eii/2
k (1− αk)

(Nii−Eii)/2
]δk,Aii .

(42)

Taking the log, substituting into Eq. (9), and assuming
that the priors on the αk are uniform, we then get

∑

A

q(A)
∑

ij

δk,Aij

[

Eij

αk
−

Nij − Eij

1− αk

]

= 0 (43)
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for all k = 0 . . .∞. Rearranging for αk, we get

αk =

∑

ij Qij(k)Eij
∑

ij Qij(k)Nij
, (44)

where Qij(k) is defined in Eq. (39).

Following similar lines of argument to those for the Bernoulli model, Eq. (5) now tells us that the posterior
distribution over networks A is

q(A) =
∏

i<j

ωAij/Aij !
[

α
Eij

Aij
(1− αAij

)Nij−Eij
]

∑∞
k=0 ω

k/k!
[

α
Eij

k (1− αk)Nij−Eij

]

∏

i

(12ω)
Aii/2/(12Aii)!

[

α
Eii/2
Aii

(1− αAii
)(Nii−Eii)/2

]

∑∞
r=0(

1
2ω)

r/r!
[

α
Eii/2
2r (1− α2r)(Nii−Eii)/2

]

=
∏

i≤j

Qij(Aij).

(45)

Then

Qij(k) =
ωk/k!

[

α
Eij

k (1− αk)
Nij−Eij

]

∑∞
k=0 ω

k/k!
[

α
Eij

k (1 − αk)Nij−Eij

]
(46)

for i 6= j and

Qii(k) =
(12ω)

k/2/(12k)!
[

α
Eii/2
k (1− αk)

(Nii−Eii)/2
]

∑∞
r=0(

1
2ω)

r/r!
[

α
Eii/2
2r (1− α2r)(Nii−Eii)/2

]

.

(47)
In the common case of network that does not actually
have any self-edges, however, one would not normally
attempt to measure their presence, so Nii = Eii = 0 for
all i and the latter expression simplifies to

Qii(k) =
(12ω)

k/2

(12k)!
e−ω/2, (48)

which is simply the prior distribution on self-edges as-
suming the random graph model. In practice, for sparse
networks where ω is small, it will often be an adequate
approximation to simply set Qii(0) = 1 for all i and
Qii(k) = 0 for k > 0, implying that there are no self-
edges, which is true.
In theory, the evaluation of Qij(k) from Eq. (46) re-

quires us to first calculate all of the parameters αk, of
which there are an infinite number, in order to evaluate
the denominator. In practice, however, most networks,
as we have said, are sparse, having small values of ω,
which means that all but the first two terms in the de-
nominator can be neglected and only α0 and α1 need
be calculated (which represent approximately the false-
positive and true-positive rates for this data model). This
in turn means that Qij(k) is negligible for k ≥ 2, so that
Qij(0) ≃ 1 −Qij(1). Thus we only really need to calcu-
late one probability Qij(1) for each node pair:

Qij(1) ≃
ωα

Eij

1 (1 − α1)
Nij−Eij

α
Eij

0 (1 − α0)Nij−Eij + ωα
Eij

1 (1− α1)Nij−Eij

,

(49)
which represents, roughly speaking, the probability that
there is an edge between i and j, which is also (approx-
imately) the expected value of the corresponding adja-

cency matrix element Âij ≃ Qij(1).

B. Configuration model with independent

measurements

The developments of the previous section can be ex-
tended in a straightforward manner to the more realistic
configuration model introduced in Section III E. Sub-
stituting Eq. (23) into Eq. (8) and differentiating with
respect to ω gives

ω =
1

n2

∑

A

q(A)
∑

ij

Aij =
1

n2

∑

ij

∞
∑

k=0

kQij(k)

=
1

n2

∑

ij

Âij , (50)

just as in Eqs. (38) and (41), with Qij(k) =
∑

A
q(A)δk,Aij

as before and Âij =
∑

k kQij(k) being
the estimated value of Aij , Eq. (40). At the same time,
differentiating with respect to φi, while enforcing the
normalization condition (20) with a Lagrange multiplier,
gives

φi = n

∑

j Âij
∑

ij Âij

. (51)

The equations for the data model parameters αk are
unchanged from the previous section, with αk still being
given by Eq. (44). And the posterior distribution over
networks is once again given q(A) =

∏

i≤j Qij(Aij) but
now with

Qij(k) =
(ωφiφj)

k/k!
[

α
Eij

k (1− αk)
Nij−Eij

]

∑∞
k=0(ωφiφj)k/k!

[

α
Eij

k (1 − αk)Nij−Eij

]
,

(52)

and Qii(k) = e−ωφ2
i/2(12ωφ

2
i )

k/2/(12k)!.
If we make the same assumption as we made at the end

of the previous section, that ω is small and hence only
the first two terms in the denominator of Eq. (52) need
be included, then one need only calculate the quantities

Qij(1) ≃
ωφiφjα

Eij

1 (1− α1)
Nij−Eij

α
Eij

0 (1− α0)Nij−Eij + ωφiφjα
Eij

1 (1− α1)Nij−Eij

,

(53)

and Qij(0) ≃ 1−Qij(1), Âij ≃ Qij(1) (and Qii(0) ≃ 1).
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(a) (b)

FIG. 1: Two examples of inferred networks of connections between a subset of the participants in the “reality mining” study of
Eagle and Pentland [75, 76]. (a) Network inferred using the Poisson random graph for the network model and the independent
edges model of Section IVA for the data model. Edges with probability less than 0.01 are omitted, as are nodes that have
no edges with probability 0.01 or greater. (b) Network inferred from the same data, but using the configuration model as the
network model. For ease of comparison, the same set of nodes is shown in panel (b) as in panel (a), with each in the same
spatial position.

C. Example application

As an example of the application of these methods, we
turn to a data set we examined previously in [43]. The
data come from the “reality mining” study of Eagle and
Pentland [75, 76] and describe the interactions of a group
of 96 university students. The goal of the study was
to determine whether one could reconstruct networks of
acquaintance—who actually knows whom—from data on
physical proximity. Students in the study carried mobile
phones equipped with special software that used Blue-
tooth radio technology to record when two of the phones
where in close proximity with one another (a few me-
ters). It is reasonable to suppose that people who are
acquainted will sometimes be in close proximity, but it is
also certainly the case that some acquaintances are rarely
or never in proximity and that people may be in proxim-
ity and not be acquainted. You might sit next to someone
on the bus, for example, or stand next to them in the line
at the supermarket without ever knowing who they are.
Thus proximity is a noisy measurement of acquaintance
of exactly the kind considered here.
The study by Eagle and Pentland recorded detailed,

time-resolved instances of pairwise proximity between
participants over a period of several months in 2004 and
2005, but the data we study cover a smaller interval, be-
ing taken from eight consecutive Wednesdays in March
and April of 2005. We limit ourselves to Wednesdays in
order to factor out the (large) weekly variation in prox-
imity patterns: lower rates of proximity are observed at
weekends than on weekdays for instance. We also amal-
gamate all observations for each Wednesday into a single

measurement: we consider two people to be observed to-
gether on a particular day if they are measured to be
in proximity at any time during that day. The result is
eight separate measurements of proximity for each pair of
individuals. In the nomenclature of our models, Nij = 8
for all i, j, and Eij can take integer values from 0 up to 8.
All possible values in this range are observed in the data.
Figure 1a shows what happens when we apply the algo-

rithm of Eqs. (44) and (49) to these data. This algorithm
assumes a simple random graph for the network model
and (conditionally) independent edge measurements for
the data model. The figure shows the resulting inferred
network with edge thicknesses representing the posterior
probabilities of the edges. As we can see there is a well
connected core of about twenty nodes in the center of
the picture, surrounded by a periphery with weaker con-
nections. The thickest lines in the figure represent edges
with probability of almost 1, while the thinnest represent
edges with probability less than 0.1. Edges with proba-
bility less than 0.01 are omitted from the figure, as are
nodes that have no connections above this threshold.
Figure 1b shows the same data analyzed using the al-

gorithm of Eqs. (50), (51), and (53), which uses the con-
figuration model as its network model. As we can see,
this produces some changes in the inferred edge proba-
bilities. Overall many of the same edges get high or low
probability in both models but the configuration-model
based algorithm gives a more “decisive” result than its
random-graph counterpart, mostly assigning either very
high or very low probabilities to edges, meaning that it
is more certain whether edges do or do not exist.
One way to think about the configuration model in this
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context is that it introduces correlations between edges
that are not present when one uses the simple random
graph. The presence of edges attached to a particular
node i increases the inferred value of the node parame-
ter φi via Eq. (51), and this in turn increases the proba-
bility of other edges being attached to the same the node
via Eq. (53). Thus the presence of one edge makes the
presence of another more likely.
One might ask which is the better of the two network

models: the random graph or the configuration model?
In fact, despite the visual differences between the net-
works in Fig. 1, the two do not differ very greatly. If
we take the maximum-probability structure predicted by
each algorithm (which is equivalent to assuming an edge
to exist whenever Qij > 1

2 and not otherwise), then we
find that the two calculations agree on essentially all node
pairs except those for which Eij = 1, i.e., those for which
proximity was observed on only one of the eight days
of observation. For these pairs the random-graph-based
calculation always concludes that the corresponding edge
does not exist, whereas the configuration model some-
times says it does and sometimes says it doesn’t. Thus
the primary contribution of the configuration model in
this instance is to give us more sensitivity in the case of
node pairs with particularly sparse observations.
More generally, the configuration model is considered

to be the more accurate model in most real-world cases
since it allows for realistic non-Poisson degree distribu-
tions similar to those seen in empirical networks [61].
Nonetheless, there maybe cases where the ordinary ran-
dom graph is justified; which model one uses depends
in the end on the assumptions one makes about the na-
ture of the network. One might perhaps consider this
a problem with the method. Other network reconstruc-
tion methods do not require one to make assumptions in
this way. As discussed at the start of Section II, how-
ever, we would argue that these other methods are still
making assumptions, though they may not be explicitly
acknowledged. We feel that the approach we propose is
preferable in that it requires us to make our assumptions
clear and allows us to see directly what effect they have
on the results.
Note also that our algorithms cannot make any state-

ment about what network it is exactly that is repre-
sented in pictures like Fig. 1. Is it a network of who
is friends with whom? Who knows whom? Who works
with whom? The algorithm does not say. All we can say
is that this is our best estimate of whatever network it
is that is driving the observations. In the present case
it is probably some amalgam of friendship, students who
work together, students who go to class together, and so
forth. “Acquaintance” might be a good umbrella term
for this set of interactions, but in the end the network
is most correctly defined as that network which causes
people to be in proximity with one another.
Once we have the posterior distribution over networks,

we can estimate any other network quantity of interest
from it using Eqs. (11) and (12). For instance, we can

calculate the mean degree c of the network, Eqs. (35)
and (36). Using the configuration model version of our
calculation and approximatingQij by Qij(1) we find that
c = 5.55±0.05. By contrast, a naive estimate of the mean
degree, derived by simply aggregating all proximity ob-
servations for the eight days of data, gives c = 6.23, which
is of the same order of magnitude, but nonetheless in sig-
nificant disagreement (and lacking any error estimate).
A more conservative estimate, in which we assume an
edge only if there are proximity observations between a
given pair of nodes on two or more days, gives a lower
value of c = 3.00, again in substantial disagreement with
our estimate from the posterior distribution.
Running time for the calculation is minimal, varying

from a fraction of a second to a few seconds depending on
model details and the programming language used. More
generally, since the calculation requires the evaluation of
O(n2) probabilities Qij , we expect the running time to
scale at least as n2. Network algorithms running in O(n2)
time are typically feasible (with patience) for networks of
up to hundreds of thousands or perhaps millions of nodes,
putting our methods within reach for many large network
data sets, though not, in their current form, for the very
largest (there exist examples with billions of nodes or
more).

D. Multimodal data

For our second example we consider the case discussed
in Section IVC of a network whose edges are observed
using a number of different methods or modes, labeled by
m = 1 . . .M . We will consider specifically a directed net-
work, both to give an explicit example of an algorithm
for directed edges and because it will be useful in Sec-
tion VE, where we will apply the method to a directed
data set. By convention, directed networks are repre-
sented by an adjacency matrix in which Aij = 1 if there
is an edge from node j to node i.
We will assume that the prior probability of any di-

rected edge is ω as previously. Then, assuming a simple
network in which there are no multiedges or self-edges,
we have

P (A|ω) =
∏

i6=j

ωAij (1− ω)1−Aij , (54)

which is a trivial generalization of Eq. (13). Following
the same line of argument as in Eq. (25) we can then
show that

ω =
1

n(n− 1)

∑

i6=j

Qij , (55)

where Qij =
∑

A
q(A)Aij is the posterior probability of

a directed edge from node j to node i.
Now let the true- and false-positive rates for observa-

tions in mode m be αm and βm respectively, as described
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in Section IVC. And let N
(m)
ij be the number of measure-

ments made of the presence or absence of an edge from j
to i (usually zero or one, but other values are possible in

principle) and E
(m)
ij be the number of times an edge is in

fact observed. Then the likelihood of the data D given
the ground-truth network and parameters is

P (D|A, α, β) =
∏

i6=j

[ M
∏

m=1

α
E

(m)
ij

m (1− αm)N
(m)
ij −E

(m)
ij

]Aij

×

[ M
∏

m=1

β
E

(m)
ij

m (1− βm)N
(m)
ij −E

(m)
ij

]1−Aij

.

(56)

Here we are assuming that measurements made in dif-
ferent modes are statistically independent, so that the
probability of observing any given edge in any given com-
bination of modes is a product over the probabilities of
the individual modes. In the language of machine learn-
ing such an approach is called a naive Bayes classifier.

Following the same line of argument as in Eq. (28), we can then show that

αm =

∑

i6=j QijE
(m)
ij

∑

i6=j QijN
(m)
ij

, βm =

∑

i6=j(1−Qij)E
(m)
ij

∑

i6=j(1−Qij)N
(m)
ij

, (57)

while the equivalent of Eq. (33) for Qij is

Qij =
ω
∏

m α
E

(m)
ij

m (1 − αm)N
(m)
ij −E

(m)
ij

ω
∏

m α
E

(m)
ij

m (1− αm)N
(m)
ij −E

(m)
ij + (1− ω)

∏

m β
E

(m)
ij

m (1− βm)N
(m)
ij −E

(m)
ij

. (58)

The EM algorithm now consists of the iteration of Eqs. (55), (57), and (58) from suitable starting values to convergence.

E. Example application

As an example of this algorithm, we consider an eco-
logical network, a food web of predator-prey interactions
between species. The specific example we look at is the
early Eocene Messel Shale food web of Dunne et al. [77], a
prehistoric food web of exactly n = 700 extinct taxa and
their patterns of predation, reconstructed from paleonto-
logical evidence. Like many food webs, this one is pieced
together from data derived from a variety of sources. In
this case, the authors used ten different types of evidence
to establish links between taxa, including such things as
gut contents (the digested remains of one species were
found in the fossilized gut of another), stratigraphic co-
occurrence (evidence of interaction is present in one or
more other nearby contemporaneous fossil deposits), or
body size (larger animals eat smaller ones, so a difference
in body sizes can suggest a predator-prey interaction).
What is particularly interesting about this data set

for our purposes is that Dunne et al. made available
not only the final form of the network but the details
of which particular modes were observed for each edge in
the network—gut contents, body size, etc. Thus the data
set has exactly the “multimodal” form we considered in
the previous section.
Of the ten modes of observation used by Dunne et al.

one of them—“taxonomic uniformity”—is seen in virtu-

ally all edges (6126 edges out of a total of 6444, or 95%),
which means in practice that it communicates almost no
information. So we discard it, leaving M = 9 remain-
ing modes of measurement in the data set. Each mode
is listed as either observed or not for each edge in the

network, meaning in effect that N
(m)
ij = 1 for all i, j and

all m, and E
(m)
ij is either zero or one. Applying Eqs. (55),

(57), and (58) to these data and iterating to convergence,
we then arrive at values for the true- and false-positive
rates in each mode and probabilities Qij for the directed
edges.
In addition to the data set itself, Dunne et al. pub-

lished their own judgments about the structure of the
network. For each edge that was observed in at least one
of the modes they assigned a score, based on the data,
indicating how confident they were that the edge in ques-
tion actually exists in the network. They used a three-
valued scale to say whether they judged there to be high,
medium, or low certainty about each edge. If we similarly
divide the edges of our inferred network into three cate-
gories, arbitrarily defining high certainty to be Qij > 0.9,
low certainty to be Qij < 0.1, and medium certainty to
be everything else, we find that our EM algorithm is able
to reproduce the assessments of Dunne et al. for 5446 of
the 6444 observed edges, or 84.5%. For comparison, a
random guess would get only 33% correct. (Our choice
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FIG. 2: Inferred values of the true-positive and false-discovery
rates for each of the nine types of evidence considered
in our analysis of the Messel Shale food web data set of
Dunne et al. [77]. High true-positive rate indicates a type
of evidence that is frequently observed when there truly is a
link in the network; high false-discovery rate indicates that
many observations of links using this type of evidence are in
error.

of 0.1 and 0.9 for the cut-off lines is not based on any
rigorous principle, and it is possible to get better agree-
ment with the assessments of Dunne et al. by tuning the
values carefully. Even the rough calculation presented
here, however, shows that the EM algorithm is capable
of extracting real insight from the data.)
In addition to the network itself, the inferred values of

the parameters αm and βm are also of interest. Because
this network (like most others studied in network science)
is very sparse, all the βm are small. To make them eas-
ier to interpret we reparametrize them in terms of the
false-discovery rate, which is the probability that an ob-
servation of an edge is wrong. Applying Bayes’ rule, the
false-discovery rate for observations in mode m is given
by

P (A
(m)
ij = 0|E

(m)
ij = 1)

= P (E
(m)
ij = 1|A

(m)
ij = 0)

P (A
(m)
ij = 0)

P (E
(m)
ij = 1)

=
(1− ω)βm

ωαm + (1− ω)βm
. (59)

Figure 2 shows the estimated true-positive and false-
discovery rates for each of the nine measurement modes.
A high true-positive rate for a mode means that when
an edge truly exists we will typically see evidence in this
mode. A high false-discovery rate means that observa-
tions in this mode cannot be trusted because they are
frequently false alarms.

The figure reveals that none of the modes of obser-
vation has a particularly high estimated true-positive
rate—none is above 50%—but that “damage pattern”
(evidence of damage to prey by predators) is, overall, the
best of the bunch, having a true-positive rate of 47.3%
and a zero false-discovery rate, meaning that if this mode
is observed it is a reliable indication of predation. The
latter initially appears to be an interesting and informa-
tive statement (it also applies to the “co-occurrence” and
“body size” modes), but in fact it is not as useful as it
might at first seem. The zero false-discovery rate occurs
because this type of observation is usually seen in concert
with other modes of evidence for the same edge, which
together cause the algorithm to (correctly) conclude that
the edge is present with high probability. Thus we can
indeed reliably infer that an edge is present when this
mode is observed, but even in the absence of this mode
we would probably infer the same thing in most cases.
Among the other modes, “coprolites” and “track or

domicile” have the lowest true-positive rates. And, per-
haps surprisingly, “gut contents,” which Dunne et al.

consider the gold standard for establishing predation, is
relatively poor on both measures, with a true-positive
rate of only 16.8% (meaning observations in this mode
are rare) and a false-discovery rate of 26.9% (meaning
over a quarter of observations of this type turn out to be
wrong). This makes gut contents the second-most un-
reliable mode of observation, after “morphology.” The
explanation for this result is essentially the opposite of
that for “damage pattern” above: in a significant fraction
of cases gut contents is the only type of observation in
favor of an interaction. If an interaction truly exists then
the probability that none of the other modes of evidence
would be observed is low. When no other modes are ob-
served, therefore, the algorithm concludes that there is
a chance that the interaction does not in fact exist, and
hence that the gut contents data are not wholly reliable.

F. Individual node errors

For our final example we consider the model of Sec-
tion IVD in which the network is undirected but obser-
vations of it are directed and there are individual and po-
tentially different error rates for each node. This model is
particularly appropriate for acquaintance network data.
Suppose we have a social network of friendship or ac-

quaintance and the structure of the network is measured
by surveying people and asking them who their friends
are. We use the configuration model as our network
model, with the parameters ω and φi being given once
again by Eqs. (50) and (51). For our data model we use a
variant of the approach described in Section IVD and de-
fine αik to be the probability that individual i identifies
another individual as a friend if there are k (undirected)
edges between them in the ground-truth network. Then
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the data likelihood given the ground truth is

P (D|A, α) =
∏

i6=j

∞
∏

k=0

[

α
Eij

ik (1 − αik)
Nij−Eij

]δk,Aij

×
∏

i

∞
∏

k=0

[

α
Eii/2
ik (1 − αik)

(Nii−Eii)/2
]δk,Aii ,

(60)

where Eij is the number of times (out of Nij total) that i
identifies j as a friend (which under normal circumstances
will be either zero or one) or twice that number when
i = j.

Following the same lines of argument as previously, we then find that

αik =

∑

j Qij(k)Eij
∑

j Qij(k)Nij
, Qij(k) =

(ωφiφj)
k/k!

[

α
Eij

ik (1 − αik)
Nij−Eijα

Eji

jk (1− αjk)
Nji−Eji

]

∑∞
k=0(ωφiφj)k/k!

[

α
Eij

ik (1− αik)Nij−Eijα
Eji

jk (1− αjk)Nji−Eji

]

. (61)

As with the model of Section VB, it will in the common
case of a sparse network usually be adequate to compute
only Qij(1) and assume Qij(0) = 1 − Qij(1) and Âij =
Qij(1), all other probabilities Qij(k) with k ≥ 2 being
negligible.

G. Example application

As an example of this algorithm we consider data
from the US National Longitudinal Study of Adolescent
Health [78, 79], known colloquially as the “Add Health”
study, a large-scale study of students in US middle and
high schools conducted during the 1990s. Among other
things the study asked students to identify their friends,
but it was found that individuals often disagreed about
friendships: as discussed in Section IVD, a substantial
fraction of all claims of friendship are unreciprocated, im-
plying a significant level of false positives, false negatives,
or both in the data, and we can estimate these levels by
applying our methods.
There were 84 populations surveyed in the Add Health

study, where a population consisted of a high school
and an associated feeder middle school. The popula-
tions ranged in size from dozens of students to thousands
and the methods described here could be applied to any
of them. In Fig. 3 we show results for a medium-sized
population with 542 students. In this figure the widths
of the edges once again vary to indicate the estimated
probabilities Qij . In addition we vary the diameters of
the nodes in proportion to the estimated degree param-
eter φi, which can be thought of as a measure of the
sociability or popularity of individuals. We also vary the
shades of the nodes to denote the reliability of their re-
ports of friendships. As our measure of reliability we use
the precision, which is the probability that a reported
friendship is actually correct. As with the false-discovery
rate of Section VE, an expression for the precision can

be written using Bayes’ rule:

P (Aij = 1|Eij = 1) = P (Eij = 1|Aij = 1)
P (Aij = 1)

P (Eij = 1)

=
ωφiφjαi

ωφiφjαi + βi
. (62)

The numbers we use to compute the shades of the nodes
are the average value of this precision over all the friend-
ships an individual reports.
The figure reveals a network with a dense core of

strongly connected nodes (perhaps divided into two
parts), plus a sparser periphery of more weakly connected
nodes. Most nodes appear to have roughly the same value
of φi (they appear about the same size), though a small
subset seem to be “less sociable” (they appear smaller).
Most nodes also have relatively low precision (lighter
shades); only a handful, mostly in the interior of the
figure, fall in the high-precision range (darker shades).

VI. CONCLUSIONS

In this paper we have developed in detail a class of
expectation-maximization (EM) algorithms that allow
one to infer the structure of an observed network from
noisy, error-prone, or incomplete measurements. These
algorithms take raw observational data concerning the
structure of networks and return a posterior probability
distribution over possible structures the network could
take. This posterior distribution can then be used to es-
timate any other network quantity of interest along with
the standard error on that estimate. In addition our algo-
rithms also return values for a range of model parameters
that quantify the mapping between the true structure of
the network and the observed data, such as true- and
false-positive rates for observation of individual edges.
In many cases these parameters are of interest in their
own right.
We have given three examples of practical applications



17

FIG. 3: The inferred network of friendships among the students in a medium-sized American high school and its feeder middle
school. Edge thicknesses represent the inferred posterior probabilities of the edges. Node sizes represent the inferred values
of the degree parameters φi for the configuration model. Shading of the nodes represents the estimated average precision
of reports made by the corresponding individual, precision being the probability that a reported friendship actually exists.
Lightest shades correspond to the lowest precision and darkest shades to the highest. Only edges that are reported to exist by
at least one participant are shown, and nodes with no reported edges are omitted.

of our methods to previously published network data sets.
In the first example we inferred the structure of a social
network from repeated observations of physical proxim-
ity between pairs of people. In the second example we
looked at a food web data set of predator-prey inter-
actions among a group of species. Connections in the
network are measured using a number of different tech-
niques and, though none of techniques is very reliable,
our methods allow us to combine them to make an esti-
mate of the structure of the network. Our third example
focused again on a social network, in this case of de-
clared friendships between students in a US high school
and middle school. In addition to allowing us to infer
the structure of the friendship network, our algorithm in
this case also gives us a measure of how accurately each
student reports their own friendships.
One thing we have not done in this paper is look in

detail at the case introduced in Section IIID of networks

that are generated from the stochastic block model (or
its degree-corrected variant introduced in Section III E).
Application of these models would allow us to simulta-
neously infer both the structure of the network and its
division into communities. Recent work by Peixoto, ap-
pearing after the submission of this paper, describes one
potential method for performing such a calculation. The
interested reader is invited to look at Ref. [80].
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