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We reveal large fluctuations in the response of real multiplex networks to random damage of
nodes. These results indicate that the average response to random damage, traditionally considered
in mean-field approaches to percolation, is a poor metric of system robustness. We show instead
that a large-deviation approach to percolation provides a more accurate characterization of system
robustness. We identify an effective percolation threshold at which we observe a clear abrupt
transition separating two distinct regimes in which the most likely response to damage is either a
functional or a dismantled multiplex network. We leverage our findings to propose a new metric,
named safeguard centrality, able to single out the nodes that control the response of the entire
multiplex network to random damage. We show that safeguarding the function of top-scoring nodes
is sufficient to prevent system collapse.

I. INTRODUCTION

Civil infrastructures, transportation networks, finan-
cial networks, as well as cell molecular networks and brain
networks, are all good examples of multiplex networks,
i.e., complex systems whose topology can be meaning-
fully represented as a composition of many interacting
network layers [1–5]. A central topic in the study of mul-
tiplex networks is the characterization of their robustness
[6]. This problem is usually approached with percolation
theory, where the macroscopic connectedness of the sys-
tem is studied as a function of the microscopic damage
of system elements. The simplest scenario considered in
percolation studies of multiplex networks assumes that
nodes are initially damaged with probability f (alter-
natively, one may assumes that nodes are not damaged
with probability p = 1 − f). Depending on the topol-
ogy of the system and the value of the probability f ,
the initial damage of nodes may trigger further damag-
ing avalanches in the system, eventually leading to the
complete failure of the multiplex [6]. On networks with
infinite size, it has been shown that percolation yields
a discontinuous hybrid transition of the Mutually Con-
nected Giant Component (MCGC), thus radically dif-
ferent from the usual continuous transition observed in
isolated networks [6–21]. The discontinuity of the tran-
sition indicates that multiplex networks are significantly
more fragile than their single layers taken in isolation.
The reason is that, at the percolation transition, a mul-
tiplex network is affected by large avalanches of failure
that suddenly dismantle the whole network leading to a
discontinuous phase transition [6]. This result is central
in the study of percolation and is playing a major role
in the active research field aiming at identifying dynami-
cal rules that can change the nature of phase transitions
from continuous to discontinuous [22–27].

Percolation theory, on single-layer as well as on multi-
plex networks, is traditionally studied in the mean-field
approach by characterizing the average response of a net-
work to initial damage [28, 29]. This approach is totally

justified in the infinite network limit where percolation
is self-averaging, i.e., the fluctuations around the mean
behaviour are vanishing. However, the interest in the per-
colation transition is often driven by applications which
always involve finite (and sometime not too large) net-
works [6, 14, 19, 30]. Further in practical applications,
the prediction of eventual, even if extremely rare, catas-
trophic failures is way more important than the charac-
terization of the average behavior of a system.

To provide a pragmatic characterization of the re-
sponse to damage of real networks, recent papers, such
as Refs. [31–34], on percolation in single-layer networks
went beyond the standard mean-field approach. In
Ref. [32], a theoretical framework based on large devia-
tion theory was proposed to predict the probability distri-
bution π(R) for the relative size R of the giant component
in single instances of the percolation model on a given
network. The approach allows for the theoretical com-
putation of π(R) starting from any real network datasets.
Results of the paper show that the average value of π(R),
hence the main observable of the mean-field approach,
may not be the best metric to study system robustness.
Also, optimal percolation defines a problem that goes
beyond the traditional percolation model [33, 34]. Op-
timal percolation refers to the identification of the opti-
mal (minimal) structural node set whose removal leads
a destruction of the entire network. In this sense, op-
timal percolation is the problem of identifying the one
rare realization of damage that has the most dramatic
consequences for the network.

In the context of multiplex networks several work have
started to characterize the response to damage beyond
the mean-field approach. In Ref. [35], the authors
studied finite-size effects in multiplex network percola-
tion focusing both on the final size of the MCGC and
the avalanche distribution. In Ref. [36], Kitsak and col-
laborators analyzed the stability of the MCGCs by con-
sidering the overlap among a large number of MCGCs
resulting from initial damage configurations drawn from
the same distribution. Optimal percolation was recently
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extended to multiplex networks in Ref. [37]. The main
finding is that optimal percolation on a multiplex net-
work is a rather distinct problem from the one defined
for the individual network layers that compose the mul-
tiplex. Further work in this direction was presented in
Ref. [38].

In this paper, we aim at providing a novel characteriza-
tion of the percolation transition in multiplex networks.
The approach we propose is similar to one already used
in Ref. [32] for isolated networks, thus placing emphasis
on large deviation properties of percolation. We consider
a process where a fraction f = 1− p of nodes is initially
damaged, and show that the probability π(R) that the
relative size of the MCGC equals R is bimodal. The two
peaks of the distribution π(R) correspond to the perco-
lating and non-percolating phases, and in specific ranges
for the parameter p they quantify an equal likelihood for
the system to be in the functioning or nonfunctioning
regimes. In this respect, the mean-field percolation di-
agram where the average value R̄ is plotted against p
provides distorted information about the robustness of
the system, making it look less fragile than actually is.
An alternative phase diagram can be instead created by
replacing R̄ with R̂, i.e., the mode of π(R). In the phase

diagram, R̂ displays a clear discontinuity. However, the
large fluctuations observed in single instance of percola-
tion cannot be captured entirely by this single metric.
The actual robustness properties of the network can be
fully understood only by looking at the distribution π(R).
Nevertheless, as a matter of fact, the combination of the
two metrics R̄ with R̂ results in an effective tool for the
characterization of its robustness profile. These numbers
respectively underestimate and overestimate the fragility
of the system, allowing for a direct interpretation the
fragility properties of the network in practical contexts.
In this respect, we identify an effective critical point pc
with the discontinuity of R̂, and show that, for p = pc, the
system is characterized by significant uncertainty on the
possible outcomes of the percolation process. Further,
we propose a score, named safeguard centrality (SC), to
identify the nodes that have major influence in safeguard-
ing the MCGC at criticality. We find that the set of top
nodes according to SC has a very significant overlap with
the sets identified as solutions to the optimal percolation
problem.

II. PERCOLATION OF INTERDEPENDENT
MULTIPLEX NETWORKS

We consider a multiplex network ~G = (G[1], G[2])
formed by M = 2 layers and N nodes [2, 5]. Each layer
α = 1, 2 consists of a network G[α] = (V,E[α]). The set
V of N nodes is identical for both layers. The set of
links E[α] is instead typical of the layer α. We monitor
the connectedness of the interdependent multiplex net-
work by looking at the size of the Mutually Connected
Giant Component (MCGC) [6]. The MCGC is the gi-

ant component of the multiplex network formed by the
largest set of nodes in which each pair of nodes is con-
nected by at least a path in each layer of the multiplex
networks (where all these paths must remain inside the
MCGC) [6, 7].

In an infinite multiplex network, the MCGC is an ex-
tensive component in the sense that it includes a non-
vanishing fraction of all the nodes. The same exact defi-
nition doesn’t apply to finite real networks. However, it is
usual practice in the field to use the expression MCGC in
a finite multiplex network to indicate its largest mutually
connected component. We will interpret this component
as the giant one only when its size exceeds

√
N .

To study the robustness of a multiplex network, we
employ a generalized percolation model where nodes are
initially damaged with probability f = 1 − p and the
relative size R of the MGCC is monitored as a func-
tion of p [6]. The characterization of the robustness
of the multiplex network thus reduces to the study of
the generalized percolation transition. On infinite net-
works, the transition is investigated by studying the av-
erage fraction R̄ of nodes in the MCGC as a function
of p. This critical phenomenon displays noticeable prop-
erties [6, 7]. The MCGC emerges with a discontinuous
hybrid phase transition at p = pc where the multiplex
network is affected by avalanches of failures propagating
back and forth among the different layers. This transi-
tion has been fully characterized on multiplex networks
with Poisson and scale-free degree distributions without
edge overlap [6, 7]. In particular, the transition is al-
ways discontinuous and hybrid, and interdependent mul-
tiplex networks are significantly more fragile than their
single layers taken in isolation [1, 6, 7]. Recently, it has
been shown also that multiplex network models with edge
overlap although they tend to be somewhat more robust
than multiplex networks without overlap, they present al-
ways discontinuous hybrid phase transitions [16, 17, 20].

The percolation model applied to multiplex networks
is particularly relevant in robustness studies of real in-
terdependent multiplex networks [15, 19]. However, in
a large variety of cases, multiplex networks are far from
the large network limit. It is therefore essential to un-
derstand whether the average fraction R̄ of nodes in the
MCGC is a suitable metric to assess the robustness of
real interdependent multiplex networks.

III. WHY A LARGE DEVIATION APPROACH
TO PERCOLATION IS NEEDED

Percolation theory should provide us with a good pre-
diction of the behavior of the size of the MCGC as a
function of the probability f = 1− p of damaging nodes
at random. The prediction should include a good esti-
mate of the percolation threshold pc. Knowing the value
of this quantity is in fact very informative as it enables
us to judge whether the considered multiplex network
displays a nonvanishing MCGC or not. Also, the predic-
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tion should inform us about the nature of the percola-
tion transition, whether this is smooth or abrupt. The
simple analysis conducted below reveals that the mean-
field theory of percolation, when applied to real multiplex
datasets, may fail to provide us with reliable information,
as the average fraction of nodes R̄ in the MCGC is a met-
ric that does not satisfy the desired requirements of an
informative percolation theory.

In analysis, we considered several real-world multiplex
networks, including air transportation networks among
major US air carriers (Delta Airlines-United Airlines;
American Airlines-United Airlines and United Airlines-
Delta Airlines) [19], and biological networks (the genomic
network of the D. Melanogaster [40] and the C. Elegans
connectome [39, 40]). Basic properties of these multi-
plex networks are reported in Table I. Number of nodes
N range between 73 and 557, thus showing that multi-
plex networks of practical interest may be small/medium
sized systems. Further, the comparison between number
of links L[α] in each layer α and total number of multi-
links [5] L(1,0), L(0,1), L(1,1), indicating the pair of nodes
connected only in layer 1 (L(1,0)) only in layer 2 (L(0,1))
or in both layers (L(1,1)), emphasizes that the level of link
overlap in real multiplex networks may vary from system
to system. We simulated a single realization of the ran-
dom percolation model by damaging nodes sequentially
with increasing probability f = 1−p. In a single realiza-
tion, we assign a random uniformly distributed variable
xi to each node i of the multiplex networks, and, for
each value of f , we damage all nodes i such that xi ≤ f .
A single realization of percolation can be described by
the dependence of the relative size R of the MCGC as a
function of p.

In Figure 1, we provide evidence of the large fluctua-
tions observed for single realizations of percolation. The
inaccuracy of the mean-field approach to percolation in
predicting the robustness of real multiplex networks of
small/medium size is apparent. For each of the con-
sidered datasets, we compare the average size R̄ of the
MCGC and the size R of the MCGC of two single real-
izations of percolation. As the figure shows, R̄ performs
poorly with respect to the informative requirements that
we mentioned above. First, the size R of the MCGC for a
given value of p has strong fluctuations around the mean
R̄. Second, the position of the percolation threshold pc
inferred from R̄ can be dramatically misleading, provid-
ing only a lower bound to the actual transition points
observed in single realizations of the model. This fact
arises because, for any given p, R̄ is positive also when
in most of the realizations the size of the MCGC is zero,
being R̄ the average value of non-negative numbers. Fi-
nally, the abrupt nature of the transitions associated with
individual realizzations is not well captured by R̄, which
instead displays a continuous behavior.

In summary, the mean-field observable R̄ underesti-
mates the true fragility of a real multiplex network. Cor-
rect predictions can be achieved only with an approach
that actually accounts for large deviations.

IV. LARGE DEVIATION APPROACH TO
PERCOLATION

In this paragraph, we establish the general theoretical
framework for characterizing the large deviation proper-
ties of percolation in interdependent multiplex networks.
Our goal is to quantify the response of a multiplex net-
work to an initial damage of the nodes using a metric
different from the mere average fraction R̄ of nodes in
the MCGC. In particular, we will explore the proper-
ties of the entire distribution π(R) of observing a MCGC
formed by a fraction R of nodes. The distribution π(R)
will be studied as a function of p, i.e., the probability
that a node is not initially damaged.

We consider a large number Q of random initial dam-
age realizations. Each initial damage configuration µ =
1, 2, . . . , Q is denoted by {sµi }i=1,2,...,N , where sµi = 0 if
node i is initially damaged, and sµi = 1, otherwise. We
assume that each node is damaged independently with
probability f = 1− p. Therefore, the probability associ-
ated to the initial damage realization {sµi } is

P({sµi }) =

N∏
i=1

[psµi + (1− p)(1− sµi )] . (1)

For each initial damage configuration, we determine
whether node i belongs to the MCGC, i.e., σµi = 1, or
not, i.e., σµi = 0. The fraction Rµ of nodes in the MCGC
is

Rµ =
1

N

N∑
i=1

σµi . (2)

For any given value of p, different initial damage con-
figurations might induce MCGCs of different sizes. In
order to study the distribution π(R) of the fraction of
the nodes in the MCGC for a random realization of the
initial damage {sµi } with probability P({sµi }) we consider
a large number P of realizations of the initial damage and
we estimate π(R) as

π(R) =
1

Q (∆R)

Q∑
µ=1

δ(R,Rµ), (3)

where δ(x, y) = 1 if x = y, and δ(x, y) = 0, otherwise.
∆R = 1/N represents the width of the bins used for es-
timating the distribution, thus providing the proper nor-
malization condition for π(R). From the full distribution
π(R) of the sizes R of the MCGCs, it is possible to ex-
tract two major statistical quantities: the average size of
the MCGC, namely R̄, and the typical (most probable)

size of the MCGC, namely R̂. The quantities are defined
respectively as

R̄ =
1

N

∑
R

R π(R) (4)
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FIG. 1: The mean-field approach to percolation can be misleading for characterizing the robustness of finite
multiplex networks. Single realizations of the percolation process described by the corresponding size R of the MCGC as a
function of p (blue and orange curves) are plotted together with the average size R̄ or the MCGC measured over 106 realizations
of the initial damage. The different panels correspond to four different datasets: the American Airlines-Delta Airlines multiplex
network (panel a), Delta Airlines-United Airlines multiplex network (panel b), the Drosophila Melanogaster genetic network
(panel c), and the C. Elegans connectome (panel d).

and

R̂ = arg max
R

[π(R)]. (5)

We stress once more that all quantities defined above
are defined given the probability f = 1−p for the random
initial damage of each node. We avoid to write explicitly
such a dependence just for shortness of notation.

V. LARGE DEVIATION OF PERCOLATION IN
REAL MULTIPLEX NETWORKS

A. Typical versus average size of the MCGC

In order to explore the large deviation properties of
percolation on real multiplex network we considered
again the real-world multiplex networks listed in Table
I. We have calculated π(R), R̄, R̂ by performing numeri-
cally Q = 106 realizations of the initial damage as a func-
tion of p. Our results reveal that the typical response to



5

Duplex N L[1] L[2] L(1,0) L(0,1) L(1,1)

American-United airlines 73 229 270 161 202 68

American-Delta airlines 84 258 442 190 374 68

United-Delta airlines 82 282 404 226 348 56

D. Melanogaster genomic network 557 1421 1164 953 696 468

C. Elegans connectome 279 514 888 403 777 111

TABLE I: Main properties of the studied datasets. For each analysed dataset we indicate: the total number of nodes
N , the total number of links L[1] in layer 1, the total number of links L[2] in layer 2 and the total number of multilinks
L(1,0), L(0,1), L(1,1) indicating the number of pairs of nodes connected only in layer 1, only in layer 2 or in both layers, respectively.

damage R̂ uncovers a completely different scenario with
respect to the one indicated by the average response to
damage R̄ for each of the studied datasets (see Figure
2). Indeed, while R̄ decreases smoothly for decreasing
values of p, suggesting that the system might be robust
to damage, R̂ reveals a discontinuous behaviour with a
rapid jump of R̂ from R = Rc � 1/N to R = 1/N at the
effective critical threshold p = pc where π(1/N) = π(Rc).

Hence, R̂ highlights a risk of systemic failure that is not
visible from R̄, pointing out a serious shortcoming of the
average metric in characterizing the true fragility of the
system.

B. Bimodality of the distribution of the size of the
MCGC

In order to fully characterize the large deviation prop-
erties of percolation, we need to study the probability
distribution π(R) of the size R of the MCGC. The char-
acterization of this distribution as a function of the prob-
ability p will reveal why R̂ has a discontinuous behavior
as a function of p. Here we have considered in detail
the American Airlines-United Airlines dataset. For this
dataset, the probability distribution π(R) can be studied

together with R̄ and R̂ as a function of p (see Figure 3).
Starting from high values of p and decreasing p, we ob-
serve that initially the distribution π(R) is unimodal, and

the most likely outcome R̂ decreases. However, for lower
values of p, the distribution π(R) becomes bimodal and
for p = pc ' 0.40 it has two maxima at R = Rc ' 0.27
and R = 1/N ' 0.014 with π(1/N) = π(Rc). Finally, for
even lower values of p, i.e., for p < pc, R = 1/N becomes
the most likely size of the MCGC. We checked that the
emergence of a bimodal distribution is not an artifact of
specific correlations build in the multiplex network struc-
ture. In fact, we tested that the feature of the distribu-
tion is unaffected by different randomization procedures
of the structure of the multiplex (see Supplementary In-
formation [41]).

We stress that the large deviation of percolation con-
sists in the full characterization of the distribution π(R),
and not exclusively on the characterization of the typi-

cal size R̂ of the MCGC. If we just based our prediction
about the robustness of a real multiplex network on the
observation of the typical size R̂ of the MCGC, we would
overestimate its fragility. In fact, even for p < pc so
that R̂ = 0, there is a significant probability that the
MCGC is non-vanishing. In this regime, π(R) is still bi-
modal, and the width of the distribution around the two
peaks is not symmetric. As such, even if the left peak
is higher than the right one, still the right mode of π(R)
may have higher weight. The relative weight of these
two modes is clearly an important information for assess-
ing the robustness of the multiplex network as a whole.
In Figure 4, we propose an analysis that accounts for
them. Indicate with Rmin the position of the local mini-
mum in the distribution π(R) separating the two peaks.
Then evaluate the relative weight of the two modes by
measuring the probability P (R < Rmin) and its com-
plementary probability P (R ≥ Rmin). The metrics re-
veal that at p = pc the probability P (R ≥ Rmin) is still
larger than 50%, thus providing information that is not
directly retrievable either from R̂ or R̄. In principle, any
scalar observable extracted from the distribution π(R)
can provide new information about the system robust-
ness. However, we argue that the combined use of R̂ and
R̄ generates already sufficient knowledge for many prac-
tical tasks. These metrics have in fact the nice feature of
representing respectively an over-estimation and under-
estimation of the fragility of the multiplex network, thus
identifying the range of p values where the percolation
transition is expected to happen. This interpretation of
R̂ and R̄ will become more precise in Sec VI where we ad-
dress finite-size effects, and we will show that in the limit
of infinite networks the two metrics become identical.

C. Susceptibility, Specific heat and Correlations

To further characterize the properties of the system,
we studied correlations existing among the states of dif-
ferent nodes. This study is interesting from two differ-
ent points of view. First, correlations are not captured
by the mean-field approach to percolation; hence, their
analysis allows us to obtain information that is usually
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FIG. 2: Typical versus average size of the MCGC. We report R̄ and R̂ for four different data sets: the American
Airlines-Delta Airlines multiplex network (panel a) Delta Airlines-United Airlines multiplex network (panel b), the Drosophila

Melanogaster genetic network (panel c) the C. Elegans connectome (panel d). The curves R̄ vs. p and R̂ vs. p have been
numerically calculated from the distributions π(R) of observing a MCGC with relative size R. The distribution π(R) is
constructed for each value of p by performing P initial realizations of the damage. We use Q = 106 for all the multiplex
network datasets.

neglected in standard analyses. Second, average correla-
tions between nodes allows us to define a well-grounded
version of the susceptibility for percolation on multiplex
networks. This definition is in line with the usual prac-
tice adopted in the study of critical phenomena, where
the susceptibility of a system is taken proportional to the
average correlation.

We define the average correlation χ between the state
of every pair of nodes in different realizations of the dam-
age and the average correlations χNN calculated only
among of neighboring nodes in at least one layer of the
multiplex network. These quantities are defined respec-

tively as

χ =
1

N(N − 1)

∑
i6=j

[〈σiσj〉 − 〈σi〉〈σj〉] ,

χNN =
1

〈k〉N

N∑
i=1

∑
j∈Ni

[〈σiσj〉 − 〈σi〉〈σj〉]

 , (6)
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FIG. 3: The large deviation study of percolation on the American Airlines-United Airlines duplex network. The
probability distribution π(R) of observing a MCGC of relative size R in the American Airlines-United Airlines duplex network

is shown in panel (a) for different values of p. The average R̄ and the most likely R̂ size of the MCGC of the same dataset
are plotted as a function of p in panel (b). These results are obtained from numerical simulations of Q = 106 random initial
realizations of the damage.
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FIG. 4: The characterization of the two modes of the distribution π(R). The probabilities P (R ≥ Rmin), P (R < Rmin)
(panel a) and the average size 〈R|R ≥ Rmin〉 and 〈R|R > Rmin〉 of the MCGC corresponding to the two modes (panel b) are
plotted as a function of p for the American Airlines-United Airlines duplex network. These results are obtained by performing
Q = 106 realizations of the initial damage.

where we indicated with 〈σi〉 and 〈σiσj〉 the averages

〈σi〉 =
1

Q

Q∑
µ=1

σµi ,

〈σiσj〉 =
1

Q

Q∑
µ=1

σµi σ
µ
j , (7)

and we indicated with Ni the set composed by all neigh-
bors of node i in at least one layer of the multiplex net-
work. Moreover, we have evaluated the recently intro-
duced specific heat C of percolation [31] with C = Nc

and c defined as

c =
1

N

N∑
i=1

〈σi〉(1− 〈σi〉) (8)

indicating the average fluctuations of the state of a single
node. The specific heat C together with the correlation
coefficient χ determines the variance σ2

R of the size of the
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FIG. 5: Correlations and specific heat for the Amer-
ican Airlines-United Airlines duplex network. The
specific heat of percolation C, the correlation coefficient
χNN among neighbor nodes, and the correlation coefficient χ
among any pair of nodes calculated for the American Airlines-
United Airlines dataset are plotted as a function of p. The
solid dashed line indicates the effective critical point p = pc.
These results are obtained from numerical simulations of
Q = 106 random realizations of the initial damage.

giant component R. In fact we have

σ2
R =

1

N2

∑
i,j

〈σiσj〉 −∑
i,j

〈σi〉〈σj〉


= χ

(
1− 1

N

)
+

C

N2
. (9)

In Figure 5, we plot c, χ and χNN as a function of p for the
American Airlines-United Airlines duplex network. From
this figure, it is possible to show that these curves dis-
play a maximum as a function of p. We note that for very
small values of p, when the MCGC is also very small, the
correlation coefficients and the specific heat are expected
to be small since typically most of the nodes will be dam-
aged. Similarly when p is approaching one, most of the
nodes will be undamaged yielding small correlations and
specific heat. Therefore, the observed maximum of c, χ
and χNN as a function of p is expected.

For a good susceptibility measure, we would like to
observe a maximum in correspondence of the percola-
tion threshold. We note that the maximum of χNN is
achieved for values of p that are closer to the transition
point p = pc than those corresponding to the maximum
of χ. Additionally from Figure 5, we can notice that
correlations among nearest neighbors are, on average,
higher than the correlations among any pair of nodes,
i.e. χNN ≥ χ.

Overlap between MCGCs

We have emphasized that, on finite networks, MCGCs
resulting from two initial damage configurations drawn
from the same distribution P({sµi }) can have different

relative size R. In order to quantitatively evaluate how
similar are two different MCGCs resulting from two dif-
ferent configurations µ and ν of the initial damage we
propose to use the overlap qµ,ν . The overlap qµ,ν is given
by the sum between fraction of nodes that belong to both
MCGCs and the sum of nodes that do not belong to the
MCGC for both realizations µ and ν of the initial dam-
age, i.e.,

qµ,ν =
1

N

N∑
i=1

[σµi σ
ν
i + (1− σµi )(1− σνi )] , (10)

where σµ̃i = 1 (σµ̃i = 0) indicates that node i is in (is
not in) the MCGC after the initial damage configura-
tion µ̃ with µ̃ ∈ {µ, ν}. By definition, we have that
qµ,ν ∈ [0, 1]. Values of overlap close to one indicate that
the two MCGCs have a very similar node composition,
while values of the overlap close to zero indicate that the
two MCGCs are very different in terms of node composi-
tion. For values of p close to one, where most of the nodes
belong to the MCGC, and for values of p close to zero,
where most of the nodes do not belong to the MCGC, the
typical overlap among MCGCs is expected to be high;
instead, typical overlap values should be small for inter-
mediate values of p. We evaluated the average value q̄
and the standard deviation σq̄ of the overlap measured
for different values of p. These metrics are computed us-
ing Q̃ pairs of realizations of the initial damage (µn, νn)

(with 0 < n ≤ Q̃), and using the definitions

q̄ =
1

Q̃

Q̃∑
n=1

qµn,νn ,

σq̄ =
1

Q̃

Q̃∑
n=1

(qµn,νn − q̄)2
. (11)

We note that q̄ is expected to be strongly correlated
with the specific heat C = Nc [31]. In fact, for large

values of Q̃, we can approximate q̄ with

q̄ ' 1

N

N∑
i=1

[
〈σi〉2 + (1− 〈σi〉)2

]
= 1− 2c. (12)

In Figure 6, we report q̄ and σq̄ calculated over Q̃ = 106

pairs of random realizations of the initial damage per-
formed over the American Airlines-United Airlines mul-
tiplex networks. We observe that Eq. (12) is satisfied.
Therefore, q̄ has a minimum corresponding to the max-
imum of c. Interestingly, σq̄ displays two maxima as a
function of p, and achieves its absolute maximum for val-
ues of p preceding p = pc = 0.4, i.e., p = 0.34.

Nevertheless, the full distribution of the overlap ρ(q)

observed over Q̃ pairs of realizations of the initial damage
encodes more information than its average q̄. In particu-
lar, the distribution reflects the many-body correlations
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FIG. 6: The mean value q̄ (panel a) and the standard devia-
tion σq̄ (panel b) of the overlap distribution ρ(q) are plotted
versus p for the American Airlines-United Airlines multiplex
network. These statistical properties have been numerically
evaluated starting from Q̃ = 106 pairs of random realizations
of the initial damage.

existing among the state of different nodes (see Figure
7). We note that for p < pc, in correspondence of the
bimodal regime for the distribution π(R), also ρ(q) is
bimodal, with a second peak at high values of the over-
lap that reflect configurations where the network is com-
pletely dismantled. Deviations of the distribution ρ(q)
from a single peak clearly indicate the complex many-
body interactions present in the system, and reveals the
important effect of the fluctuations of the MCGC in a
way that is reminiscent of phenomena observed in disor-
dered systems [42].

VI. FINITE-SIZE EFFECTS

The discrepancy between R̂ and R̄ is an effect of the
finite size of the networks analyzed. For an infinite
network, the percolation transition is known to be self-
averaging, i.e., the difference between R̄ and R̂ is vanish-
ing. To explore for which network sizes we should expect
significant differences between R̂ and R̂, we performed a
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FIG. 7: The overlap distributions ρ(q) among the MCGCs
of the American Airlines-United Airlines duplex network are
plotted for values of p given by p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
(panel a) and p = 0.6, 0.7, 0.7, 0.9, 0.99 (panel b). These re-
sults indicate that for p < 0.6 the typical overlap among
MCGCs decreases with increasing values of p while for p > 0.6
the typical overlap among MCGCs increases as p increases.
This distributions are calculated starting from Q̃ = 106 pairs
of random realizations of the initial damage.

large deviation study of percolation on synthetic multi-
plex networks. We considered duplex networks of sizes
N = 102, 103, 104 in which each layer is a random net-
work with Poisson degree distribution and average degree
z = 5. We observe that, as N increases, the percolation
transition becomes self-averaging, and that R̄ approxi-
mates increasingly better R̂ (see Figure 8) , and the dis-
tribution π(R) becomes increasingly narrow (see Supple-
mentary Information [41]). Therefore, the distribution
π(R) is bimodal for a range of values of p that is con-
verging to zero as N increases. Characterizing the large
deviation of percolation is particularly important for in-
vestigating the robustness of small/medium size multi-
plex networks as the ones considered in this study. In-
terestingly, the average response to damage R̄ and the
typical response to damage R̂ differ significantly up to
network sizes of several thousand of nodes. Duplex net-
works of these size are very common, and include not only
brain networks and air transportation networks such as
those studied here, but also interdependent power-grids,
ecological multiplex networks and brain functional net-
works. We believe therefore that our results might be
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FIG. 8: Finite-size effects of percolation on a Pois-
son duplex network. The distribution π(R) of the size

of the MCGC, the average R̄ and the typical R̂ size of the
MCGC are plotted versus p for Poisson duplex networks with
average degree z = 5 and network sizes N = 102 (panel
a), N = 103 (panel b), N = 104 (panel c). This numeri-
cal results are obtained by running Q = 106 (panel a,b) and
Q = 105 (panel c) realizations of the initial damage config-
urations. The dashed solid line indicates the theoretically
predicted percolation threshold in the limit N →∞.

relevant for scientists investigating the robustness of very
different types of real multiplex datasets.

VII. SAFEGUARDING THE MCGC

Above, we defined the critical point pc as the value of
p where the two peaks of the bimodal distribution π(R)
have the same height. For p = pc, we have that the
left peak is located at R = 1/N , while the right peak
is located at R = Rc, with Rc � 1/N . The condition
π(R = 1/N) = π(R = Rc) tells us that the likelihood
that the system fails is comparable with the probability
that the system is still in the functioning state. Is it
possible to predict initial configurations of damage that
lead to one or the other final states of the system? Is
it possible to safeguard some nodes so that the sufficient
condition that the network will be in the functional state
is met? Please note that the latter question is different
from the one defined in optimal percolation, where the
goal is to dismantle a system rather than preserving its
cohesiveness [33, 37].

Here, we propose an algorithm that ranks nodes ac-
cording to their influence in determining the size of the
MCGC. The algorithm uses the bimodality of π(R), and
is designed to be effective for p = pc. We name the
score resulting from the algorithm as safeguard central-
ity. The algorithm starts by defining two ranges of pos-
sible sizes for the MCGCs, either a well-defined MCGC
R > R? = 1√

N
or a dismantled network with R < R?. A

score ∆si is assigned to every node i. ∆si is defined as
the difference between the joint probability that node i
is not initially damaged and R > R?, and the joint prob-
ability that node is not initially damaged and R < R?,
i.e.,

∆si =
1

P

P∑
µ=1

sµi [θ(Rµ −R?)− θ(R? −Rµ)], (13)

where θ(x) is the Heaviside function, i.e., θ(x) = 0 if x <
0, and θ(x) = 1, otherwise. Nodes with top ∆s values
are nodes whose safeguard may result in large MCGC
sizes, i.e., the nodes that are responsible for keeping the
multiplex connected.

In Figure 9a, we display ∆s for each node of the Amer-
ican Airlines-United Airlines duplex network. The score
seems informative. If the top-ranked nodes are damaged
deterministically (see Figure 9b), the distribution π(R)
of the size of the giant component becomes more peaked
around the value R = 1/N . If the top-ranked nodes are
safeguarded (see Figure 9c), the robustness of the entire
system in greatly improved. In fact, safeguarding the
top-ranked node (Chicago O’Hare Airport, ORD) only
is already sufficient to observe a unimodal distribution
π(R) with peak at R = 0.3 > Rc.

In order to investigate whether the top-ranked nodes
according to ∆s have some relation with the nodes iden-
tified in solutions to the optimal percolation problem,
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Airport ∆s SA HDp HDs HDAp HDAs CI1p CI1s

ORD 0.3984 0 1 1 1 1 1 1

DFW 0.3644 1 3 2 3 2 8 6

LAX 0.3523 0 2 5 2 5 2 5

MIA 0.3462 1 7 7 8 7 9 9

SFO 0.3273 0 4 6 5 6 3 4

Kendall-τ 1 0.8 0.6 0.8 0.6 0.8 0.4 0.2

TABLE II: The top 5 airports in the American Airlines-
United Airlines duplex network according to the centrality
measure ∆s are listed together with their corresponding clas-
sification {s?i } according to the SA algorithm (s?i = 0, if node
i belongs to the set of structural nodes, s?i = 1, otherwise) and
their rank according to the HDp, HDs, HDAp, HDAs, CI1p
and CI1s algorithms. The last row indicates the Kendall-τ
correlations among the ranking of these 5 airports accord-
ing to ∆s and each of the other state of the art algorithms.
Note that when comparing to the SA results we have used the
Kendall τ -c [43] correlation coefficient while we have used the
Kendall τ -a [44] correlation coefficient in all the other cases.

we performed systematic comparisons between the top 5
nodes according to ∆s and various methods used in opti-
mal percolation [37]. We find that the top-ranked nodes
correspond with good accuracy to the nodes in the opti-
mal structural set detected by Simulated Annealing opti-
mization [37]. High correlation (measured using Kendall
τ) is also found with sets determined using other state-of-
the-art techniques (see Table II). These include the High
Degree (HD) and the High Degree Adaptive (HDA) al-
gorithms based on the product (HDp,HDAp) or the sum
(HDs,HDAs) of the node degree in the two layers, and
the duplex network version of the Collective Influence
(CI) algorithm based on the product (CI`p) or on the
sum (CI`s) of the CI scores of single layers (see Supple-
mentary Information for details). In the Supplementary
Information, we present the same type of analysis for for
the United Airlines-Delta Airlines duplex network yield-
ing similar conclusions.

VIII. CONCLUSIONS

We explored the large deviation properties of perco-
lation of real finite multiplex networks. This approach
consists in looking at the distribution π(R) of the size
R of the MCGC as a function of the probability p that
a node is not initially damaged. The motivation of the
study finds its roots from the obvious inability of the
mean value R̄ to capture large fluctuations that arise
in finite-size systems. Although the use of π(R) is re-
quired to fully characterize the properties of the percola-
tion transition in real multiplex networks, in the paper,
we demonstrated that most of the system robustness can
be understood by combining the information provided al-

ready by R̄ with the complementary metric R̂, i.e., the
mode of the distribution π(R). R̂ reveals the intrinsic
fragility of a real multiplex displaying a discontinuity as
a function of the probability p that a node is not initially
damaged. This discontinuity characterizes the position of
an effective critical point p = pc where the distribution
π(R) of the sizes R of the MCGC is bimodal and dis-
plays two local maxima of the same height at R = 1/N
(indicating that the network is totally dismantled) and
at R = Rc � 1/N (indicating that the network has a
significantly large MCGC). Therefore, for p = pc, the
possible outcome of an initial damage is very uncertain.

The large deviation approach to percolation allows us
to characterize the correlations among the state of dif-
ferent nodes in the network and the fluctuations in the
state of single nodes measured by the so called specific
heat of percolation. Note that here we indicate by state
of a node its inclusion or exclusion from the MCGC re-
sulting from a given realization of the initial damage. We
show that nearest neighbor nodes display an average cor-
relation that has a maximum for a value of p close to the
percolation threshold pc.

Finally, we focused our attention on the destiny of the
MCGC at p = pc proposing an algorithm able to detect
some special nodes. The safeguard of these nodes can
ensure with high probability that the most likely outcome
is R̂ > Rc and that the total dismantling of the network
has a suppressed probability. The proposed algorithm
was tested on real datasets showing the efficiency of the
proposed safeguarding procedure. We further showed the
set of top-scoring nodes is almost identical to those found
as solutions to the optimal percolation problem.
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Airlines-United Airlines duplex network. The centrality measure ∆s for each of the N = 73 airports of the American
Airlines-United Airlines dataset is shown in panel (a). The centrality measures is evaluated by considering P = 106 realization

of the initial damage at p = pc = 0.40 taking R? = 1/
√
N < Rc = 0.27. The distribution π(R) of the size R of the MCGC at

p = pc is compared to the distribution π(R) obtained when the top-ranked nodes according to ∆s are damaged for sure (panel
(b)) or safeguarded (panel (c)) while the other nodes are damaged with probability p = pc = 0.40. The distribution in panels
(b) and (c) are obtained considering 106 realizations of the initial damage.
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