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Gap solitons and forced snaking

Benjamin C. Ponedel and Edgar Knobloch
Department of Physics, University of California at Berkeley, Berkeley CA 94720, USA

We introduce the phenomenon known as forced snaking to the study of gap solitons and use this
notion to identify two distinct bifurcation diagrams organizing such solitons in the semi-infinite gap
of the continuous cubic-quintic Gross-Pitaevskii equation with a spatially periodic potential. Stan-
dard snaking is found for small interpotential or lattice spacing while foliated snaking is present for
large spacing. In each case we determine the stability of the symmetric on-site and off-site solitons
and show that multi-soliton solutions of both types are stabilized when the spacing is sufficiently
large, effectively quenching the interaction between the solitons. Finally we show that the solitons
unbind from the potential when subjected to sufficiently large asymmetric or symmetric pertur-
bations and use direct numerical simulation to investigate their break-up and associated radiative
losses as they propagate. A strongly nonlinear theory that captures key aspects of the depinning
dynamics is provided.

I. INTRODUCTION

Discrete solitons have been the subject of intense study
in nonlinear optics since their prediction in 1988 [1, 2]. A
particular type of soliton known as the “gap soliton,” first
proposed in 1994 [3], arises amidst a competition between
nonlinear self-focusing effects and anomalous diffraction
in periodic waveguides. These structures are typically
modeled using a nonlinear Schrödinger equation (NLSE)
in the presence of an external periodic potential, i.e., the
Gross-Pitaevskii equation (GPE). An enormous amount
of theoretical work has been done on the structure and
stability of solutions to this model for a variety of nonlin-
earities, e.g. [4–6]. More recently an effort has been made
to understand solutions referred to as multipole solitons
or soliton complexes that involve arrays of nearly iden-
tical solitons pinned to the periodic potential [5, 7–11].
Related work has investigated multipulse solutions in a
cubic-quintic medium in which the solution possesses a
finite set of identical maxima but is not composed of iso-
lated solitons [5, 12–14]. Our work connects these two
distinct types of structures providing a unified picture of
how they relate to one another in the cubic-quintic case
and elucidates their stability properties.

The simplest models for optical solitons describe a
Kerr medium resulting in a NLSE with a cubic nonlin-
earity. More complex nonlinearities arise in other sys-
tems, however, and cubic-quintic nonlinearities in par-
ticular have been observed in a plethora of experiments
[15–19]. These are the subject of the present paper. In
the presence of an externally imposed spatially periodic
potential V (x) the resulting cubic-quintic GPE takes the
form

−iAt = Axx − V (x)A+ |A|2A− |A|4A. (1)

This is an equation for a complex-valued order param-
eter A(x, t). In the following we focus on the case of
a sinusoidal potential V (x) = −m1 cos(2πx/`) and use
the parameter m1 to change its amplitude and the pa-
rameter ` to vary its period or equivalently the “lattice
spacing” in the language of discrete NLS models. In the

following we focus exclusively on solutions of the form
A(x, t) = e−im0tu(x) describing a standing oscillation
with a fixed albeit nonuniform spatial profile and a ro-
tating phase. Such states are solutions of the nonlinear
ordinary differential equation (ODE)

0 = uxx +

[
m0 +m1 cos

(
2πx

`

)]
u+ |u|2u− |u|4u

≡ uxx +N (u, x). (2)

This equation takes the form of the cubic-quintic
Ginzburg-Landau equation (GLE) with a periodically os-
cillating bifurcation parameter and has been studied in
this context in [20]. Here we are interested in particular
in spatially localized solutions of this equation, i.e., in
solitary wave solutions of the GPE. Such solutions are
frequently called solitons (a custom we follow below) al-
though they are not true solitons, i.e., solutions of a com-
pletely integrable partial differential equation (PDE).

To determine solitary wave solutions of Eq. (1) one
must understand the (spatial) linear dispersion relation
around the trivial solution u = 0 of Eq. (2). Because the
linear problem is periodically forced it is described by
Floquet theory and possesses a characteristic band-gap
structure. Specifically, the Floquet exponents for the lin-
ear problem only have a nonzero real part in certain re-
gions of the (m0,m1) parameter plane and are otherwise
purely imaginary. These regions in the (m0,m1) plane
are referred to as band-gaps and are shown in white in
Fig. 1. For parameters in these regions u ≡ 0 is a hyper-
bolic fixed point of Eq. (2) and the ODE can therefore
support solutions that are homoclinic to u = 0. These
solitary wave solutions are colloquially referred to as gap
solitons.

For fixed m1 the band structure (white regions in
Fig. 1) takes the form of a countable set of intervals in
m0. The first of these intervals, −∞ < m0 < m∗(m1),
is of infinite extent and is called the semi-infinite gap.
All higher gaps are finite open intervals. In the following
we study gap solitons restricted to the semi-infinite gap
in which the ODE (2) has two simultaneously hyperbolic
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FIG. 1. The band-gap structure in the (m0,m1) plane for the
lowest three gaps of the linearization of Eq. (2). Solutions
that are homoclinic to u ≡ 0 (equivalently A ≡ 0) represent
solitons and exist only within the band gaps (white regions in
the diagram).

fixed points. These two solutions are u(x) = 0 and a pe-
riodic solution with period `, the period of the externally
imposed potential. In previous work [20] we showed that
Eq. (2) exhibits a phenomenon we called forced snaking
that is responsible for the presence of multiple families
of spatially localized solutions which we interpret here in
terms of gap solitons of the GPE. Some of the solutions
in [20] appear in earlier work [5, 14].

Homoclinic snaking [21, 22] is present in both discrete
[13, 23–26] and continuous [14, 27–30] models of optical
systems. This term describes the origin and properties of
a large or infinite multiplicity of spatially localized struc-
tures present within an interval of parameter values, a
phenomenon exemplified in the optics literature by the
Lugiato-Lefever equation [30], a complex-valued equa-
tion for the amplitude of the (transverse) electric field
in a continuously pumped optical cavity. This equation
is of second order in space and consequently its station-
ary states solve a fourth order real-valued ODE which
supports standard homoclinic snaking, eg., [27, 29, 31].
In contrast, the focus of this paper is on snaking that re-
sults from imposed periodic spatial modulation, i.e., on
forced snaking.

Some of our results for larger m1, i.e., greater potential
depth, resemble those obtained from discrete models of
optical systems, and specifically those obtained by Chong
and Pelinovsky for the discrete cubic-quintic NLSE [26].
Models of this type are typically derived from a con-
tinuum formulation in the tight binding approximation
where the potential depth diverges, m1 → ∞ [32]. In
the discrete system that results the original parameters
m1 and ` replaced by a single parameter, often referred
to as C. The discrete system models the amplitude at
each lattice site, i.e., the amplitude of the spatial modes

trapped in the different wells of the potential. Although
the behavior of the continuous and discrete systems is
in some cases similar, the fact remains that the tight-
binding assumption leads to the loss of one of the system
parameters and the discrete formulation can therefore
only capture a subset of the behavior described by the
continuum formulation.This paper focuses on exploring
the behavior of the continuum system far from the dis-
crete NLSE limit, i.e., for modest values of the parameter
m1. We show that in this regime the lattice spacing `
plays a fundamental role and is responsible for the pres-
ence of a new bifurcation diagram organizing gap solitons
at large enough `.

This paper is organized as follows. In Section II we
briefly summarize the bifurcation structure of the so-
lutions in our previous work [20] and explain the phe-
nomenon of forced snaking. We also show that the spatial
scale of the potential, `, has a major impact on the bi-
furcation structure of these solutions, and use the values
` = 10 and ` = 50 to illustrate two distinct regimes. In
Section III we compute the linear stability of the snaking
solutions and in Section IV we use the results to inves-
tigate the dynamics and break-up of unstable solutions,
focusing on the new, large ` regime. The paper con-
cludes with a discussion in Section V. In Appendix A
we report on a strongly nonlinear theory that captures
the essence of the depinning behavior leading to soliton
mobility. Appendix B details our numerical methods.

II. FORCED SNAKING

For fixed parameters Eq. (2) possesses multiple mul-
tipulse solutions. As a function of the parameter m0

these solutions lie on a countable set of distinct bi-
furcation curves. In [20] we term this behavior forced
snaking. These localized solutions are real-valued despite
Eq. (2) admitting complex solutions. To see this we write
u(x) = r(x)eiφ(x) yielding

rxx − rφ2
x − V (x)r + r3 − r5 = 0

d

dx
log
(
r2φx

)
= 0. (3)

Integrating Eq. (3) once leads to φx = Kr−2, implying
that rxx −K2r−3 − V r + r3 − r5 = 0. When K 6= 0 this
equation does not admit solutions that are homoclinic to
r = 0, i.e. to u = 0, implying that such states are only
possible when K = 0 and that φ is therefore constant.
Without loss of generality we take φ = 0.

The details of this bifurcation structure depend signifi-
cantly the three parameters m0, m1 and ` characterizing
the equation. In the following we summarize the main
results concerning localized states in Eq. (2). These fall
into two distinct regimes depending on the lengthscale of
the forcing, `, and in each case are analyzed in stages as
we increase the potential depth, m1, from zero.
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FIG. 2. Bifurcation diagram showing periodic and localized
states when m1 = 0.1, ` = 10 on a periodic domain. The lat-
ter are organized within a classical snakes-and-ladders struc-
ture [21, 22] and consist of states with N bumps: states
with N even (odd) are found on the blue (red) snaking
branch. Connecting each pair of folds is a branch of asym-
metric rung states (green) only one of which is shown. The
snaking branches bifurcate together from (and reconnect to-
gether to) a domain-filling periodic state. Plots on the right
show solutions u(x) at points marked with (•), shown over
the full domain 0 ≤ x ≤ 100. Solutions labeled with (�,�)
have m0 = − 3

16
and are relevant to the stability calculations

(Fig. 6) and time simulations shown below. Solutions marked
with magenta circles are shown explicitly in Fig. 3.

A. Short-scale forcing, ` = 10

For small values of ` the addition of periodic paramet-
ric forcing to the GLE model produces localized states
that exhibit classic snaking. The addition of parametric
forcing on a short lengthscale (here ` = 10) causes the
constant amplitude solutions on the primary branch of
the GLE to become periodic with the same period as the
forcing. Figure 2 shows a pair of intertwined branches
of localized states that bifurcate from the newly periodic
primary branch at low amplitude (location D) and enter
a pinning region as they are continued in the parameter
m0, exhibiting snaking, before terminating on a branch
of domain-filling periodic states (location E). The solu-
tions on these branches are characterized by the number
N of bumps of the periodic state contained within them.
This number can be either odd or even. Each back and
forth excursion of the solution branch across the pinning
region results in the addition of one new bump on either
side the solution thereby maintaining the parity of N .
In addition, a set of spatially asymmetric “rung” states
connects opposite folds on the snaking branches. Only
one rung is shown in the figure. This structure does not
change qualitatively when m1 is increased.
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FIG. 3. Two successive 4-bump snaking solutions at m0 =
− 3

16
, m1 = 0.1, ` = 10. The stable solution is drawn with

a solid line and the unstable one with a dashed line (see sec-
tion II). These solutions correspond to the magenta points in
Fig. 2.

Each N -bump solution occupies two consecutive sec-
tions of the snaking branch separated by a fold on the
right, a lower section with a larger slope and an upper
one with a smaller slope (Fig. 2). Figure 3 shows a pair
of solutions, the dashed line from an upper section and
the solid line from the previous lower section, both at the
same parameter value, showing the process whereby the
folds on the right are responsible for the appearance of
an extra pair of pre-bumps on either side. The center
parts of the solutions are the same. As m0 decreases the
pre-bumps grow into full bumps turning the state into a
N + 2-bump solution.

The asymmetric rung branches can be understood in
terms of this dichotomy. Rung states, like the one shown
in Fig. 2, are made up one half of the dashed solution and
one half the solid solution shown in Fig. 3. As they are
continued in m0 the structure gains a single full bump on
one side and thus changes parity (N bumps to N + 1).
Thus rung branches connect opposite folds on the odd
and even branches. Previous work on “symmetry break-
ing” in gap-soliton systems [26, 33] has found similar
asymmetric solutions.

B. Long-scale forcing, ` = 50

For larger values of the forcing wavelength or “lat-
tice spacing” ` localized states persist but are no longer
arranged in the classical snakes-and-ladders structure
shown in Fig. 2. As documented in [20], the bifurca-
tion structure of the localized states now depends more
strongly on m1. For small m1 classical snaking is ob-
served but at a moderate value, here m1 ≈ 0.035 with
` = 50, the snaking structure breaks down entering a
regime that we have termed “foliated snaking.” An exam-
ple of this scenario is pictured in Fig. 4 in which we plot
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FIG. 4. Bifurcation diagram for m1 = 0.1 when ` = 50 show-
ing FPT branches based on one spike (blue), three spikes (red)
and five spikes (green). The periodic branch is shown in black.
The branches interconnect at the left folds. Panels on the
right show solutions u(x) at points marked with (•), shown
over the full domain 0 ≤ x ≤ 500. Solutions labeled with
(�,�) have m0 = −0.15 or m0 = −0.1 and are relevant to
the stability calculations (Fig. 7) and time simulations shown
below.

soliton states taking the form of finite pulse trains (FPT),
with an odd number of peaks. Similar states consisting
of a finite even number of solitons are also present. In the
foliated snaking regime soliton branches with odd/even
number of peaks maintain parity-preserving interconnec-
tivity, but the bifurcation diagram is significantly differ-
ent. This is because the FPT states may sample solitons
from either the upper (lump) or the lower (spike) branch
of periodic states (black curve in the figure) resulting in
FPT with all possible combinations of lumps and spikes,
with gaps (u = 0) permitted. The lumps and spikes are
located at the cosine maxima (i.e., minima of V (x), as
expected). Because of the up-down symmetry, u → −u,
states with negative (i.e., dark) lumps are also present.
Thus FPT consisting of a mix of bright and dark solitons
are possible, although these are not considered here.

All branches of localized states with spikes bifurcate
from the primary bifurcation point at m0 = mc and ini-
tially take the form of a pulse train with N spikes. As
they are continued in m0 the branch passes the leftmost
fold thereby turning the spikes into lumps. Upon further
continuation the lump state undergoes a complicated set
of bifurcations that ultimately add a pair of spikes, one
at either edge of the structure, and allow the branch of
N lumps to connect to that with N + 2. In principle
arbitrary combinations of spikes and lumps can be com-
bined to form localized states indicating that the com-
plete bifurcation diagram is in fact much more compli-
cated. Here we only consider states formed by either N
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FIG. 5. Bifurcation diagram for m1 = 1 when ` = 50 show-
ing FPT branches based on one spike (blue) and three spikes
(red) emanating from the primary bifurcation and a mixed
PT branch consisting of one lump and two spikes (magenta)
connecting the two. The periodic branch in shown in black.
Sample solution profiles are shown on the right.

spikes or N lumps that are adjacent to each other. The
reader is referred to [20] for more details about the emer-
gence of this bifurcation structure and the details of the
spike-adding process.

The above scenario becomes yet clearer at larger m1

when the rightmost folds collide with m0 = mc. Fig-
ure 5 shows the results for m1 = 1. Like the lower m1

value, pulse trains can be constructed with either a lump,
spike or u = 0 at each cosine maximum and thus one
can construct families of soliton states. A FPT with N
lumps and M spikes when continued in m0 below mc

turns around at the left fold on the branch of periodic
states. At this fold the lumps and spikes coincide but as
m0 increases back towards mc any spikes in the structure
shrink to u ≡ 0. Thus a 1-lump, 2-spike solution coin-
cides with a 1-lump solution when m0 = mc and the two
branches meet in what is effectively a cusp.

The presence of the cusp is indicative of the separa-
tion of scales in Eq. (2). Between the bumps the ODE
solution is exponentially small (a property that is exacer-
bated as ` increases) and the nonlinear terms in Eq. (2)
are therefore even smaller while the potential is O(1).
Thus to high accuracy the solution between the bumps
may be taken to be u = 0. This means that the localized
soliton states behave as independent concatenations of
lumps and spikes rather than a single family: the nonlin-
ear terms do couple the bumps, but do so exponentially
weakly. The cusps that are observed in the bifurcation
diagram are thus expected to be blunt upon close inspec-
tion, but with curvature inversely related to the exponen-
tially small coupling between the pulses.

The presence of two distinct bifurcation diagrams or-
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ganizing gap solitons on the GPE is a significant new
result. Existing work on the discrete cubic-quintic NLSE
has identified the scenario in Fig. 2, i.e., classical snaking,
but to the authors’ knowledge the foliated snaking sce-
nario (Fig. 5) has not been seen in either the discrete
NLSE or the GPE. It is, however, documented in studies
of the ac-driven, damped nonlinear Schrödinger equation
[34].

III. STABILITY

The linear stability of the solution A(x, t) =
e−im0tu(x) of Eq. (1) may be studied using the Ansatz

A(x, t) = e−im0t(u(x)

+ [a(x) + b(x)]eσt + [a∗(x)− b∗(x)]eσ
∗t)

followed by linearization in the complex amplitudes a and
b. This procedure leads to a linear eigenvalue problem for
the growth rate σ:

−iσ
(
a
b

)
=

(
0 ∂xx + Ñ (u, x)

∂xx +Nu(u, x) 0

)(
a
b

)
≡ L

(
a
b

)
. (4)

In writing this equation we have assumed that u(x)

is real-valued, with Ñ (u, x) ≡ N (u, x)/u, Nu(u, x) ≡
∂vN (v, x)|v=u and N defined as in Eq. (2). We solve
this eigenvalue problem using a Fourier pseudo-spectral
method details of which are discussed in Appendix
B. This eigenvalue problem has the null eigenfunction
(a, b) = (0, u) with algebraic multiplicity 2. The mul-
tiplicity of the eigenvalue can be seen by differentiating
uxx+N (u, x) = 0 with respect to m0 yielding the identity

− [∂xx +Nu(u, x)]
∂u

∂m0
= u (5)

from which it follows that ∂m0u is a generalized eigen-
function with eigenvalue 0. The presence of the potential
breaks translation invariance which would otherwise gen-
erate an additional null eigenfunction.

When σ 6= 0 this eigenvalue problem can be diago-

nalized, viz. σ2a = −
[
∂xx + Ñ (u, x)

]
[∂xx +Nu(u, x)] a.

From reflection symmetry it is clear that if σ is an eigen-
value of this equation, then −σ and ±σ∗ are eigenval-
ues also. Thus stable solutions have a spectrum entirely
confined to the imaginary axis. Instabilities occur when
eigenvalues exit the imaginary axis into the right half-
plane. If these eigenvalues have zero imaginary part the
instability is known as an exponential instability; oth-
erwise it is an oscillatory instability (OI). In this work
we have only found exponential instabilities; however,
the occurrence of OI can be subtle [35] and eigenval-
ues may have very small real parts. We leave a care-
ful study of OI to future work. In the diagonalization
performed here σ2 > 0 corresponds to a pair of eigen-

values on the real axis, symmetric about σ = 0, whereas
σ2 < 0 corresponds to a pair of symmetrically disposed
eigenvalues on the imaginary axis. Since the diagonal-
ized eigenvalue problem may not capture all of the zero
eigenvalues that are present we check the results by com-
puting the nullspace of the operators ∂xx + Ñ (u, x) and
∂xx +Nu(u, x) as well.

A. Short-scale forcing, ` = 10

Stability results for forced snaking solutions replicate
known results at low amplitude and exhibit stability
switching at folds higher up on the snaking branch. In
Fig. 6 we plot curves of the squares of the three largest
eigenvalues, σ2, as a function of the arclength s along
the two branches of snaking solutions measured from the
bottom. These are computed by calculating the entire
eigenspectrum for a series of solutions along the bifurca-
tion curve. Folds on the solution branches are denoted
by grey vertical dotted lines at the associated location s.
The continuation is initiated at low amplitude (point D
in Fig. 2) where the branch with an odd (even) number of
bumps is stable (unstable). In the even case the branch
restabilizes before the first fold is reached but no stability
change occurs in passing the first fold on the odd branch.
Despite this behavior at the lowest folds subsequent folds
do coincide with stability switching for the snaking solu-
tions. Most of the unstable segments of each branch are
in fact unstable with respect to an additional unstable
eigenvalue as well that leaves the imaginary axis and re-
turns to it between the folds. However, the real part of
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this second eigenvalue is strictly smaller than that of the
primary one and is thus of little dynamical importance.
As can be seen by the ordering of eigenvalues in the fig-
ure no other eigenvalues go unstable in traversing either
branch.

The decorrelation between stability switching and the
location of the folds is a consequence of the structure of
the temporal stability eigenvalue problem for solutions of
the GPE as explained in [36]. In this paper the author
shows that for a large class of NLS-type equations the
algebraic multiplicity of the 0 eigenvalue does not change
at fold bifurcations in the ODE (2). Thus, no eigenvalues
can escape into the right half-plane. Instead, the effect
of the 0 eigenvalue of the operator ∂xx + Nu(u, x) is to
change the geometric multiplicity of the 0 eigenvalue of
L. Specifically, at the fold bifurcation the identity (5) is
invalid and the eigenvalue 0 does not have any generalized
eigenfunctions [36]. However, the algebraic multiplicity
of the zero eigenvalue of L is preserved by the presence
of a “fold eigenfunction” of the operator ∂xx +Nu(u, x).
The effect on the 0 eigenspace of L can be thought of as
a change between the following Jordan blocks:(

0 1
0 0

)
→
(

0 0
0 0

)
.

The “fold eigenfunction” is intimately related to the di-
vergence of the function ∂m0

u as the fold m0 = mF is

approached, ∂m0
u ≈ (m−mF )−

1
2 . Multiplying the iden-

tity (5) by
√
m−mF before taking the limit shows that

∂m0
u passes smoothly into an eigenfunction of the oper-

ator ∂xx + Nu(u, x) at mF . Of course this mechanism
does not preclude additional eigenvalues passing through
0 at folds in the ODE but it does not mandate it. For a
rigorous treatment of this argument we direct the reader
to Ref. [36].

The character of the instabilities and the failure to
switch stability at the first folds can be gleaned from
the structure of the associated stationary state and its
eigenfunctions. Figure 6 shows the two eigenfunctions
corresponding to the most unstable eigenvalues (black
and blue) at arclength locations marked by open circles.
These points were chosen all to be at the parameter value
m0 = − 3

16 so that the periodic state is the same in all
cases. Because the eigenvalues observed here are all real
the Ansatz (4) for the perturbations is too general and
we find that a(x) is purely real while b(x) is purely imagi-
nary. We thus plot <(a) with a solid line and =(b) with a
dashed line in each subplot. In a few cases <(a) ≡ 0 and
is omitted. In each case the corresponding base state is
shown in grey. All of the subplots in each row have a con-
sistent vertical scaling so the amplitudes of the nonlinear
states can be compared. The largest eigenvalue for the
unstable states corresponds to an eigenmode (black) that
is antisymmetric across the structure with a(x) localized
at the structure boundaries. This type of edge-localized
mode is observed in classical snaking systems. However,
because the corresponding b(x) 6≡ 0 this mode also ro-

tates the real-valued stationary state u(x) into a fully
complex and hence dynamic state. This behavior is in
fact violated by the last state on the odd branch since
this localized state is now so broad that it reaches the
boundary of the domain. When the domain has an even
number of cosine wavelengths (say 10) the final branch
segment on the odd branch (a state of size 9) has a most
unstable mode of even parity, localized on the only re-
maining unoccupied spot. We expect a similar violation
for the even branch when the domain spans an odd num-
ber of cosine wavelengths but no such violation when the
problem is posed on the real line.

When there is a second unstable eigenvalue, the as-
sociated eigenmode is symmetric across the structure.
This mode thus corresponds either to growing or shrink-
ing of the structure depending on the sign of a(x). As
in classical snaking, this mode takes the solution to the
branch segment above or below in the snaking structure
by growing or shedding the bumps at both boundaries
of the structure simultaneously. However, because the
associated b(x) is again nonzero the resulting solution
becomes fully complex and hence also time-dependent.
Which mode is selected depends of course on the nature
of perturbation around the stationary state.

The symmetric mode is not always unstable, however,
and remains stable along the first instability intervals on
both branches. We believe that this nonuniversal behav-
ior, just like the decorrelation between the first folds and
stability switching, is a consequence of the small spatial
extent (and hence small norm) of the soliton states in
this regime. Similar pre-localized behavior near the base
of the snaking branches is present in classical snaking as
well and causes the small-norm solutions to have different
properties from their more spatially extended brethren
higher up on the branch.

B. Long-scale forcing, ` = 50

In the foliated snaking regime the stability results are
considerably different. Figure 7 shows the squares of
the largest eigenvalues, σ2, for the 1-lump and 3-lump
foliated snaking branches (blue and red branches from
Fig. 4). The 1-lump branch is stable except during pulse
addition, i.e. between its second and last fold, where
it is unstable. This instability is the result not only of
eigenvalue crossings at the folds but of additional cross-
ings inside the instability interval as well. The 3-lump
branch has a similar structure with all the instability in-
tervals associated with the pulse addition process. The
most remarkable feature of these results is that stability
switching does not occur at the spike-lump fold and that
pulse trains with both spikes and lumps are stable. This
is in significant contrast to the dissipative case studied in
[20] where spikes are always unstable.

Solutions with N lumps and M spikes have a multi-
plicity N + M zero eigenvalue. The intuition for this is
as follows. The null eigenfunction (a, b) = (0, u) is local-
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FIG. 6. The three largest linear stability eigenvalues σ2 for the solutions in Fig. 2 computed as a function of the arclength
s. The largest eigenvalue σ2 is plotted using a solid black line while all smaller eigenvalues are shown using a dashed line.
Inset (A) represents a branch of solutions with an even number of bumps while inset (B) represents a branch with an odd
number. Specific base states at m0 = − 3

16
(grey) and the corresponding eigenfunctions (largest eigenvalue in black, second

largest eigenvalue in blue) of the even-bump branch are plotted above (A) with the corresponding results for the odd-bump
branch shown below (B). In each case the real part <[a(x)] of the eigenfunction is shown using a solid line while the imaginary
part =[b(x)] is plotted using a dotted line. In some cases a(x) ≡ 0 and we omit it from the eigenfunction plot. In each case the
open circles (which may overlap) indicate the location of the base states used to compute the eigenfunctions shown.
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(A)
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0.01

0.00

0.01

σ
2

(B)

m0 = − 0.1

FIG. 7. The five largest linear stability eigenvalues σ2 for the solutions in Fig. 4 computed as a function of the arclength
s. The largest eigenvalue σ2 is plotted using a solid black line while all smaller eigenvalues are shown using a dashed line.
Inset (A) represents the single pulse FPT branch while inset (B) represents the three-pulse FPT branch. Typical base states
(grey) and eigenfunctions (largest eigenvalue in black, second largest eigenvalue in blue) on the branch with an even number
of bumps are plotted above (A) with the corresponding results for the branch with an odd number of bumps shown below (B).
In each case the real part <[a(x)] of the eigenfunction is shown using a solid line while the imaginary part =[b(x)] is plotted
using a dotted line. In some cases a(x) ≡ 0 and we omit it from the eigenfunction plot. The states are mostly computed at
m0 = −0.15 (except for the one marked in red); their location is indicated using open circles (which overlap when an eigenvalue
is degenerate). The second apparently continuous black line in the busy part of panels (A) and (B) is generated by an overlap
between a pair of dashed curves. Observe that in both cases the most unstable mode switches from an even parity mode to an
odd parity mode as s increases.
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ized at the position of the solution. In a finite pulse train
the solution nearly vanishes between the lumps or spikes
and therefore the nullspace can be parametrized by lin-
ear combinations of the eigenfunctions (0, uk), where uk
is the null eigenfunction corresponding to a solitary lump
or spike positioned at the kth cosine maximum.

IV. DYNAMICS

In order to validate our stability calculations and de-
termine the effects of perturbations to the stationary
snaking states we turn to time evolution of Eq. (1). These
simulations are executed in a rotating frame, that is, we
set A(x, t) = e−im0tu(x, t) and study the evolution of
u(x, t). Details of the numerical implementation are doc-
umented in Appendix B. Equation (1) has a number of
conserved quantities including an “energy”

E ≡
∫

Ω

|ux|2 −
[
m0 +m1 cos

(
2πx

`

)]
|u|2

− 1

2
|u|4 +

1

3
|u|6 dx, (6)

where Ω is the system domain, as well as the L2 norm
or “power” of the solution. We refer to the integrand of
Eq. (6) as the energy density E(u) of the solution. Be-
cause of these conserved quantities it is often difficult to
simulate dynamics on the real line if the solution radiates
energy. When the domain is unbounded radiation may
escape to infinity and though energy is conserved glob-
ally local dynamics appear to be dissipative [37, 38]. In
simulations of this type it is popular to replace the real
line by a finite interval with artificial damping imposed
at the boundaries. We elected not to do this since there
is no well-established method for imposing the damping
and incorrect methods will result in unphysical reflected
waves that interfere with the solution. For the simula-
tions performed here we chose periodic boundary condi-
tions without any artificial damping. This choice allows
us to make precise statements about the time evolution
of structures on a periodic domain.

This section is divided into three parts. We first focus
on the linear dynamics associated to gap soliton solu-
tions, i.e., the time evolution of gap solitons subjected to
small perturbations. We observe that a perturbed unsta-
ble gap soliton typically evolves into a coherent state that
oscillates around a distinct stable stationary gap soliton.
This observation leads to the second part of the section
in which we describe a set of strongly nonlinear dynamics
of perturbed stable gap solitons. We report a pair of un-
binding phase transitions (or depinning bifurcations) in
which perturbed stable gap solitons transition from being
bound (pinned) by the periodic potential and confined in
space, to having sufficient energy to propagate in space.
These transitions are strongly nonlinear because they re-
quire O(1) perturbations. Aspects of these results are
also supported by an asymptotic theory described in Ap-

(a)

(b)

(c)

FIG. 8. Color maps used in space-time plots of the solutions
in subsequent figures: (a) |u|, (b) <(u) and (c) E(u).

pendix A in which we show that the dynamics are well de-
scribed by two degrees of freedom. The third section ties
these two parts together. We first show that the bound
coherent states arising from perturbed linearly stable and
unstable gap solitons can be mapped onto the theory we
develop in Appendix A. We also show that the theory
accurately describes one of the unbinding transitions.

All of the time simulations performed here are done
using the same basic set of parameters. The time inte-
gration is performed with a split-step method (see Ap-
pendix B) with n = 1000 spatial grid points and a time
step dt = 0.001. The method is pseudo-spectral and pe-
riodic boundary conditions are adopted. The energy E of
the solution is well conserved during all of the time sim-
ulations, varying at most on the order 10−9. To present
the time evolution results we have elected to show three
solution measures: the amplitude |u| of the solution, its
real part <(u) and its energy density E(u). Since each of
these solution measures has very different scales we plot
them with three distinct color maps that are kept consis-
tent throughout the paper. Because the exact amplitude
of the solution is not informative we omit an explicit color
bar from the time simulation figures and instead exhibit
the ranges for the color maps in Fig. 8 so that maximal
and minimal values can be discerned.

A. Linear dynamics of gap solitons

Time simulation of snaking solutions for ` = 10 repli-
cate known results for low amplitude gap solitons in the
semi-infinite gap. We confirmed through the linear sta-
bility calculation in Fig. 6 and by time-stepping snaking
solutions of Eq. (1) the well-known result that the 1-
bump branch is stable and the 2-bump branch is un-
stable near the primary bifurcation [39]. Owing in part
to energy conservation, asymmetric perturbations such
as multiplication by a phase gradient, eiηx with η � 1,
cause both 1-bump and 2-bump solutions to oscillate in
space around the stationary solution. This is similar to
known behavior for 1- and 2-bump gap solitons both in
the continuum regime [39] and in discrete models [40] al-
though in the present case the oscillations are more vis-
ible. We suspect that these oscillations are largely sup-
pressed by the damping boundary conditions and large
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value of m1 ∼ 6 for the confining potential that are typi-
cally used in the literature [14, 39] in contrast to the case
of periodic boundary conditions with the modest value
m1 = 0.1 used here. Stable solutions higher up on the
snaking branches have dynamics similar to those near the
primary bifurcation. Because solutions retain any energy
associated with the initial perturbation these stable soli-
tons all execute qualitatively similar dynamics.

Linearly unstable solutions higher up on the snaking
branches also all behave in a systematic fashion. Every
N -bump solution exists on a stable and unstable branch
segment separated by a right fold (Fig. 2). The main
difference in the profiles of the solutions on these two
segments is the presence of defects on either side as shown
in Fig. 3. As can be seen from Fig. 6 an odd parity
eigenfunction is always associated to the most unstable
eigenvalue. This eigenfunction acts to grow one of the
defects and eliminate the other. This causes an N -bump
unstable solution to evolve into an oscillatory solution
that cycles around another stable snaking state with N+
1 bumps. This evolution is shown in Fig. 9. The solution
oscillates both in position and phase and does so with
distinct frequencies, as can clearly be seen by comparing
panels (a) and (b). We emphasize here that although the
simulation is conducted in a particular rotating frame
(fixed m0) all the snaking solutions with different m0

remain valid solutions in this frame although they now
rotate in time. Thus, if the solution migrates towards
another snaking solution then generically it is expected
to rotate as observed. As alluded to above we conjecture
that the spatial oscillations would be suppressed or at
least damped if the radiation given off were allowed to
escape. In this case the stable snaking solution to which
the dynamics appear to migrate may become an attractor
in time.

When appropriate perturbations are selected the un-
stable symmetric eigenmode can also be observed. In
Fig. 10 the time evolution of a 3-bump snaking solution
(point S3 in Fig. 2) is perturbed by the symmetric eigen-
function. The growth of this mode causes the solution
to evolve into a breather whose width fluctuates sinu-
soidally in time. When the solution width expands later-
ally (t ∼ 200, 500, 700) the inter-bump height decreases,
preserving the L2 norm. This is best seen in Fig. 10(a)
or (c). At t ∼ 800 this process ends when the more un-
stable asymmetric mode becomes visible. Because the
equation is reflection-symmetric this is likely due to the
growth of numerical errors in either the initial condition
or the subsequent timesteps. Further time evolution (not
pictured) confirms that beyond t = 800 both asymmet-
ric and symmetric oscillations occur but the solution still
remains localized near a 3-bump snaking state.

Like stable forced snaking solutions, stable solutions
in the foliated regime also have simple dynamics. We
focus on stable solutions with a phase gradient pertur-
bation. Although there are many qualitatively different
types of stable solutions in the foliated regime they all
have oscillatory dynamics similar to the forced snaking

case. To look at one specific case we consider a 1-lump
2-spike solution from the 1-lump branch with a larger
phase gradient perturbation, η = 0.1. The initial solu-
tion, point S4 in Fig. 4, is the last base state pictured
in Fig. 7. When the phase gradient is this large the spa-
tial and temporal oscillations are clearly distinguishable
(Fig. 11). Furthermore the lumps and spikes appear to
oscillate independently with oscillation frequencies that
depend on the amplitude and spatial extent of u(x). The
lump oscillates in space and rotates in time while the
spikes maintain their phase and only oscillate in space.
The spatial oscillation frequencies of the two spikes are
identical but smaller than that of the central lump.

The dynamics arising from the unstable branches of the
foliated snaking states are complicated. We only treat
two examples here. Although the FPT made up of clearly
separated lumps and spikes are stable, the regime near
m0 ≈ −0.15 includes a variety of unstable solutions as
well. As shown in Fig. 7 unstable solutions may possess a
variety of unstable modes but we only focus here on two
examples, and only on the most unstable eigenmodes.
The first of these, S5 in Fig. 4, is the third base state on
the 1-lump branch as pictured in Fig. 7. This state has
only one unstable eigenfunction and this eigenfunction
is odd. The time simulation in Fig. 12 shows that the
solution decays after t ≈ 500 in a spectacular fashion into
three oscillatory pulses and a single traveling pulse. The
spatial extent of the oscillatory pulses varies and hearkens
to the fact that lumps and spikes vary in amplitude and
width with m0. The oscillatory pulses are deposited in
adjacent wells of the potential and oscillate as trapped
states.
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FIG. 9. Time evolution of an unstable 2-bump snaking solution (point S2 in Fig. 2) perturbed by the unstable antisymmetric
eigenfunction. The initial condition is the second base state pictured in Fig. 6 on the even branch. The simulation is performed
with m0 = − 3

16
, ` = 10. Plot (a) shows |u|, (b) <(u) and (c) E(u). The solution decays after t ≈ 180 into an asymmetric

oscillatory state that appears to cycle around a stable three-bump snaking solution. Wave radiation is visible in panel (b).

FIG. 10. Time evolution of an unstable 3-bump solution on the odd snaking branch snaking branch (point S3 in Fig. 2)
perturbed by the symmetric unstable eigenfunction. The initial condition is the second base state pictured in Fig. 6 on
the odd branch. The simulation is performed with m0 = − 3

16
, ` = 10. Plot (a) shows |u|, (b) <(u) and (c) E(u). As a

consequence of the initial perturbation the solution oscillates symmetrically in space while rotating; at t ≈ 800 the (more
unstable) asymmetric mode becomes apparent. Though not shown here, evolution beyond this point is oscillatory and both
symmetric and antisymmetric dynamics occur.
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FIG. 11. Time evolution of a stable 1-lump 2-spike solution on the first foliated snaking branch (point S4 in Fig. 4) perturbed
by a phase gradient η = 0.1. The initial condition is the fourth base state pictured in Fig. 7 for the 1-lump foliated branch.
The simulation is performed with m0 = −0.15, ` = 50. Plot (a) shows |u|, (b) <(u) and (c) E(u). As a consequence of the
initial phase gradient perturbation the central lump oscillates in space and rotates while the spikes at the sides only oscillate.
The frequencies of the oscillations depend on the spatial extent of the lumps/spikes.
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The last case of instability we consider is one in which
one of the most unstable eigenfunctions is of even parity.
The base state, S6 in Fig. 4, is the fourth on the 1-lump
branch as pictured in Fig. 7 and the time simulation is
shown in Fig. 13. The evolution shows that the state
quickly evolves into a breather whose width oscillates
regularly in time. We have not investigated even par-
ity instabilities systematically but conjecture that many
of them manifest themselves in a similar fashion.

B. Unbinding transitions

The study of traveling solitons in optical latices has
a rich history. The specific phenomenon of soliton un-
binding and propagation takes the name “mobility” in
much of the gap soliton literature. A great deal of work
has examined the mobility of solitons in discrete lattices
where uniformly traveling solutions do exist; we direct
the reader to the review [41] for a comprehensive his-
tory. This work includes proofs of existence of traveling
solutions [42] and examinations of the effects of phase
gradient perturbations on stationary solitons [40]. For
example, in [43] the speeds of solitons subject to such a
perturbation are computed. To our knowledge less an-
alytical work has been done in the continuum context
[44, 45]. A notable exception is Ref. [46] that focuses
on a PT-symmetric cubic NLSE with spatially periodic
modulation in both linear and nonlinear terms and em-
ploys an adaptation of the inverse scattering transform
to compute soliton speeds analytically in the shallow po-
tential limit. We are unaware of any similar work on gap
solitons in the cubic-quintic NLSE studied in this paper
and now turn to examine, both numerically and analyti-
cally, the mobility of gap solitons in this context.

Stable stationary gap soliton solutions have a temporal
spectrum entirely contained on the imaginary axis and
thus oscillate when a small perturbation is added. Since
Eq. (1) conserves energy it is natural to parametrize per-
turbed stationary solitons by their extra energy. When
this energy is small the dynamics are determined by the
linear spectrum of the stationary solution and are thus
oscillatory. For larger energies the dynamics are fully
nonlinear. When the energy of the perturbed soliton is
sufficiently high it unbinds from the potential allowing
the fronts flanking the localized state to propagate. Some
of this dynamical behavior is captured by the strongly
nonlinear asymptotic analysis contained in Appendix A.

We first turn to asymmetric perturbations. In line with
the theory (Appendix A) we consider perturbations with
a uniform phase gradient so that the initial condition is
u(x, 0) = eiηxu0(x) where u0(x) is a stationary gap soli-
ton solution. As shown in Appendix A the dynamics
of the center of mass of such an initial condition follow
that of a mathematical pendulum. Specifically, as η is in-
creased from zero the motion transitions from the “libra-
tion” regime, in which the soliton’s center of mass oscil-
lates with zero average speed, to the “rotation” regime,

where the center of mass moves with nonzero average
speed. Three snapshots of this transition are shown in
Fig. 14. In panel (a) of the figure a 1-lump gap soli-
ton (solution S7 from Fig. 4) with an added initial phase
gradient η = 0.1 executes libration motion. As the ini-
tial phase gradient is increased the soliton begins to de-
pin and splits into pulses some of which move with a
nonzero average speed (rotation regime) while others re-
main pinned executing libration. This is shown in panel
(b) of Fig. 14 where η = 0.4. As the leading pulse prop-
agates it deposits “mass” into successive wells of the po-
tential. Because the equation is mass-preserving the lead-
ing pulse is drained of mass as this occurs and may itself
become trapped (Fig. 15). Further increase in η shifts the
motion more solidly into the rotation regime. For large
enough η the bulk of the pulse does not split but moves
with a single nonzero average speed, Fig. 14(c). Although
a small amount of mass appears to escape from the mov-
ing pulse the fraction of mass lost is trivial compared to
the total. On a periodic domain integration for longer
times reveals a stationary state in which the pulse trav-
els at a same constant average speed. The average speeds
of the center of mass of these pulses are well predicted
by our asymptotics (see below).

The crossover from the libration to the rotation regime
is associated with complex behavior, particularly in the
long time limit. In the early stages of unbinding solution
S7 propagates with a nonzero average speed but still loses
mass in the potential. A long time simulation is shown in
Fig. 15. The solution propagates while shedding pulses
which are trapped by the potential much like occurs for
an unstable solution in Fig. 12. Because the domain is
periodic the leading pulse eventually collides with the re-
mains of the original state near t = 700, giving up most of
its mass but allowing a small and faster untrapped pulse
to propagate away on the far side. This reconnection is
facilitated by the potential and is unlike the true soliton
behavior of the unforced NLSE since mass is exchanged
between the colliding pulses. A later stage of this dissolu-
tion process for a larger perturbation gradient, η = 0.8,
is shown in Fig. 16. Here the bulk of the mass travels
with a nonzero average speed. Fracturing of the lead-
ing pulse leads to smaller pulses that are slower but still
untrapped Only a small amount of mass is trapped in
the wells of the potential. As time progresses splitting
of the pulses continues until masses traveling at a range
of average speeds are present. Of particular interest are
the small amplitude quasistationary structures deposited
by the drifting pulse; these represent lost mass trapped
in different wells of the potential. We have not inves-
tigated this behavior for arbitrarily large domains but
here, in a finite domain, the solution appears to reach
a pseudo-steady state. We conjecture that on an infi-
nite domain the initial pulse or soliton disintegrates in
a similar fashion, and eventually ceases to exist as an
identifiable structure. As η increases further the pulses
travel at larger and larger average speeds and appear to
execute fewer oscillations. These oscillations are never
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FIG. 12. Time evolution of a 1-lump unstable solution on the first foliated snaking branch (point S5 in Fig. 4) perturbed by
an unstable antisymmetric eigenfunction. The initial condition is the third base state pictured in Fig. 7 on the 1-lump foliated
branch. The simulation is performed with m0 = −0.1, ` = 50. Plot (a) shows |u|, (b) <(u) and (c) E(u). The solution decays
after t ≈ 500 into four distinct states. Three of these oscillate in space and phase and appear to cycle around a variety of 1-pulse
solutions. The oscillation frequencies depend on the height and spatial extent of the pulses. A remaining pulse is shed with a
definite average speed to the right and in an infinite domain we expect this “radiation” to continue propagating to infinity.

eliminated, however, since states traveling at constant
speed cannot exist in equations like Eq. (1) when m1 is
nonzero, cf. [47].

We next examine the effect of a symmetric perturba-
tion on the unbinding transition. In order to study sym-
metric modes we consider a phase perturbation of a sta-
tionary gap soliton that is symmetric with respect to the
soliton’s center of mass. Specifically, we take initial con-

ditions of the form u(x, 0) = eiρ(x−α)2u0(x), where x = α
represents the location of the soliton’s center of mass.

Because of the mass-conserving property of Eq. (1)
symmetric perturbations of sufficient amplitude cause
a qualitatively different transition from antisymmetric
ones. As in the antisymmetric case the local phase gra-
dient at the position of the fronts flanking the localized
state determines the direction of the front motion. In the
antisymmetric case the phase gradient at both fronts is
identical and both fronts move in the same direction with
the same speed, regardless of whether the motion is a li-
bration or a rotation. The main qualitative difference in
the symmetric case is that the sign of the phase gradient
is now opposite at the two fronts. As a result for small
ρ each front moves with the same speed but in opposite
directions generating a state that is a symmetric analog
of libration, i.e., a breathing state, as shown in Fig. 17(a)
where ρ = 0.01. As can be discerned from the coloring of
the plot the amplitude of the pulse grows when its width
decreases and vice versa. Thus the dynamics conserve the
soliton mass. When ρ is increased to a sufficient extent
the fronts acquire a nonzero mean speed and propagate

outward away from the center of the structure, Fig. 17(b).
This causes a competition between the growth in width
of the pulse and decrease in its amplitude. For ρ = 0.02,
panel (b), the fronts detach from the central structure in
the form of two traveling pulses, and leave a librating or
breathing mode at the center. For even larger gradients,
ρ = 0.1 in panel (c), the soliton expands yet more rapidly
although a breathing structure in the center remains. We
have found a qualitatively similar sequence of transitions
for other symmetric perturbations, such as eiρ|x−α|u0(x),
and conjecture it to be generic.

Perturbations that involve a combination of symmet-
ric and asymmetric parts exhibit similar “two regime”
dynamics. We do not perform a complete analysis of

the general case, eiη(x−α)+iρ(x−α)2u0(x), but provide two
examples in Figs. 18(a) and (b). In Fig. 18(a) we set
η = 0.1, ρ = 0.01 and show that the gap soliton falls into
a libration regime in which both symmetric and antisym-
metric oscillations of different periods occur. For larger
η and ρ [η = 0.2, ρ = 0.02, Fig. 18(b)] the soliton un-
dergoes an asymmetric unbinding in which a significant
fraction of the mass escapes in a series of pulses traveling
to the right, in addition to smaller amplitude radiation
that is present already in panel (a), leaving a librating
mode at the origin. The process of unbinding is evidently
complex and we do not attempt to analyze it further. In
principle one could predict thresholds in the (η, ρ) pa-
rameter space for the unbinding transition but we leave
this type of analysis to future work.
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FIG. 13. Time evolution of a 1-lump unstable solution on the first foliated snaking branch (point S6 in Fig. 4) perturbed by
the symmetric unstable eigenfunction. The initial condition is the fourth base state pictured in Fig. 7 on the 1-lump foliated
branch. The simulation is performed with m0 = −0.15, ` = 50. Plot (a) shows |u|, (b) <(u) and (c) E(u). After t ≈ 100 the
solution decays into a breather that maintains its parity in space but oscillates in space, phase and amplitude.

FIG. 14. Time evolution of a stable 1-lump solution on the first foliated snaking branch (point S7 in Fig. 4) with a phase
gradient perturbation of magnitude (a) η = 0.1, (b) η = 0.4 and (c) η = 1 shown in terms of a space-time plot of |u(x, t)|. The
simulation is performed with m0 = −0.15, ` = 50. For small η (a) libration occurs. As η is increased the solution begins to
unbind (b) and when η is sufficiently large the solution travels with nonzero average speed (c).

C. Analysis of coherent states

In this section we project the time evolution dynamics
of the previous sections onto the two degrees of freedom
described by the theory in Appendix A. This theory is
designed to capture the dynamics of the center of mass

of a pulse-like solution, for which we derive an ODE,
and is therefore applicable to dynamics governed by spa-
tially asymmetric modes. Concretely, the theory applies
to scenarios such as those portrayed in Figs. 9, and 11
but not those in Figs. 10 or 13. The theory also applies in
situations where the center of mass has a nonzero aver-
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FIG. 15. Long time evolution of a stable 1-lump solution on
the first foliated snaking branch (point S7 in Fig. 4) with a
phase gradient perturbation of magnitude η = 0.3 shown in
terms of a space-time plot of |u(x, t)|. The simulation is per-
formed with m0 = −0.15, ` = 50. The simulation shows that
initially the pulse propagates with the theoretically predicted
velocity but soon breaks up at t ≈ 50 into an oscillating struc-
ture and a propagating pulse which subsequently sheds mass
into the wells of the potential depositing a sequence of trapped
pulses. Because the domain is periodic a collision between the
remaining traveling pulse and the original pulse occurs near
t ≈ 700 resulting in the reabsorption of most of its mass by
the original pulse and diffraction of the traveling pulse that
remains.

FIG. 16. Long time evolution of a stable 1-lump solution
on the first foliated snaking branch (point S7 in Fig. 4) with
a phase gradient perturbation of magnitude η = 0.8 shown
in terms of a space-time plot of |u(x, t)|. The simulation is
performed with m0 = −0.15, ` = 50. The simulation shows
that even at late times the solution continues to propagate
and shed mass into the wells of the potential. Because the
domain is periodic a type of pseudo-steady state is achieved
at very long times in which the solution mass disperses into
components propagating at a range of speeds.
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FIG. 17. Time evolution of a stable 1-lump solution on the first foliated snaking branch (point S7 in Fig. 4) with a symmetric
phase gradient perturbation of magnitude (a) ρ = 0.01, (b) ρ = 0.02, (c) ρ = 0.1 shown in terms of a space-time plot of |u(x, t)|.
The simulation is performed with m0 = −0.15, ` = 50. For small ρ (panel (a)) breathing motion occurs. As ρ is increased
the solution begins to unbind symmetrically and the fronts bounding the pulse propagate in opposite directions with identical
speeds (panels (b) and (c)).

age speed as in the case of the first unbinding transition
(Fig. 14).

We divide this section as follows. We first discuss the
application of our theory in the libration regime for a
pulse with a phase gradient perturbation. In this case the
PDE initial condition can be mapped directly to an initial
condition for the ODE. Next we describe the evolution
shown in Fig. 9 in which an unstable solution evolves into
an oscillatory coherent state. In this case we do not know
the initial conditions for the ODE. Finally, we discuss
the application of the theory in the rotation regime and
compute the average speed of a traveling pulse.

As a first application of the theory in Appendix A we
turn to the evolution of the single pulse solution S7 with
a phase gradient perturbation η = 0.1. This is the same
simulation as that shown in Fig. 14(a) but we integrate
the solution until t = 3000. Although the full time evolu-
tion plot is omitted here the dynamics are nearly identical
to those of the central pulse in Fig. 11. The Ansatz for
the solution that is used in our theory is

A(x, t) = ei
∫
ω(t)dt+i

α̇(t)
2 (x−α)v(x, t)

where v is a near-stationary pulse and α is its time-
dependent center of mass (see Appendix A for more de-
tails). At every time step we compute the center of mass,
x = α(t), of the solution using Eq. (B3) and extract the
phase

∫
ω dt from the nearest point on the mesh to x = α.

We use the result to define a phase-like quantity θ(t) such
that

∫
ω dt = ω0t + θ(t) and compute it by fitting a lin-

ear regression to
∫
ω dt and subtracting ω0t. The time

series for α and θ are easiest to understand in Fourier
space and are shown in Fig. 19(a) and (b). These signals
can be messy and difficult to differentiate with respect to
time which is required to compare the numerical results
with the ODE description. To regularize them we set
to zero all Fourier amplitudes corresponding modes with
wavenumber outside the boundary of the figure. After
regularization the frequency ω is reconstructed by differ-
entiating θ in Fourier space and adding back the slope of
the trend in real space. Finally, a snapshot of the solu-
tion amplitude is shown at a fixed time in Fig. 19(c) in
order to map the pulse width onto the theory. Here we
show the theoretically predicted pulse width L (dashed
black line) according Appendix A along with an empiri-
cally determined width (grey line). These lines indicate
the locations of the fronts bounding the structure at each
instant in time.

We evaluate the accuracy of the ODE description of
the PDE dynamics (Eqs. (A3)-(A4)) using three distinct
projections as depicted in Fig. 20. The first of these, (a)
in the figure, uses the energy of the solution (Eq. (6)). We
plot the PDE energy, E , using a dashed black line which is
conserved along with the energy in the Ansatz used in the
theory, Eq. (A1). After performing the energy integral
with Eq. (A1), the Ansatz energy becomes a function
of α and α̇ (E = f(α, α̇)) which we evaluate using the
measured signal. Because of inaccuracies arising from the
numerical differentiation of the signal near the boundary
of the time domain we suppress the plotted signal near
the boundary both here and in subsequent plots in this
section. A red line denotes the average of the Ansatz
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FIG. 18. Time evolution of a stable 1-lump solution on
the first foliated snaking branch (point S7 in Fig. 4) with
phase perturbation (a) (η, ρ) = (0.1, 0.01) and (b) (η, ρ) =
(0.2, 0.02) shown in terms of a space-time plot of |u(x, t)|.
The simulation is performed with m0 = −0.15, ` = 50.

energy. Though the Ansatz energy fluctuates in time
its average represents approximately ∼ 84% of the total
energy. This mismatch is likely a consequence of the fact
that the Ansatz is a low order approximation allowing
energy loss in the form of radiation (which is not in our
Ansatz), and that the sampling of α(t) is insufficiently
precise. This is potentially the cause of the very slight
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FIG. 19. Amplitude of a discrete Fourier transform of the
time series for (a) θ(t) and (b) α(t) as a function of the Fourier
space wave number ν for the time evolution of solution S7 with
η = 0.1. All Fourier amplitudes corresponding to frequencies
beyond the domain size are set to 0. (c) |u(x, 500)| on the
interval [−100, 100] along with lines denoting the positions of
the fronts. Each pair of lines is placed symmetrically with
respect to α(500): width L = 25 (black dashed) and width
L = 31 (grey).

drift in Ansatz energy (Fig. 20(a)) seen over the sampling
interval.

The second projection, Fig. 20(b), is onto the phase
space of Eq. (A4). We plot the trajectory in the space

(β, α̇) where β =
√

2λ`
π sin

(
πL
`

)
sin
(
πα
`

)
. In these vari-

ables true trajectories of the ODE are circles. By inspect-
ing Eq. (A1) it is evident that an initial phase gradient
perturbation η corresponds to an initial value α̇(0) = 2η
for the ODE. The ODE trajectory corresponding to this
initial condition is shown as a red circle. In order to plot
the sampled dynamics the pulse width, L, must be spec-
ified. The theory predicts that L = 25 (shown in black)
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FIG. 20. ODE projections for dynamics of solution S7 with
η = 0.1. (a) The PDE energy E (Eq. (6)) as a func-
tion of time (black dashed) along with the instantaneous en-
ergy E(t) from the Ansatz (A1) (black solid) and its mean
(red). (b) α(t) in the phase space of Eq. (A4) where β =√

2λ`
π

sin
(
πL
`

)
sin
(
πα
`

)
. Trajectories of the sampled signal

are plotted for the cases L = 25 (black) and L = 31 (grey)
along with the analytical trajectory for the initial condition
α̇(0) = 0.2 (red). (c) The sampled signal ωS as a function
of time (blue) along with ωT for the cases L = 25 (black)
and L = 31 (grey). The means of the signals are shown with
a dashed line. To make the periods distinguishable the sig-
nals are plotted up to t = 1000 though the time evolution is
carried out to t = 3000.

but we also plot an empirically chosen width L = 31 in
grey (see Fig. 19(c)). Although the theoretical prediction
is not far off, the grey curve is in near perfect alignment
while the black curve is not. We suspect that this has
to do with the extent to which the Ansatz can model
lump states at lowest order and conjecture that a higher
order asymptotic calculation would lead to an improved
prediction of the location of the two fronts.

The last projection onto the ODE, Fig. 20(c), exam-
ines the prediction for the frequency ω. Theory predicts
that ω = 3

16 + ε ω2(t) ≡ ωT which we plot for L = 25
(black) and L = 31 (grey) along with the sampled signal
ω ≡ ωS (blue). The averages of the signals are plotted
with dashed lines. The figure shows that despite the fact
that the signals are not perfectly periodic the dominant
period is the same for all three and ωS is exactly out of
phase with the other two. When we use the theoretically
predicted width L = 25, we find that the amplitudes
of the oscillations inωT and ωS are in good agreement
although their means differ. However, with the empiri-
cally determined width L = 31 the means also fall into
agreement. It is worth noting here that because the evo-
lution of the PDE solution behaves as ei

∫
ω dt the mean of

ω provides the dominant contribution to the oscillations
observed in the <(u) plots earlier in this section.

Next we turn to the evolution in Fig. 9. Because there
is an initial transient during which the initial condition
destabilizes before entering a coherent state we measure
the signals α and ω only after t ∼ 300. The signals are
much noisier in this case although the same double peak
signal is present for α (not pictured). In this case we
have chosen not to set an empirical pulse width and use
the analytical prediction L = 25. The ODE projections
are shown in Fig. 21. Here the Ansatz energy, panel (a),
appears to be much noisier than in the previous case.
This is likely due both to the relative increase in radia-
tion which is visible in Fig. 9 and also to the fact that
the PDE solution does not map directly to a single ODE
trajectory. This is because the projection of the PDE
dynamics provides a 1D picture of the dynamics in the
ODE phase space. Unlike the case of a phase gradient
perturbation, which maps to a unique ODE trajectory,
arbitrary perturbations of the PDE solutions can lead to
energy transfer between different PDE modes potentially
resulting in the evolution of the ODE energy when pro-
jected down to the ODE phase space even though the
ODE conserves energy.

Despite the noise, the average energy is again close
to the total PDE energy and we therefore argue that the
model captures a significant portion of the dynamics. Us-
ing the mean Ansatz energy an initial value for α̇ can be
constructed by setting α = 0. The ODE trajectory cor-
responding to this energy level is plotted in Fig. 21(b)
in red along with the sampled trajectory for α in black.
The solution can be seen to oscillate near the red line al-
though occasionally it makes deviations. Since the PDE
dynamics occur in a nominally infinite-dimensional phase
space we cannot hope to capture all the details using a 1D
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model. However, the agreement that we see in panel (b)
of the figure suggests that despite this fact our 1D theory
does indeed capture a large portion of the dynamics even
though energy contained in other PDE modes does cause
deviations from the ODE phase space trajectory.

Panel (c) of Fig. 21 shows the behavior and prediction
of the phase. As is obvious from Fig. 9(b) the phase be-
havior in this simulation is complicated and sampling ω
is somewhat messy. Despite regularizing the signal the
sampled phase (blue curve) likely has an exaggerated am-
plitude although the mean should be accurate. We find
that the theoretical prediction with L = 25 agrees well
with this mean (black line) and this is so for the oscil-
lation period as well. The oscillations do not, however,
agree in amplitude.

To close this section we look at the theoretical predic-
tions in Appendix A for the rotation regime. Specifically
we return to the evolution of solution S7 with a large
phase gradient perturbation (Fig. 14(b) and (c)). Our
theory predicts that for sufficiently large phase gradients
the center of mass of the solution will begin to propagate
with nonzero mean speed. This speed can be computed
analytically as done in Appendix A. In Fig. 22 we show
this analytical prediction (black) along with the numeri-
cally measured speeds for increasing initial phase gradi-
ent η (blue points). The simulations are carried out by
timestepping the solution to t = 100 and tracking the
center of mass x = α(t). A linear regression is fit to the
trajectory in order to measure the speed. For lower val-
ues of η, nearer the transition from the libration regime,
the speed measurement is less accurate. By η = 0.8 the
measured and predicted speeds are in near perfect agree-
ment. Although not shown here we have verified that
Eq. (A3) also becomes increasingly accurate as η moves
farther into the rotation regime.

V. DISCUSSION

Owing to the enormous body of work on gap solitons
we begin the discussion by emphasizing the key new re-
sults in this work.

• We show that the lengthscale of the periodic poten-
tial, `, can greatly affect the bifurcation structure
of the solutions that are present in the semi-infinite
gap. We report new gap solitons exhibiting foli-
ated snaking along with their bifurcation structure
and stability. Specifically we show that solutions
are either “multipulse solitons” exhibiting classical
snaking or “soliton complexes” exhibiting foliated
snaking, depending on ` and m1.

• We demonstrate that gap solitons depin in a sys-
tematic fashion when perturbed by asymmetric and
symmetric phase gradients.

• We provide a strongly nonlinear theory to describe
the dynamics of gap solitons subject to a phase gra-
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FIG. 21. ODE projections for dynamics of Fig. 9. (a) The
PDE energy E (Eq. (6)) as a function of time (black dashed)
along with the instantaneous energy E(t) from the Ansatz
(A1) (black solid) and its mean (red). (b) α(t) in the phase

space of Eq. (A4) where β =
√

2λ`
π

sin
(
πL
`

)
sin
(
πα
`

)
, with the

black line showing the PDE trajectory for the sampled signal
with L = 25 and the red line the trajectory from Eq. (A4)
with initial condition determined by the mean Ansatz energy.
(c) The sampled signal ωS as a function of time (blue) along
with ωT for the case L = 25 (black). The means of the signals
are shown with a dashed line.
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FIG. 22. Average speed vrot of the center of mass of solu-
tion S7 as a function of η, the phase gradient of the applied
perturbation. The theoretical prediction given by Eq. (B 3) is
shown in black while the empirical speed obtained from the
simulation results is shown in blue.

dient perturbation. This theory accurately predicts
the speeds of rapidly propagating solitons.

The impact of the lengthscale of the potential, `, is de-
rived from its relation to the spatial decay rate of fronts
in the unforced equation. When m1 = 0 Eq. (2) has a
unique lengthscale, λ, determined by the decay rate of

fronts that connect u = 0 to u =
√

3
2 . These fronts have

a spatial decay rate equal to the spatial eigenvalue of the
linearization around u = 0. These fronts are used in our
asymptotic analysis in Appendix A. This lengthscale per-
sists when m1 > 0 and its value relative to the imposed
lengthscale of the potential determines the bifurcation
structure of localized solutions. In the limit ` � λ the
fronts span multiple periods of the potential and classical
snaking results. In the gap soliton literature these states
are frequently referred to as multipulse solitons. In the
opposite limit, `� λ, a pair of fronts fits inside each pe-
riod of the potential thus supporting a single pulse at ev-
ery cosine maximum. This is the foliated snaking regime
and the resulting states are frequently known in the lit-
erature as soliton complexes. We show that the choices
` = 10 and ` = 50 are able to capture these two distinct
regimes although m1 must be sufficiently large to estab-
lish foliated snaking. In sufficiently shallow potentials we
conjecture that classical snaking occurs always.

Turning to dynamics we show that gap solitons depin
from the potential under sufficiently large phase gradient
perturbations and capture this behavior with a strongly
nonlinear theory. Through our theory of soliton depin-
ning we were able to identify the two broad dynamical
regimes (libration and rotation) that result from phase
gradient perturbations. Specifically, the theory shows
that the dynamics of the center of mass behaves like a
pendulum. By extrapolating from the numerical sim-
ulations of symmetric perturbations we can conjecture
that each front bounding the localized states has this

pendulum-type behavior. Of particular interest is our
observation of soliton fission, in which a depinned soliton
radiates energy and breaks up into less energetic compo-
nents that can then become trapped again.

The main natural extension of this work is to higher di-
mensions, cf. [13]. A significant literature already exists
on localized snaking solutions in discrete and continu-
ous models in two and three dimensions. To our knowl-
edge the effects of the potential lengthscale have not been
studied in these contexts and foliated snaking is likely to
play an important role.

Further extension of this work to study of the effects of
` on gap solitons in higher gaps is also envisaged. These
gap solitons are quite different than those in the semi-
infinite gap studied here since there is no stable station-
ary front when m1 = 0 out of which they can be con-
structed. Of course, the possibility that classical and
foliated snaking may be differentiated in experiments in
photonic systems is also exciting. Some work along these
lines has been initiated in dissipative systems that also
exhibit forced snaking [48] but we are not aware of any
such work in optical systems.
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Appendix A: Asymptotics for oscillations

We perform an asymptotic analysis in the limit 0 <
m1 � 1 in order to extract equations of motion for lo-
calized structures. It is known that Eq. (2) has an exact
front solution when m1 = 0 for appropriate values of m0.
This front solution is translation-invariant and its reflec-
tion (x → −x) is also a solution. Therefore the basic
idea behind our method is to use a pair of these fronts to
form a pulse solution. In the m1 = 0 case such a pulse is
not a stable solution but in the presence of the periodic
potential the fronts are able to pin thereby stabilizing the
structure. This technique has been used by a number of
previous authors in order to study front dynamics and
pinned states [49, 50].

Our Ansatz for a time-dependent solution to Eq. (1) is
as follows,

A(x, t) = ei
∫
ω(t)dt+i

α̇(t)
2 (x−α)v(x, t)

v(x, t) = aB (− [x− xL])B (x− xR) +W (x, t)

xL = α− L

2

xR = α+
L

2
. (A1)

Here a is a real constant and aB(x) is the front solution
to Eq. (2) when m1 = 0; the correction W is assumed
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to be small. The two real-valued functions α and ω are
selected in order that this Ansatz solve Eq. (1). The two
fronts that bound the localized structure are located at
x = xL and x = xR with x = α(t) representing the center
of mass motion (i.e., the antisymmetric dynamics of the
pulse). Thus L is the (fixed) pulse width.

In order to ensure that the Ansatz (A1) satisfies Eq. (1)
at leading order the two fronts must be placed sufficiently
far apart. Although u(x, t) = aB(x) is an exact solution
to Eq. (1) when m1 = 0, ũ(x) = aB(x)B(−x + L) is
not. On the other hand, there does exist an exact pulse
solution that is exponentially close to ũ. The use of a pair
of fronts rather than an exact pulse solution simplifies
both the calculations that follow and their interpretation.
The error incurred is exponentially small in L and we
therefore assume that L is sufficiently large that it is
negligible in what follows.

1. Asymptotic procedure

We begin the procedure by defining the scaling of the
terms in Eq. (A1). The dynamics that we capture occur
on a slow time τ , τ = εt, where ε � 1 is a suitably
defined small parameter. We work in the center of mass
frame, z = x−α, and adopt the following scaling for the
instantaneous frequency and forcing:

ω(τ) =
ω0

ε
+ ω1(τ) + εω2(τ)

m1 = ε2µ.

The resulting equation for v(z, τ) is

0 = iεvτ + ε2

[(
α̇

2

)2

− α̈

2
z + µ cos

(
2π(z + α)

`

)]
v − (ω0 + εω1 + ε2ω2)v + vzz + |v|2v − |v|4v

and we expand v as follows:

v(x, t) =W0(z) + εW1(z, τ) + ε2W2(z, τ).

The lowest order equation is

0 = W0zz −
(
ω0 − |W0|2 + |W0|4

)
W0. (A2)

It follows that if ω0 = 3
16 then Eq. (A2) has the front

solution

W0(z) =

√
3

2

√
1

1 + e
√

3
2 z
≡
√

3

2
B(z).

Using the fact that
√

3
2 B(−z) is also a solution, two

of these fronts can be patched together to form the
Ansatz as described above. Specifically we take W0(z) =√

3
2 B

(
−
[
z + L

2

])
B
(
z − L

2

)
≡
√

3
2 B1(−z)B2(z). This so-

lution is not exact but results in only a small error if L
is large compared to the spatial decay rate of the front,
2√
3
.

Because the lowest order problem is nonlinear, all of
the higher order problems involve a linear operator L
that is based on this front. If U = R(z) + iI(z) with
R and I real-valued this operator diagonalizes. That is,
L(U) = L0(R) + iL1(I), where

L0 = ∂zz −
3

16
+ 3W 2

0 − 5W 4
0

L1 = ∂zz −
3

16
+W 2

0 −W 4
0 .

The operator L is self-adjoint and has three approxi-

mate null eigenfunctions. This is normal for lineariza-
tions about pulse states. We report these in the nota-
tion (R, I). The eigenfunctions consist of a phase ro-
tation mode, n0 = (0,W0), plus two Goldstone-type

modes n1 = (W0z, 0) =
(√

3
2 (−B′1B2 +B1B

′
2) , 0

)
and

n2 =
(√

3
2 (B′1B2 +B1B

′
2) , 0

)
. The first of these, n1, is

the true Goldstone mode for the pulse and is antisym-
metric with respect to its center z = 0. This mode is
inherited from global translation symmetry. Also related
to translation symmetry, the mode n2 is symmetric about
the pulse center reflecting the fact that for L� 1 the two
fronts are independent and can translate freely in oppo-
site directions. This mode arises only in the limit of large
L, i.e., as a result of our lowest order approximation.

The O(ε) equation is

0 = L(W1)− ω1W0.

To enforce the solvability condition for n2 we must re-
quire ω1 = 0. Then we may also take W1 ≡ 0. At second
order we obtain,

0 = L(W2)

+

[(
α̇

2

)2

− α̈

2
z + µ cos

(
2π(z + α)

`

)
− ω2

]
W0.
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The two solvability conditions can be written

0 = − α̈
2
I1 − µ sin

(
2πα

`

)
I3

0 =

[(
α̇

2

)2

− ω2

]
I2 + µ cos

(
2πα

`

)
I4

with the integrals Ik defined as follows,

I1 = 〈n1, z W0〉
I2 = 〈n2,W0〉

I3 =

〈
n1, sin

(
2πz

`

)
W0

〉
I4 =

〈
n2, cos

(
2πz

`

)
W0

〉
.

Here we have used the fact that W0 and n2 are even
functions of z while n1 is odd to simplify the expressions.

It follows that there are only four distinct integrals to

calculate. To simplify the expressions we set c = e−
√

3
4 L,

yielding the expressions

I1 =
3L

8 (c2 − 1)

I2 =
6− 3c2

(√
3L+ 2

)
8 (c2 − 1)

2

I3 =

√
3π2csch

(
4π2
√

3`

)
sin
(
πL
`

)
`(c2 − 1)

I4 = −
πcsch

(
4π2
√

3`

)
2(c2 − 1)

(
3c2 sin

(
πL
`

)
c2 − 1

+
2
√

3π cos
(
πL
`

)
`

)

≈ −

√
3π2csch

(
4π2
√

3`

)
cos
(
πL
`

)
`(c2 − 1)

+O(c).

To obtain these expressions we have used the substitution

s = e
√

3
2 z followed by contour integration.

The ODEs thus take the simpler form

ω2 =
α̇2

4
+
λL

4
cos

(
πL

`

)
cos

(
2πα

`

)
(A3)

α̈ = −λ sin

(
2πα

`

)
sin

(
πL

`

)
, (A4)

where λ = 16
√

3π2µ
3`L csch

(
4π2
√

3`

)
. It is clear from these

equations that ω is slaved to the dynamics of α.

Initial conditions for the oscillators can be derived by
considering the time-independent problem. Instead of us-
ing the Ansatz (A1) we seek an order-by-order expansion
of the stationary localized snaking solutions. In this case
α becomes time-independent and ω2 ≡ 0 but the asymp-
totics are otherwise unchanged. In particular since our
structures are centered with respect to a cosine period

we must have α = 0, `2 ; from the solvability conditions
in Eqs. (A3) and (A4) it follows that we also require
L = k(`/2) with k an odd positive integer. For example,
a localized state spanning 3 cosine wavelengths would
have L = 3` and α = 0. Because the time-dependent
calculation is designed to capture dynamics around per-
turbed stationary localized states we take α(t = 0) = 0
and α̇(t = 0) = 2η (the phase gradient perturbation) as
initial conditions.

Before continuing to the solution of Eqs. (A4) we
first discuss the role of symmetries of the original sys-
tem in the ODE dynamics. The original system de-
scribed by Eq. (1) possesses at least three important
continuous symmetries when m1 = 0. These include
spatial translation u(x, t) → u(x + y, t), phase rotation
u(x, t) → u(x, t)eiθ, and Galilean invariance u(x, t) →
u(x + vt, t)ei

v
2 (x+ v

2 t). The last of these suggests that
solutions traveling at a uniform velocity are not trans-

lating but rather rotating (with angular frequency v2

4 )
in a moving frame. The introduction of the cosine forc-
ing in Eq. (1) formally breaks the spatial translation and
Galilean symmetries but does not preclude the existence
of states that travel with nonuniform velocity. Indeed, it
is clear from the first terms of Eq. (A3) that the Galilean
structure persists for the average velocity of the solution.
That is, if the center of mass velocity, α̇, has a nonzero
time average vcm then in the frame moving at this ve-
locity the same structure has a zero average velocity but

rotates in time with a frequency equal to
v2cm

4 .

2. ODE dynamics

We next discuss the dynamics of stationary localized
states that are perturbed by a phase gradient. These
states follow the dynamics of Eq. (A4) where L = k(`/2)
for an odd integer k. Changing the variables (α, τ) to new

variables called (x, t), where α = `
2πx and t =

√
`

2πλτ ,

puts the equation of motion in canonical form,

ẍ+ sin(x) = 0, (A5)

and the motion reduces to that of a pendulum. There are
thus two distinct dynamical regimes: libration and rota-
tion. In the case of the solitons the libration regime corre-
sponds to oscillations of the center of mass in space with
zero mean speed while the rotation regime corresponds to
propagation of solitons with nonzero mean speed. These
regimes are distinguished by the value of the first integral
of the equation of motion, the initial velocity, since the
initial displacement is zero, x(t = 0) = 0. Integrating
Eq. (A5) once we obtain,

ẋ2

2
− cos(x) =

ẋ2
0

2
− 1.
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The initial velocity can be translated back to the Ansatz
variables by noticing that

∂x

∂τ

∣∣∣∣
τ=0

= 2η

√
2π

`λ
,

and is thus proportional to the magnitude of the phase
gradient perturbation used in our simulations. Libration
occurs when 0 < ẋ0 < 2 while rotation occurs when
ẋ0 > 2. Thus the critical transition at which solitons

become “unbound” takes place at ηc(`) =
√

λ`
2π . In the

specific cases considered here, ` = 10, 50 and µ = 0.1, we
find ηc(10) ≈ 0.387√

L
and ηc(50) ≈ 1.240√

L
.

The oscillation period in both the libration and rota-
tion regimes may be computed in terms of elliptic in-
tegrals using standard techniques. Specifically, in the
libration regime (0 < ẋ0 < 2) there is a maximum dis-
placement xmax = 2 arcsin

(
ẋ0

2

)
< π so the period is

T̃lib = 4

∫ xmax

0

dx√
ẋ2

0 − 4 sin2
(
x
2

) = 4K

(
ẋ2

0

4

)
.

Here K(x) is the complete elliptic integral of the first

kind, K(k) ≡
∫ π

2

0
dθ√

1−k sin2 θ
, and the tilde over T̃lib refers

to the scaled time, τ . In the rotation regime (ẋ0 > 2) the
period is defined as the time required to execute a single
complete orbit,

T̃rot =

∫ 2π

0

dx√
ẋ2

0 − 4 sin2
(
x
2

) =
4

ẋ0
K

(
4

ẋ2
0

)
.

In the soliton context this period gives rise to the mean

propagation velocity, vrot =
√

`λ
2π

2π
T̃rot

. In the frame mov-

ing at velocity vrot the solution oscillates with period

Trot =
√

`
2πλ T̃rot. The two periods computed here are

plotted in Fig. 23 as a function of ẋ0.

Appendix B: Numerical Implementation

1. Continuation of gap solitons

Continuation of solutions to the time-independent
ODE (Eq. (2)) was performed using AUTO. AUTO dis-
cretizes the equation on an adaptive mesh and uses
pseudo-arclength continuation and Newton’s method in
order to follow solution branches.

2. Linear stability calculations

Temporal stability calculations were performed by dis-
cretizing the linear eigenvalue problem using pseudo-
spectral methods [51]. After discretization the block off-
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FIG. 23. The inverse periods of oscillation in the libration
regime (solid line) and rotation regime (dashed line) as func-
tions of the initial kinetic energy of the oscillator as measured
by ẋ0.

diagonal matrix eigenvalue problem for the eigenvalue
σ was transformed to one of half the dimension for the
eigenvalue σ2.

As a pre-processing step for the stability calculations
we transfer the ODE solutions to a uniform mesh by in-
terpolation and then run a series of Newton iterations
to increase the accuracy of the solution. Away from bi-
furcation points we do this using a Newton Conjugate
Gradient method with preconditioning as described in
[39]. The solution is approximated at 1000 points with
pseudo-spectral derivatives and the Newton iterations are
run until ‖N (u)‖2 ≤ 10−14. Despite the comments in
[52] we observe failure of this method nearby fold bifur-
cations. At these points the Jacobian is rank-deficient
and unchecked Newton steps along its null space typi-
cally lead to divergence. We remedy this by perform-
ing a singular value decomposition of the Jacobian at
each Newton update step and subtract off the projection
of the Newton update along the singular vectors whose
singular value falls below some threshold. At degener-
ate folds we typically observe that more singular values
fall below the threshold as the Newton updates proceed.
This method eliminates any Newton descent along the
selected directions. Thus in order to optimize the accu-
racy of the solution it is important not to subtract off
projections until the associated singular value is small.
The threshold for this procedure is sensitive to the num-
ber of points in the discretization and undoubtedly the
accuracy of the conjugate gradient calculations. After
appropriately tuning the threshold, we observe a typical
convergence to ‖N (u)‖2 ≤ 10−11 using this method.

3. Time evolution simulations

Time-stepping simulations are implemented with a
split-step method as described in [39]. The method in-
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volves splitting the differential equation (1) into two:

Ut = iUxx

Vt = i

(
m0 +m1 cos

(
2πx

`

)
+ |V |2 − |V |4

)
V

and solving each exactly,

U(x, t) = F−1
(
e−ik

2tF (U(x, 0))
)

(B1)

V (x, t) = V (x, 0)ei(m0+m1 cos( 2πx
` )+|V (x,0)|2−|V (x,0)|4)t.

The time-stepping proceeds by alternate steps in time
using either solution and carefully selected weighting fac-
tors. These are chosen so that the resulting method is
spectrally accurate in space and fourth order accurate in
time. Details can be found in [39]. Because (B1) cor-
responds to rotations in either real or Fourier space it
preserves the L2 norm and energy of the solution up to
numerical errors. We observe good energy preservation
for long simulation times.

4. Computation of the center of mass

In this section we detail the numerical implementation
of the center of mass detection. A natural definition for

the center of mass, x = α, is

α ≡
∫

Ω
xu2 dx∫

Ω
u2 dx

. (B2)

On periodic domains this definition is not straightforward
to implement, however. This is because the weight x
in Eq. (B2) is not a periodic function. If the solution
stretches across the boundary of the domain then the
weight is incorrect, i.e., Eq. (B2) gives the correct center
of mass on an interval but not on a circle. Solving the
problem of properly weighting u to compute the center
of mass on a circle is nontrivial since we only have access
to a numerical sample of u(x) and not the function itself,
and of course we do not know α a priori. We therefore
require a method that only uses integrals over u(x).

These considerations lead us to propose the following
method to determine α. First we define the constants A
and B,

A =

∫
Ω

sin

(
2πx

D

)
u2(x) dx

= cos

(
2πα

D

)∫
Ω

sin

(
2πz

D

)
u2(z − α) dz − sin

(
2πα

D

)∫
Ω

cos

(
2πz

D

)
u2(z − α) dz

≈ − sin

(
2πα

D

)∫
Ω

cos

(
2πz

D

)
u2(z − α) dz

B =

∫
Ω

cos

(
2πx

D

)
u2(x) dx

= cos

(
2πα

D

)∫
Ω

cos

(
2πz

D

)
u2(z − α) dz + sin

(
2πα

D

)∫
Ω

sin

(
2πz

D

)
u2(z − α) dz

≈ cos

(
2πα

D

)∫
Ω

cos

(
2πz

D

)
u2(z − α) dz ,

where D is the domain length. To obtain these expres-
sions we work in the center of mass frame and assume
that the structure is approximately symmetric in this
frame. This approximation is in fact implicit in the defi-
nition (B2) of the center of mass as well. Using the above
expressions we define the location of the center of mass

to be

α ≡ D

2π
arctan

(
−A
B

)
. (B3)

This definition treats the interval [0, D] as periodic and
gives the correct weighting to solutions that span the
boundary. We have found it to be much more accurate
than Eq. (B2).
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