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Abstract

Cyclic predator-prey systems have been shown to give rise to rich, and novel, space-time pat-

terns, as for example coarsening domains with non-trivial in-domain dynamics. In this work we

study numerically the responses of a cyclic six-species model, characterized by the formation of

spirals inside coarsening domains, to two different types of perturbations: changing the values of

the predation and reproduction rates as well as changing the interaction scheme. For both pro-

tocols we monitor the time evolution of the system after the onset of the perturbation through

the measurement of dynamical correlation functions and time-dependent densities of empty sites.

In this way we gain insights into the complex responses to different perturbations in a system

where spirals, which are due to the formation of cyclic alliances, dominate the dynamics inside the

coarsening domains.
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I. INTRODUCTION

Issues around biodiversity and species extinction in ecological networks [1–3] have yielded

an increased interest among statistical physicists [4, 5], due to the many novel, and often

unexpected, features that emerge when going beyond the mean-field treatment of the sim-

plest predator-prey models. Already simple modifications, like adding stochastic effects [6]

and/or a spatial environment [7, 8] to the standard Lotka-Volterra model, can markedly

change species coexistence and extinction. Also, going beyond a simple predator-prey re-

lationship by allowing for more than two species yields new scenarios that have received

much attention in recent years (see [5, 9, 10] for recent reviews). In this context spatial

cyclic predator-prey models that allow for different interaction schemes have attracted spe-

cial attention lately [11–21] due to the large variety of intriguing space-time patterns as for

example domain coarsening with non-trivial in-domain dynamics in the form of spirals [14].

The stability of an ecological system, i.e. the tendency of the system to return to its steady

state after a perturbation, has been the subject of many studies in the last forty years [1, 22,

23]. Many of these studies focused on the relationship between stability and the underlying

network structure [1, 24, 25], which yielded important insights into the generic stability

properties of networks with predator-prey interactions. Cyclic games provide interesting

situations, where on the level of the rate equations a variety of situations can be realized

(heteroclinic cycles, neutrally stable closed orbits, limit cycles), depending on the presence or

absence of particle number conservation and the inclusion or exclusion of mutations [9, 10].

Of course, these different dynamical situations yield different behaviors under perturbations.

Further complications appear when considering stochastic and spatial effects in the responses

of finite populations to perturbations.

In this context one important aspect has not received adequate attention in the past: how

do these systems approach the steady state after the perturbation? Different scenarios are

possible, as for example: (1) the perturbation is finite in time and the system evolves back

into the same steady state as before the perturbation; (2) the system is stable and returns

to its steady state even when the (weak) perturbation persists; (3) the system is unstable

or the perturbation is a massive one, and the system ends up in a different steady state.

In this work we consider six-species cyclic predator-prey models that we subject to differ-

ent perturbations. Our goal is to gain an understanding of how complex systems like these
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respond to changes and of how they approach the (original or new) steady state. Depending

on the interaction scheme, the six-species cyclic predator-prey game yields different space-

time patterns. The two interaction schemes on which we focus are characterized by the

appearance of coarsening domains with spirals forming inside the domains or by a growth

process where different domain types, each containing an alliance formed by two neutral

partners, compete. We are not aware of any real-world examples described by the interac-

tion schemes discussed in this paper. Still, from the point of view of pattern formation far

from equilibrium, our study allows us to gain insights into mechanisms that permit systems

with complex space-time patterns to adapt to different perturbations.

The different scenarios considered in the following are inspired by real-world situations.

We first investigate how a system reacts to changes to the interaction and reproduction rates,

thereby mimicking the pressure put on an ecological system by changes in environmental

conditions. The second perturbation consists in changing the interaction scheme. Such a

rewiring changes the relationships between the species, and new alliances replace existing

ones. Besides the situation where the system is provided with enough time to fully adapt

to the new relationships, we also consider the case of a periodic switching between the two

interaction schemes with a frequency large enough that the system can not fully adjust to

the previous change before the next change takes place. This last case can be seen as an

attempt at implementing a protocol that reflects seasonal variations.

As the results discussed in the following show, the presence of spirals, which emerge due to

the formation of cyclic alliances, has a major impact on the response of a coarsening system to

perturbations. Changing the predation rate while keeping the interaction scheme unchanged

yields in presence of spirals an abrupt and non-monotonous change of the correlation length

and the density of empty sites. This surprising behavior reflects the adjustment of the

spiral size inside the domains. After this initial quick response, the system enters a second

regime characterized by an algebraic relaxation. On the other hand, changing the interaction

scheme, where we switch between a scheme that favors cyclic alliances and a scheme with

neutral alliances, results in a complicated behavior of the correlation length due to the

dissolution of old and the formation of new alliances. Switching from cyclic alliances to

neutral alliances results in a quick disordering during which neutral partners spontaneously

aggregate, yielding a shallow dip in the time-dependent correlation length. Switching from

neutral alliances to cyclic alliances, on the other hand, results in a two-stage process as
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revealed by two drops of the correlation length. The first quick drop is due to the start of

predation events between previously neutral species, whereas the second, larger drop is a

consequence of a large-scale rearrangement as existing domains are dissolved and replaced

by new domains with in-domain spirals.

II. MODEL

Cyclic predator-prey models have been shown to produce complex patterns in space and

time (see [4, 5, 9, 10] and references therein). We denote by (N, r) a family of cyclic models

[11] with N species where each species attacks r other species in a cyclic manner, i.e. species

i preys on species i + 1, i + 2, · · · , i + r (this has to be understood modulo N). The type

and complexity of the emerging patterns (coarsening domains, spirals, or a combination of

both) depend on the number of species (N) and the interaction scheme (r) involved in the

game [11–21].

In most of this work, we assume a two-dimensional lattice where species interactions are

limited to the four nearest neighbors. We consider a May-Leonard-type system described

by the following set of reactions taking place between nearest neighbors:

si + sj
κ−→ si + ∅

si + ∅ κ−→ si + si

si +X
σ−→ X + si

(1)

where si denotes an individual of species i, whereas sj is an individual of species j preyed

upon by species i. As a result of the predation event, described by the first reaction in (1),

the individual sj is removed, yielding an empty lattice site indicated by ∅. This empty site

can be occupied through a reproduction process where the individual si creates an offspring

at a neighboring empty site, see the second reaction in (1). In the last reaction of (1) X

stands for an individual of any species or for an empty site. This reaction makes sure that

individuals are mobile and can swap places with their neighbors or jump to a neighboring

empty site. In this paper we only consider the situation that κ+ σ = 1.

In our numerical simulations we always prepare a square system of L × L sites (for the

data discussed below we have L = 700, but we checked that none of our conclusions depend

on the system size) in a disordered initial state where every lattice site is either empty or
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occupied with the same probability 1/(N + 1) by each species. For every update we first

select randomly a lattice site before selecting randomly one of its neighbors. Depending on

which species (if any) occupy the two selected sites, one of the reactions (1) takes place with

a chosen rate (κ for predation and reproduction and σ for swapping, with κ + σ = 1). If

the two sites are occupied by individuals from two species that prey on each other, then the

individual sitting on the first selected site is considered to be the predator. As usual, time

is measured in Monte Carlo steps, with one Monte Carlo step corresponding to L2 proposed

updates.

In addition to the system on a two-dimensional lattice, we also briefly consider the well-

mixed case without an underlying lattice where every individual can interact with every

other individual. In that case only the simultaneous predation and reproduction event (with

rates κij that might depend on the predator and prey species i and j)

si + sj
κij−→ si + si (2)

takes place.

1
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FIG. 1: The (6, 3) game interaction diagram. The arrows connect predators with their preys. In

two space dimensions one observes the formation of domains composed by two different teams of

cyclically interacting species, as indicated by the bold arrows.

Our focus is on the (6, 3) and (6, 2) games, two six-species games where species interact

following the schemes shown in Figs. 1 and 2. In the (6, 3) game the species organize

themselves into two different teams [11, 14] as indicated by the bold arrows in Fig. 1. These

two teams compete with each other while playing an in-team cyclic game. This leads to

the formation of spirals within coarsening domains, as illustrated in the snapshots shown

in Fig. 3. Changing the scheme from (6, 3) to (6, 2), i.e. going from three prey for each

species to only two, results in a fundamental change of the emerging space-time patterns.
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FIG. 2: (a) The (6, 2) game interaction diagram. Each species has a neutral partner where swapping

is the only allowed interaction. One therefore observes the formation of three teams composed each

of two neutral partners. (b) The three different teams compete with each other.

Indeed, for the (6, 2) game we have three pairs of neutral partners as, e.g., species 1 and 4.

It is advantageous for these neutral partners to agglomerate as this allows each species to

be protected by their partner. Consequently, see Fig. 4, one observes the formation of three

types of domains, each occupied by one team, that undergo a coarsening process.

t=100 t=500

FIG. 3: When starting from a disordered initial state the (6, 3) game on a lattice results in the

formation of domains where each domain is occupied by a team of three species playing a (3, 1)

rock-paper-scissors game. The snapshots have been taken at times t = 100 and t = 500 after the

initial preparation. The rates have been set to κ = σ = 0.5.

The spatio-temporal properties of the (6, 3) game in two space dimensions and κ = 0.5

have been the subject of a recent study [14], so that we will in the following only summarize

the main properties in as much as they are needed for the present investigation. As shown

in [14] the formation of spirals within coarsening domains has a non-trivial impact on both
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t=100 t=500

FIG. 4: The (6, 2) game is characterized by the formation of three teams of two neutral partners,

yielding a coarsening process involving three different domain types. The snapshots have been

taken at times t = 100 and t = 500 after the initial preparation. The rates have been set to

κ = σ = 0.5.

domain growth and interface fluctuations. Indeed, for κ = 0.5 the dynamic correlation length

increases as t0.43, whereas for standard curvature-driven coarsening this length is expected

to increase with an exponent 1/2, as it is the case for the standard Ising model. Similarly,

aging exponents are found to differ from those encountered for the two-dimensional Ising

model [26]. Finally, the growth and roughness exponents governing the time-dependence of

the interface width have values β = 0.43 and α = 0.15 that are not identical to those of

the standard Edwards-Wilkinson exponents βEW = 1/4 and αEW = 1/2 [27]. These non-

standard values for the different exponents are a consequence of the spiral wave fronts that

induce large-scale coherent fluctuations at the interfaces separating different domains [14].

Inside the domains that form for the (6,2) interaction scheme individuals belonging to

the two neutral species simply move around, either by exchanging places or by jumping into

an empty site. This only changes at the interface between domains where predators and

preys interact. The situation is therefore similar to that encountered for the (4, 1) game [28]

or the (2, 1) game [14], with the exception that in the present case we end up with three

competing domain types as compared to the two domain types encountered for (4, 1) and

(2, 1). For all these cases one should have the same dynamic and roughness exponents than

for the two-dimensional Ising model quenched below the critical temperature. This has been

verified previously for (4, 1) and (2, 1). For (6, 2) we checked that the dynamic exponent

governing the coarsening process indeed takes on the value z = 2, yielding a dynamical
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length that increases as t1/2.

In order to understand how a coarsening system with non-trivial in-domain dynamics

reacts to perturbations, we discuss in the remainder of this paper how the (6,3) game adjusts

to two specific perturbations, namely a sudden change of the values of the rates as well as

a sudden change of the interaction scheme.

In our simulations we register the time evolution of the number densities for each species

as well as of the density of empty sites. Following [14] we distinguish two different empty site

populations: (1) the empty sites created within domains due to predator-prey interactions

between team members and (2) the empty sites created at the domain boundaries resulting

from the interactions between the teams. Important insights into the space-time properties of

our system are provided by space-time correlation functions and the time-dependent lengths

extracted from them. For our six-species system the standard space-time correlation function

is given by

C(t, r) =
6∑
i=1

[〈ni(~r, t)ni(0, t)〉 − 〈ni(~r, t)〉 〈ni(0, t)〉] , (3)

where r = |~r |, whereas ni(~r, t) is 1 if at time t an individual from species i occupies site

~r and zero otherwise. 〈· · · 〉 indicates an ensemble average over noise histories and initial

conditions. As we observe the formations of teams, we also consider a team-team space-time

correlation function where all species forming one team are viewed as belonging to the same

type:

CT (t, r) =
T∑
j=1

[〈mj(~r, t)mj(0, t)〉 − 〈mj(~r, t)〉 〈mj(0, t)〉] , (4)

where T is the number of teams (two for the (6,3) game, for example) and mj(~r, t) = 1 if the

site ~r is occupied at time t by an individual belonging to one of the species forming team

j and zero otherwise. The function CT (t, r) therefore focuses on the space-time patterns

emerging due to the competition of the species without revealing correlations that result

from the interactions between team members.

In order to extract a time-dependent length L(t) from the correlation function C(t, r),

we determine the distance at which the normalized space-time correlation function takes on

a specific value C0:

C(t, L(t))/C(t, 0) = C0 . (5)

Similarly we also obtain a correlation length LT (t) from the team-team space-time correlation
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function CT (t, r).

We note that other methods for extracting a length from the space-time correlation

function have been proposed. Common approaches include collapsing curves for different t

by scaling r/L(t) or using the method of integral estimators [29, 30]. Both methods assume

that the scaling function is a function of r/L(t) only. However, as we have shown in [14], see

Fig. 4 in that paper, this is not the case for systems with spirals inside coarsening domains.

III. CHANGING THE RATES

Changes in the environment may result in changes to the efficiency of a predator and/or

changes to the birth rate of a species. In the model considered here, both predation rate

and reproduction rate are identical and given by κ. The mobility σ, which can be realized

through jumps to empty sites or swaps of the positions of two neighboring individuals, is

related to κ as we fix κ+ σ = 1. Therefore, if the individuals are very mobile, they are less

efficient hunters and give birth to off-springs at a lower rate. Similarly, low mobility implies

efficient predation and high birth rate.

In the following we consider cases where κ is changed from an initial value κi to a final

value κf . We focus on the values κ = 0.3, 0.5 and 0.7, and we checked that a qualitative

similar behavior is encountered for other values of κ.

Before changing the rate during the coarsening process, we first need to understand the

unperturbed systems that evolve with constant rates. Fig. 5 shows the time evolution of

different correlation lengths and empty site densities for systems with constant rates κ = 0.3

0.5, and 0.7. We can distinguish two different regimes: an early time regime where the

formation of domains coincides with the establishment of spirals and a late time coarsening

regime where multiple spirals fit inside the growing domains. As shown in Fig. 5a, the

time-dependent lengths obtained from the standard space-time correlation function (3) with

C0 = 0.2 (L(t), dashed lines) and the team-team correlation function (4) with C0 = 0.1

(LT (t), full lines) behave very differently. The length L(t), which for larger values of C0

provides a proxy for the width of the spirals, tends toward a plateau once the spirals have

formed. It follows from the data shown in Fig. 5a that the spirals are smaller for larger

rates κ, which is readily verified through the inspection of different snapshots. The second

length LT (t), which is a measure of the typical domain size, increases algebraically with
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FIG. 5: Time-dependent correlation lengths (a) and densities of empty sites (b) for systems com-

posed of 700×700 spins evolving at constant rates κ = 0.3, 0.5, and 0.7. In (a) the dashed lines are

obtained from the intersections of the standard space-time correlation function C(t, L(t)) with the

horizontal line C0 = 0.2, whereas the full lines result from determining the lengths at which the

team-team space-time correlation function CT (t, LT (t)) = 0.1. In (b) the densities of empty sites

ρT (t) that follow from reactions between the two teams are shown as full lines, whereas the dashed

lines indicate the densities of empty sites ρ(t) produced in reactions involving members from the

same team. The data follow from averaging over at least 4000 independent runs.

time, as expected for a coarsening regime where larger domains grow at the expense of the

smaller ones. For κ = 0.7 resp. κ = 0.5 the exponent governing the growth of this typical

length takes on the value 0.47 resp. 0.43 [14]. For κ = 0.3 the algebraic regime is entered

at a much later time, as seen in Fig. 5a, in accordance with the fact that a smaller κ yields

larger spirals. As already noted in [14] the correlation length extracted from C(t, r) for small

values of C0 also allows to monitor the growth of domains (see Fig. 4 in [14]). Different

types of behavior are also encountered in Fig. 5b for the densities of empty sites: whereas

the density of empty sites formed in in-team reactions (ρ(t), dashed lines) increases at a

small rate as more and more spirals fit into the growing domains, the density of empty sites

formed at the boundaries between teams (ρT (t), full lines) decreases algebraically with time

(for κ = 0.7 and κ = 0.5 one finds a value close to −0.25 for that exponent [14]) due to the

shrinking total interface length during the coarsening process.
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FIG. 6: Time evolution of (a) the correlation length LT (t) obtained from the intersection of

the team-team space-time correlation function, (b) the density of empty sites ρT (t) created at

the boundaries separating the different teams, (c) the correlation length L(t) extracted from the

standard space-time correlation function, and (d) the density of empty sites ρ(t) that result from

interactions between two members of the same team. Thin full lines: changing the predation

and reproduction rates from κi = 0.3 to κf = 0.5, dashed lines: changing the predation and

reproduction rates from κf = 0.5 to κi = 0.3. The thick black lines are those of the unperturbed

systems with fixed rates κ = 0.3 resp. κ = 0.5. The simulated lattices have 700 × 700 sites, and

the data are the average of at least 4000 independent runs.
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We are now ready to discuss how the system adapts to a sudden change of the value of

the rate from κ = κi to κ = κf . Recall that κ is the value of both the predation rate and

of the rate at which offsprings are created on a neighboring empty site and that changing

κ also means changing the mobility σ = 1 − κ. Fig. 6 shows the results of two different

protocols. In the first one, indicated by the full green and blue lines, the rates are changed

from κi = 0.3 to κf = 0.5, whereas in the second one, see the dashed lines, the rates are

changed from κi = 0.5 to κf = 0.3. The data shown in the figure have been obtained for

changes taking place after t = 6000 (green) or t = 8000 (blue) time steps. At these times

the system has entered the regime where a typical domain is filled with multiple spirals.

The quick initial response observed in Fig 6 is best understood when remembering that

a smaller value of κ results in a larger number of empty sites, in smaller domains, and in

larger spirals. If we then increase the value of κ, the system quickly fills these additional

empty sites, as witnessed by the sharp drop in the densities in Fig. 6b and 6d, while at the

same time the domain size increases and the spiral size decreases. When getting rid of this

excess of empty sites, the system overshoots, and the correction to this yields the observed

non-monotonous behavior. The reverse effect is observed when decreasing κ: the smaller

rate of reproduction results in an immediate increase of empty sites and, concomitantly, in

a quick decrease of the domain size and a rapid increase of the spiral size. The system also

overshoots in this case, as shown in Fig. 6.

In Fig. 7 we compare the initial response for four different cases: (κi = 0.3, κf = 0.5) (full

green lines), (κi = 0.5, κf = 0.3) (dashed green lines), (κi = 0.3, κf = 0.7) (full magenta

lines), and (κi = 0.7, κf = 0.3) (dashed magenta lines). Inspection of the different panels

reveals that the initial response is more violent the larger the value of |κi − κf | is. The two

cases (κi = 0.5, κf = 0.3) and (κi = 0.7, κf = 0.3) having the same final value of the rate κ,

we can easily compare for these cases (dashed lines in Fig. 7) the magnitudes by which the

systems overshoot. For the empty site densities as well as for L(t) the difference between

the height of the maximum and the line from the unperturbed system at κ = 0.3 increases

by a factor close to 2 when replacing κi = 0.5 by κi = 0.7. Keeping κf at 0.3 and increasing

κi from 0.4 to 0.9, we find that the overshoots for the different quantities all first increase

algebraically with |κi − κf | with exponents close to 1, before saturating when κi approaches

1. These limit values (which is 2.15 for L(t) and κf = 0.3) depend on the value of κf .

After this quick initial response to the perturbation, the properties of the system evolve
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FIG. 7: Comparison of the initial response for the four cases (κi = 0.3, κf = 0.5) (full green (gray)

lines), (κi = 0.5, κf = 0.3) (dashed green (dashed gray) lines), (κi = 0.3, κf = 0.7) (full blue (thin

black) lines), and (κi = 0.7, κf = 0.3) (dashed blue (dashed black) lines) when changing the rates

at t = 6000. The different panels show the same quantities as in the corresponding panels in Fig.

6. The thick black lines are those of the unperturbed systems with fixed rates κ = 0.3, κ = 0.5,

and κ = 0.7.

to those of the unperturbed system with constant κ = κf . Whereas the quantities related

to the in-domain dynamics (correlation length L(t) and density of empty sites ρ(t) due to

in-team reactions) adjust rather quickly to the change, as shown in Fig. 6c and 6d, the quan-

tities related to the coarsening domains, see Fig. 6a and 6b, take more time to approach

the lines of the unperturbed system. Calling LT,κf resp. ρT,κf (t) the corresponding quan-
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tities from the unperturbed systems, the distances
∣∣LT (t)− LT,κf (t)

∣∣ and
∣∣ρT (t)− ρT,κf (t)

∣∣
approach zero algebraically, with exponents xL and xρ, i.e.

∣∣LT (t)− LT,κf (t)
∣∣ ∼ t−xL and∣∣ρT (t)− ρT,κf (t)

∣∣ ∼ t−xρ . For the cases shown in Figs. 6 and 7 we have xL = 0.68(5) and

xρ = 1.45(7) for (κi = 0.3, κf = 0.5), xL = 0.37(2) and xρ = 1.06(5) for (κi = 0.3, κf = 0.7),

xL = 0.39(3) and xρ = 0.88(3) for (κi = 0.5, κf = 0.3), and xL = 0.30(3) and xρ = 0.96(3)

for (κi = 0.7, κf = 0.3). In general, we observe that the exponents are larger for κi < κf

than for κi > κf . In the former case, domains are undersized once κ has been increased, and

the system adjusts to this by going through an accelerated growth phase. When κi > κf , the

domains are too large after the decrease of κ. This, however, does not interrupt the growth

process, but only slows down the domain growth. This behavior is similar to that observed

previously in the two-dimensional ABC model when changing the value of the swapping

rate during the coarsening process [31].

While we focused here on the values 0.3, 0.5, and 0.7 for κ, we checked that the same

behavior is encountered for other values of κi and κf . We also note that we did not investigate

the reaction of the system to rate changes that take place at much earlier times, i.e. at times

before the coarsening of domains with multiple spirals sets in. As it is difficult to interpret

the response of the system in a regime where the space-time patterns have not yet fully

formed, we refrain from discussing this here.

IV. CHANGING THE SCHEME

A perturbation like the change of reaction rates discussed in the previous Section does

not disrupt space-time patterns. A more brutal perturbation is the change of the reaction

scheme as it forces the different species into new relationships, with new alliances replacing

earlier ones. In a spatial setting, changes to the partnerships yield changes to the emerging

space-time structures.

We discuss in the following how six species playing a (6,3) game adjust when the scheme is

suddenly changed to (6,2). This is considered to be a transient perturbation that only lasts

for a specified number of time steps before the scheme reverses back to the (6,3) interactions.

If the perturbation lasts long enough, the system has time to fully adapt to the new situation

before the second change of scheme takes place.
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A. The well-mixed case

For the well-mixed case without spatial setting we consider the mean-field level description

of rate equations. Calling n1 the population fraction of species 1 (and similar for the other

species), the equation describing the time evolution of n1 is

dn1

dt
= κ12n1n2 + κ13n1n3 + (κ14 − κ41)n1n4 − κ51n1n5 − κ61n1n6 , (6)

where κij is the rate at which the predator i attacks the prey j. We immediately notice that

the term proportional to n1n4 vanishes for the case κ14 = κ41, resulting in the rate equations

for the (6, 2) game. In order to avoid this we choose rates such that κ14 6= κ41. This of

course means that the symmetry between species is lost, as some species have an advantage

over others. The data discussed in Fig. 8a and Fig. 8b have been obtained for rates 0.06,

with the exception of κ41 = κ52 = κ63 = 0.07. As shown in Fig. 8c and Fig. 8d for the

rates 0.2 and 0.21, these results do not change qualitatively when choosing other values of

the rates while keeping the advantage that species 4 has over species 1 etc.

As shown in Fig. 8a, the (6,3) scheme results in slow oscillations with large amplitudes

that are accompanied by much faster oscillations with small amplitudes. The slow oscil-

lations with large amplitudes result from the rock-paper-scissors interactions between the

three species forming one alliance, see Fig. 1, and are specific to the (6,3) scheme. The

period of the quick oscillations are very similar to those encountered in the (6,2) game and

manifest themselves due to the near cancellations of the interactions between species i and

species i + 3 (mod 6). Finally, due to the bias in the rates, species 1 is at a major disad-

vantage which results for this species in the decrease over time of the amplitude of the slow

oscillations (red curve). Obviously, for the purpose of this study we would prefer not having

this bias, but this is the only way to investigate the transition between the (6,3) and (6,2)

schemes at the level of the rate equations.

In Fig. 8b we show the time evolution of the population fractions where at time t = 5000

we switch the scheme to (6, 2). As a result of that switch the density of each species

oscillates around the value it had at the moment of the switch. At a later time (t = 15000

in the example of the figure), we change the scheme back to (6,3). The system quickly

reestablishes the slow oscillations, but with an initial period that differs slightly from that

of the unperturbed (6,3) system shown in Fig. 8a. At the same time the amplitudes of the

quick oscillations are enhanced. Fig. 9 provides a different view of how the system adapts
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FIG. 8: (a) Time dependence of the population fractions as obtained from the rate equations (6)

with the values 0.06 for all rates, with the exception of the rates κ41, κ52, and κ63 that have been

set to 0.07. (b) Time evolution of the population fractions when at time t = 5000 the scheme

is changed from (6,3) to (6,2). The rates are the same as for (a). This perturbation is kept for

10000 time steps. (c) and (d) are the same as (a) and (b), but now for the rates 0.2 and 0.21. In

both cases the system has been set up with equal number densities 1/6 for all species. The fourth

order Runge-Kutta integration scheme with step length ∆t = 0.01 has been used. The two species

for which the population fractions approach zero are species 1 in red (dark gray) and species 4 in

black.
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to the modification of the interaction scheme through the trajectory in the n1 − n2 phase

space. The increase of the amplitude of the quick oscillations is readily seen in this plot too.

In Fig. 8c and 8d we repeat this study, but now for rates 0.2, with the exception of

κ41 = κ52 = κ63 = 0.21. Whereas no qualitative changes are observed, there are quantitative

differences that show up when changing the rates. For example, the periods of both the

slow and fast oscillations decrease when increasing the predation rates. At the same time

the amplitude of the fast oscillations decrease when increasing κ. This is especially true for

the time interval during which the interaction scheme (6,3) is replaced by the scheme (6,2).

0 0.05 0.1 0.15
n

1

0.1

0.2

0.3

0.4

n
2

before perturbation

during perturbation

after perturbation

FIG. 9: Trajectory in the n1− n2 phase space when changing between t = 5000 and t = 15000 the

scheme from (6,3) to (6,2), see Fig. 8b. Red (thin black) line: before the perturbation, thick black

line: during the perturbation, green (gray) line: after the perturbation.

We also studied this situation through numerical simulations. Systems containing hun-

dreds of thousands of individuals very closely follow the trajectories obtained from the rate

equations, with rapid adjustments to the new time pattern when the scheme is changed.

As we will see in the following, the same protocol applied to the spatial system results in

complex transitions between the very distinctive space-time patterns that characterize the

(6,3) and (6,2) schemes.
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B. The spatial situation

In two space dimensions both the (6,3) and the (6,2) reaction schemes result in the

formation of alliances and domain coarsening, but the composition of the alliances and the

dynamics that takes place within the domains are very different, see Figs. 3 and 4. Whereas

the (6,3) scheme yields two alliances with the three teams in each alliance undergoing a rock-

paper-scissors game, the (6,2) game results in the formation of three teams of two neutral

partners.

We discuss in the following two different protocols. First we consider the case that an

initially disordered system evolves for some time following the (6,3) rules before we suddenly

change the interaction scheme to (6,2). This scheme is kept until at a later time we change

back to (6,3). Changing from (6,3) to (6,2) and back to (6,3) allows us to investigate

the spatial and temporal signature for two different changes of the interaction scheme. In

the second protocol we periodically change between the (6,3) and (6,2) schemes and study

how this affects the ordering process. This protocol mimics the periodic changes in the

interactions of species due to seasonal variations.

The snapshots in Fig. 10 allow to gain valuable insights in how the system adjusts to

a change of the interaction scheme. The first row in the figure shows how the space-time

pattern changes when switching at t = 500 from (6,3) to (6,2). It takes some time for

this change to modify the spirals and the domains: after 20 time steps the general spatial

structure is basically unchanged, and only in a few selected spots do we see appearing small

regions filled by the new alliances. It is only later, as shown in the t = 600 snapshot, that

individuals from neutral species start to agglomerate on a large scale. This is accompanied

by the dissolution of the spirals as well as by the breaking up of the old domains, followed by

the formation of new domains that contain only members of two neutral partners forming

one team. This process is rather slow and even after 250 time steps, pockets with spirals

persist.

The second row in Fig. 10 shows the adjustments of the system when at t = 4500

the scheme is changed back to (6,3). A quick, immediate, reaction is the segregation that

takes place inside the domains: as the previously neutral partners are now preying on each

other (for example, species 1 and 4), we observe the immediate formation inside the larger

domains of small domains that only contain individuals from one species. Whereas these
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t=4500 t=4520 t=4600 t=4750

FIG. 10: Snapshots of the system composed of 700 × 700 sites with κ = 0.5 where at t = 500

the interaction scheme is changed from (6,3) to (6,2). This is followed at t = 4500 by the reverse

change where the (6,2) scheme is replaced by the (6,3) scheme.

small domains coarsen, see the snapshot at t = 4600, some first spirals are started at the

interface between the original domains. 250 time steps after the change, spirals start to be

more common and first larger areas emerge that contain only the three teams of one of the

two new alliances.

This discussion can be done more quantitatively by measuring the correlation length L(t)

from the standard space-time correlation function (3), see Fig. 11. We use a small value

C0 = 0.05 as this allows to obtain for both schemes a dynamical length that reveals in-

domain properties as well as properties of the coarsening process. We first note the dip in

L(t) that takes place when we change at t = 500 the scheme from (6,3) to (6,2). This dip

reveals the dissolution of the existing domains with three species, followed by the formation

of the new domains composed by two neutral partners. Once these new domains are formed,

the standard curvature driven coarsening process of the (6,2) game takes place, as witnessed

by an increase of L(t) ∼ t1/2, see the red line. At t = 4500, we switch back to the (6,3)

scheme. This change results in a complicated behavior of the correlation length, see the inset

in Fig. 11. The first quick decrease followed by a short increase reveals the formation inside

19



10
2

10
3

10
4

t

10
1

10
2

L
(t

)

unperturbed

perturbed

4000 4500 5000 5500
t

40

60

80

100

L
(t

)

κ=0.5

κ=0.5

κ=0.7

FIG. 11: Comparison of the time-dependent correlation lengths of the unperturbed (6,3) system

(thick black line) and the system where at t = 500 the scheme is changed from (6,3) to (6,2), followed

by the change from (6,2) to (6,3) at time t = 4500. These curves result from the intersections of

the standard space-time correlation function with the horizontal line C0 = 0.05. The space-time

correlation functions used to obtain these lengths have been averaged over 500 runs. The inset

focuses on the complicated changes to the correlation length when at t = 4500 the interaction

scheme is changed from (6,2) to (6,3) and compares the cases with κ = 0.5 and κ = 0.7. The

system contains 700× 700 sites and κ = 0.5.

the larger domains of small regions occupied by a single species and growing with time. The

second larger drop is due to the disordering that takes place when spirals start to form and

the original domains are dissolved. Once the new domains with in-domain spirals have been

established, the coarsening process restarts and the correlation length quickly approaches

that of a system for which the (6,3) scheme was kept at all times. The change in correlation

length at these drops is not very sensitive to the rates involved: for κ = 0.5 resp. κ = 0.7

the distance between the preceding maximum and the minimum of the first dip is 0.06 resp.

0.03, whereas for the larger second drop this distance is 41.87 resp. 34.77.

We also investigated systems where the perturbation has been kept for other time inter-

vals. Qualitatively the same features are observed in the correlation length for all studied

cases, but there are some small quantitative differences. Consider as an example the situ-

ation where the switch back to the (6,3) scheme happens at t = 6000 instead of t = 4500.
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As in that case the neutral domains that characterize the (6,2) scheme have grown for a

longer time, they are larger. Consequently, after switching back to (6,3) the disordering pro-

cess is more dramatic and the second drop in the correlation length is larger (49.72, which

should be compared to 41.87 when switching the scheme at t = 4500). The whole process of

dissolving the (6,2) domains and forming the (6,3) domains with internal spirals also takes

slightly longer.
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unperturbed, κ=0.5

periodically perturbed, κ=0.5

periodically perturbed, κ=0.7

FIG. 12: Time-dependent correlation lengths for systems composed of 700× 700 sites with κ = 0.5

and κ = 0.7 that oscillate between the (6,3) and (6,2) interaction schemes. The first change from

(6,3) to (6,2) takes place at t = 500, followed by a change of interaction scheme every 200 time

steps. The space-time correlation function used to obtain this length has been averaged over 500

runs, and C0 = 0.05 was used.

Figs. 12 and 13 illustrate the behavior of a system subjected to a periodic switching

between the (6,3) and (6,2) interaction schemes. Starting from a disordered initial state the

system is evolved with the (6,3) interaction scheme until t = 500 at which time the scheme is

changed to (6,2). After this first switch we continue switching between the two schemes after

every 200 time steps. The snapshots in Fig. 13 reveal that the system oscillates between

two states that show dominant features of either the (6,3) and (6,2) schemes, but with

some features of the inactive scheme still persisting. Based on these snapshots these hybrid

states do not change much with time. However, the correlation length displayed in Fig. 12

indicates that the maximum length achieved in every cycle increases slowly with time. This

increase is roughly logarithmic. The periodic switching, while being very disruptive for the
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ordering process, does not completely stop the growth of the dynamical length.

Fig. 12 also provides information on the dependence of these features on the predation

rate κ. Comparison of the data for κ = 0.5 and κ = 0.7 reveals that an increase of κ yields

a decrease of the amplitude of the correlation length oscillations. Thus for κ = 0.5 the

amplitude is 20.5, whereas for κ = 0.7 one finds an amplitude of 17.2.

t=4900 t=5100 t=9700 t=9900

FIG. 13: Snapshots of a system composed of 700× 700 sites with κ = 0.5 for which the interaction

schemes changes periodically between the (6,3) and (6,2) schemes. The first and the third panel

show configurations at the moment the scheme changes from (6,3) to (6,2), whereas the second

and the forth panel show configurations at the moment the scheme changes from (6,2) to (6,3).

V. CONCLUSION

In many instances new insights into the dynamic properties of a non-equilibrium system

can be gained by monitoring the response of the system to perturbations. A well studied

example is the response to switching on a magnetic field of a ferromagnet initially prepared at

high temperature and quenched below the critical point [26]. Coarsening magnetic domains,

however, are rather simple: the dynamics inside the domains is bulk-like and characterized

by thermal fluctuations and the relevant degrees of freedom are provided by the interfaces

separating the domains.

In this work we considered how a more complex coarsening system with non-trivial in-

domain dynamics responds to different types of perturbations. The system we have chosen

is the two-dimensional (6,3) cyclic predator-prey model where each of the six species attack

three others [11, 14]. As a result of this interaction scheme two alliances are formed that

result in the competition of two types of coarsening domains. Inside each domain the three

members of an alliance perform a rock-paper-scissors game that gives rise to the formation
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of spirals. This surprisingly complex system also yields complex responses when subjected

to different perturbations. We have investigated the response to changing the values of the

predation and reproduction rates as well as to changing the interaction scheme. For the

latter protocol we switch during the growth process the interaction scheme from (6,3) to

(6,2), a different six-species game characterized by the competition of three types of domains

containing two neutral partners. The inspection of snapshots as well as the monitoring

of time-dependent correlation functions and densities of empty sites allow to gain a good

understanding on how a system dominated by the formation of spirals inside coarsening

domains adapts to these different changes. In the three-species May-Leonard game a change

of rates results in changes to the quantities (as for example the wavelength) characterizing the

spirals [32]. Similar quantitative changes to the in-domain space-time patterns are observed

in our study when changing the rates in the (6,3) model. Due to the competition between

the two different cyclic alliances, a modification of the spiral size impacts the coarsening

process and results in an abrupt and non-monotonous change of the correlation length.

More complicated responses are encountered when changing the interaction scheme, as the

dissolution of old alliances and the formation of new ones yield a change of the in-domain

dynamics as well as the emergence of new types of domains, followed by a different coarsening

process.

Many-species predator-prey models provide many examples of intriguing space-time pat-

terns, and some of the lessons learned in the present study can be exploited for other situ-

ations. As an example we mention the possibility of hierarchical games with spirals within

spirals [33]. We also remark that the well-studied rock-paper-scissors game, a three-species

game for which real-world examples are known to exist [34–39], are amenable to similar

perturbations (changes to the rates but also changes to the interaction scheme) that could

provide a path for the experimental realization of protocols similar to those studied in this

work. We plan to investigate these and other situations in the future.

While we have assumed the special situation where each predator attacks each of their

preys with the same rate, a more realistic situation, especially in cases of environmental

changes, is that of heterogeneous rates which can result in emerging cyclic alliances that

are not obvious from the definition of the model [40–43]. This opens the possibility for new

intriguing types of responses in many-species predator-prey systems that are not captured

by the simple scenarios discussed in our work.
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To conclude, in this work we investigated the perturbation of a coarsening process with

non-trivial in-domain dynamics in the form of spirals. Whereas our earlier work [14] pointed

out some quantitative differences in domain growth and interface fluctuations when com-

paring a standard coarsening process with a process where inside domains spirals form, the

current work revealed that perturbations of coarsening domains with spirals result in com-

plex and novel responses that have not yet been seen in other systems and that can not be

easily anticipated from our understanding of standard coarsening processes.
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