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The emergence of quantum statistical mechanics from individual pure states of closed many-body
systems is under intensive investigations. While most efforts have been put on the impacts of the
direct interaction (i.e., the usual mutual interaction), here we study systematically and analytically
the impacts of the exchange interaction, that arises from the particle indistinguishability. We show
that this interaction leads an overwhelming number of Fock states to exhibit a structure, that can
be resolved only by observables adjusted according to system’s dynamical properties and from which
thermal distributions emerge. This hidden thermal structure in Fock space is found to be related to
the so-called limit shape of random geometric objects in mathematics. The structure enables us to
uncover, for both ideal and nonideal Fermi gases, new mechanisms for the emergence of quantum
statistical mechanics from individual eigenstates.

There have been increasing evidences [1–8] showing
that a closed quantum many-body system can act as its
own heat bath, leading to the emergence of equilibrium
statistical mechanics from pure states (see Refs. [9–12]
for review). Notwithstanding this, the ingredients indis-
pensable for this emergence remain an open problem. It
has been shown that the direct interaction, via driving
many-body quantum chaos, gives rise to complex struc-
tures of eigenstates, from which the Fermi-Dirac (FD)
or Bose-Einstein (BE) distribution arises [3, 10, 13, 14].
The need of this interaction conforms to standard sta-
tistical mechanics [15]. Whereas the studies of entangle-
ment entropy suggest that without the direct interaction,
the distribution arises also [16–19]. That thermal distri-
butions exist in such a broad range of extreme conditions
motivates exploring universal routes to their emergence
from pure states. Furthermore, the exchange interaction
– “a peculiar mutual effect of particles that are in the
same quantum state” [15] – is a common ingredient of
quantum many-body systems. It is a building block of
traditional ensemble-based quantum statistical mechan-
ics, giving rise to the FD (BE) distribution and many
intriguing phenomena ranging from the BE condensation
to the Haldane-Wu fractional exclusion statistics [20, 21].
Thus in-depth investigations of the exchange interaction
in the emergence of statistical mechanics from pure states
are of fundamental importance and urgent need.

In this Rapid Communication, for the first time,
we study systematically and analytically how the ex-
change interaction drives thermal equilibrium phenom-
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ena at individual pure states. For simplicity we focus
on Fermi statistics, and consider N(�1) indistinguish-
able fermions confined in a volume [22] for both situa-
tions: with and without the direct interaction. With-
out the direct interaction an ideal Fermi gas results;
the exchange interaction endows it with many-body na-
ture. Its eigenstate is a Fock state λ, represented by
a pattern of the number of particles occupying a single-
particle eigenstate. Three classes of representative single-
particle eigenstates are considered, corresponding to dis-
tinct quantum motions (Fig. 1): Liouville integrable,
chaotic and Anderson localized. To realize the first we
put the particle on a torus (A1) or in a one-dimensional
harmonic potential (A2), the second in a chaotic cavity
(B), and the third in a quasi one-dimensional cavity with
scatterers randomly place inside (C). When the direct
interaction is switched on, a nonideal Fermi gas results,
whose eigenstate Φ is a superposition of Fock states. In
this work we first uncover a thermal structure hidden
in Fock space, and then study its consequences on both
ideal and nonideal Fermi gases.

The main results are summarized in words as follows:

• We find that, irrespective of dynamical properties
(Liouville integrable, chaotic or Anderson local-
ized) of single-particle motion, for an overwhelming
number of Fock states the FD distribution emerges
from individual occupation number pattern (cf. Ta-
ble I), and can be resolved only by appropriate ob-
servables (that is, this emergence does not ensure
that in a given Fock state, the expectation values of
all observables are thermal.). As such this is a hid-
den thermal structure. Moreover, it has nothing to
do with many-body quantum chaos, but is related
to the limit shape of random geometric objects [23–
27], a subject well explored by mathematicians.
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FIG. 1: Schematic representation of the spatial structures of
single-particle eigenstate ψν and the good quantum number
space G (empty circles) of Liouville integrable (A1,2), chaotic
(B) and Anderson localized (C) motions in distinct setups.
Green dots in (C) are scatterers.

• We find that the influence of dynamical properties
is to determine whether an observable can resolve
the thermal structure. Table I gives the results for
the one-particle correlation function Mrr′ between
two spatial points r, r′. It shows that the short-
ranged (small |r−r′|) correlation is always thermal,
implying that if a subsystem is small, an individual
λ, namely, a many-body eigenstate of ideal Fermi
gas, acts as the heat bath of the subsystem, irre-
spective of dynamical properties. This is in spirit
consistent with the results for the reduced den-
sity matrix based on the canonical typicality [5–
7], which makes no reference to system’s construc-
tions. Whereas the long-ranged (large |r−r′|) cor-
relation is thermal only if the single-particle motion
is chaotic. In this case λ acts as the heat bath of
the entire system.

• We find that, without Berry’s conjecture [3, 29], the
eigenstate Φ of nonideal Fermi gases on a torus ex-
hibits eigenstate thermalization [3]. Specifically, we
show [Eq. (16)] that the short-ranged correlation at
Φ is thermal, i.e., governed by the FD distribution,
but not the detailed constructions of Φ.

Our findings suggest that the thermal structure hidden
in the Fock space, arising from the exchange interaction
namely the particle indistinguishability, is a basis of the
emergence of thermal equilibrium phenomena from pure
states. In particular, they indicate new mechanisms for
the eigenstate thermalization.

TABLE I: Structures of individual Fock state λ resolved by
spatial correlation function Mrr′ of distinct ranges.

eigenstate short-ranged [28] long-ranged
ψν structure expectation structure expectation

resolved value resolved value
integrable

FD
thermal {nν}

athermal
(A1,2) [Eq. (11)] [Eq. (1)]
chaotic

FD
thermal

FD
thermal

(B) [Eq. (11)] [Eq. (11)]
localized

FD
thermal {nν}

athermal
(C) [Eq. (13)] [Eq. (1)]

Observable-resolved structure Λ(λ) of individual λ – An

individual Fock state λ is a pattern {nν}, where nν(=0,1)
is the occupation number at single-particle eigenstate ψν .
ν denotes the complete set of good quantum numbers as-
sociated with the single-particle motion, which refers to
the eigenmomentum pν for free motion (A1) and to the
eigenenergy εν for harmonic oscillation (A2), chaotic mo-
tion (B) and Anderson localization (C). Given a system
all ν constitute a space, denoted as G (Fig. 1). We will
show that there are intimate relations between resolv-
ing the fine structures of {nν} by observables and the
emerging of FD distribution from individual many-body
eigenstates of ideal or nonideal Fermi gases. To this end
we first illustrate in this part how distinct observables
resolve structures of individual λ at different scales of G.

We take a family of basic observables, namely, the one-
particle correlation function Mrr′ at different ranges of
|r−r′|. At λ the correlation function is

Mrr′ ≡ 〈λ|c†r′cr|λ〉 =
∑
ν nνCν(r, r′). (1)

Here cr (c†r) is the annihilation (creation) operator at r,
and Cν(r,r′)≡ψν(r)ψ∗ν(r′) is the autocorrelation of ψν(r).

(i) If Cν(r,r′) varies slowly with ν (Fig. 2, left):

Cν(r, r′) ≈ Cν′(r, r′), for nearest ν, ν′, (2)

then G has a “natural” decomposition into many sub-
spaces Gm (Fig. 2, left). [We are not aware of generic
conditions for Eq. (2). Thus we will justify it and de-
rive the conditions for distinct dynamical systems later.]
In each Gm, Cν (r,r′ fixed) and εν are approximately a
constant, denoted as Cm(r,r′) and εm, respectively, i.e.,

G = ⊕mGm,
∀ν ∈ Gm : Cν(r, r′) ≈ Cm(r, r′), εν ≈ εm.

(3)

By Eq. (2) the number of elements of Gm, denoted as
Gm, is �1 [30]. Using the decomposition (3) we obtain:∑

ν nνCν(r, r′) =
∑
m Cm(r, r′)

∑
ν∈Gm nν . (4)

With the help of this result we reduce Eq. (1) to

Mrr′ =
∑
mNmCm(r, r′), Nm =

∑
ν∈Gm nν . (5)

Therefore, provided that Eq. (2) holds, Mrr′ cannot re-
solve nν at a specific ν; rather, it resolves a less fine
structure {Nm}≡Λ(λ), which is constrained by [31]:∑

mNm = N (=
∑
ν nν),∑

mNmεm ≈ E (=
∑
ν nνεν).

(6)

(ii) If Cν(r,r′) varies rapidly with ν (Fig. 2, right),
then neither the decomposition (3) nor the reduction (5)
follows. As Mrr′ is given by Eq. (1), a fine tuning in the
pattern {nν} can lead to a significant change in Mrr′ .
That is, Mrr′ can resolve the fine structure of {nν}.

Here we make two remarks. First, the decomposition
(3) resembles some ideas of von Neumann [32] regarding
the fundamentals of statistical mechanics of closed quan-
tum systems. Specifically, that observables can induce
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FIG. 2: Left: When Cν varies slowly with ν, a decomposition
of the space G into subspaces Gm (blue cells) results. Conse-
quently, Mrr′ can resolve only the structure Λ less fine than
λ. Right: When Cν varies rapidly with ν, the decomposition
does not follow and Mrr′ can resolve the fine structure of λ.
Solid (empty) circles denote (un)occupied eigenstates ν.

the decomposition of the space of quantum states is a
basis of von Neumann’s analysis [32]. However, his de-
composition refers to the Hilbert space spanned by the
eigenstates of the entire system, which are λ for an ideal
Fermi gas and Φ for a nonideal Fermi gas. Whereas the
decomposition (3) refers to G. Secondly, although Λ looks
similar to the “macroscopic state” of Landau [33], there
are conceptual differences. Notably, as discussed Λ is
resolved only by proper observables, whereas the macro-
scopic state is independent of observables.

Emergence of thermal structures from Λ(λ) – A ques-
tion naturally is: What does the structure Λ(λ) look like?
To study this problem we note that by definition of Λ,
distinct λ [constrained by Eq. (6)] can correspond to the
same structure Λ. The number of λ corresponding to Λ
is given by

∏
m

Gm!
Nm!(Gm−Nm)!≡W [Λ]. From this expres-

sion we see that W has a sharp peak at some Λ∗≡{N∗m}.
Physically, this means that an overwhelming number of
λ have the same observable-resolved structure Λ∗.

Now we can show that the thermodynamic relation
emerges from an individual λ satisfying Λ[λ]=Λ∗: this is
in contrast to standard statistical mechanics where ther-
modynamics is built upon an ensemble. By definition,

∂S
∂Nm

∣∣
Λ=Λ∗

= α+ βεm, S ≡ lnW [Λ]. (7)

Here α,β are the Lagrange multipliers. They depend on
N,E, and so do N∗m and W [Λ∗]. Taking this and Eqs. (6)
and (7) into account, we find that

∂S
∂E

∣∣
Λ=Λ∗

= ∂
∂E

∑
mNm(α+βεm)

∣∣
Λ=Λ∗

=β, (8)

where in deriving the last equality we have used the fact
that N,E are independent variables. Similarly, we have

∂S
∂N

∣∣
Λ=Λ∗

= ∂
∂N

∑
mNm(α+βεm)

∣∣
Λ=Λ∗

=α. (9)

Thus S=lnW [Λ∗] gives the thermodynamic entropy [22],
β the inverse thermodynamic temperature 1

T , and −αβ
the chemical potential µ. So Eqs. (8) and (9) reduce to
∂S
∂E |Λ=Λ∗=

1
T and ∂S

∂N |Λ=Λ∗=− µ
T . Note that these rela-

tions are independent of the explicit form of Λ∗.
Furthermore, by substituting the explicit form of W [Λ]

into Eq. (7) we obtain

N∗m/Gm = (e
εm−µ
T + 1)−1 ≡ fFD(εm). (10)

So Λ∗ is determined by FD distribution fFD, i.e., is a
thermal structure. Unlike standard textbooks [15], here
fFD refers to individual λ, not an ensemble. The emer-
gence of FD (BE) distribution from pure states has re-
cently appeared as a new fundamental aspect of statisti-
cal mechanics [14, 16, 17]. Most importantly, fFD can be
resolved only if Eq. (2) holds, whereas in textbooks ther-
mal distributions have nothing to do with observables.

Probing hidden thermal structure Λ∗ – Let the Fock
space constrained by Eq. (6) be equipped with a uni-
form probability measure, and λ be drawn randomly from
this measure. Equation (5) and the analysis above sug-
gest that Mrr′ has a typical value (with respect to this
measure), because an overwhelming number of λ satisfy
Λ(λ)=Λ∗. Combining Eqs. (5) and (10) we find that,
provided that Eq. (2) holds, this typical value is

Mrr′ =
∫
dµ(ν)(e

εν−µ
T + 1)−1Cν(r, r′). (11)

Here dµ(ν) gives the number of single-particle eigenstates
in dν. The left-hand side of Eq. (11) is the expectation

value of c†r′cr at λ, while the right-hand side is the ther-
mal average of Cν . Note that the latter is determined
by thermodynamic quantities T ,µ, and thus fine tunings
of {nν} do not change the value of Mrr′ . This implies
that for an overwhelming number of (but not all) λ con-
strained by Eq. (6), Mrr′ takes the same value – the onset
of eigenstate thermalization [2, 3, 8] of ideal Fermi gases.
Moreover, Eq. (11) provides a guide of probing Λ∗.

For highly-excited λ, the thermal de Broglie wave-
length is much smaller than the mean distance between
nearest particles. So the FD distribution in Eq. (11) can
be well approximated by the Maxwell-Boltzmann (MB)
distribution. In the Supplemental Materials [34] we show
that the MB distribution appearing from Mrr′ results
from the quantum entanglement of indistinguishable par-
ticles. Provided particles are distinguishable, this entan-
glement does not exist (since neither the exchange nor
direct interaction exists), and unlike Eq. (11) the MB
distribution cannot emerge from the one-particle corre-
lation function [34]. This scenario is fundamentally from
standard statistical physics: the former refers to a pure
quantum state while the latter to an ensemble.

The remainder is to find the conditions under which
Eq. (2) holds. Below we consider the single-particle quan-
tum motions in Fig. 1 separately, and show that precisely
at this point, dynamical properties make significant dif-
ferences (see Table I for a summary of the results below).
In essence, distinct motions give rise to distinct spatial
structures of ψν (Fig. 1) and thus the autocorrelation
Cν(r, r′) of ψν displays distinct dependences on ν.

(A1) With the substitution of ψν(r)= eipν ·r

L (L the

torus size), Cν∼eipν ·(r−r
′). (i) For |r−r′|�L, since the

difference between nearest neighbors: pν ,pν′ is O(L−1),
we have |(pν−pν′)·(r−r′)|�1. From this we find that
pν ·(r−r′) varies slowly with ν, and justify Eq. (2). Thus
we have Eq. (11), i.e., the short-ranged Mrr′ is thermal.
(ii) For |r−r′|=O(L), we have |(pν−pν′)·(r−r′)|=O(1).
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Thus pν ·(r−r′) varies rapidly with ν and Eq. (2) breaks
down. So the long-ranged Mrr′ is given by Eq. (1), i.e.,
athermal, and cannot be used to probe Λ∗.

(A2) The eigenvalue εν=ν+ 1
2 and corresponding eigen-

state ψν(r)=π−1/4
√

2νν!
e−

r2

2 Hν(r), where Hν is the Hermite

polynomial. For N�1 most fermions occupy highly ex-
cited single-particle eigenstates. Thus the sum in Eq. (1)
is dominated by large ν, for which ψν(r)∼cos(

√
2ενr).

Substituting this asymptotic expression into Cν and re-
peating the discussions on (A1), we find that Mrr′ is

thermal for |r−r′|�
√
E/N and athermal otherwise.

(B) To calculate Cν we consider (i) large and (ii) small
εν separately. For (i) we perform the Wigner transforma-

tion: Cν(r,r′)≡
∫
dpe−i(r−r

′)·pΨν(q,p) with q≡ 1
2 (r+r′),

and adopt Berry’s conjecture for single-particle chaotic

motion [29]: Ψν(q,p)= δ(εν−H(q,p))∫∫
dqdpδ(εν−H(q,p))

, with H being

the Hamiltonian. This conjecture implies that |ψν(r)| is
homogeneous on large scales. Unlike Ref. [3], here the
conjecture is not made for many-particle motion. Using

the conjecture we obtain Cν∼f( |r−r
′|

λεν
), with λεν being

the de Broglie wavelength at energy εν . The function
f(x) oscillates in x, whose explicit form is unimportant.
For nearest ν, ν′ and for any r,r′, we have

|r − r′|(λ−1
εν′
− λ−1

εν ) ∼ (|r − r′|/L)(∆/εν)1/2 � 1, (12)

with ∆ being the level spacing and L the cavity size.

From this we find that f( |r−r
′|

λεν
) is the same for nearest

ν,ν′. Thus Eq. (2) is justified. For (ii) we do not ex-
pect Berry’s conjecture to hold, since it is based on the
semiclassical approximation. So Eq. (2) breaks down in
general. But, the number of particles occupying low-lying
single-particle states is � N . Thus their contributions
to the sum in Eq. (1) are negligible, and the breakdown
of Eq. (2) has no effects on Mrr′ . So both short- and
long-ranged Mrr′ are thermal and Eq. (11) follows.

(C) The Anderson localization [35–37] implies that
the eigenvalues {εν} are discrete and dense, and ψν ex-
hibits exponential localization in the longitudinal direc-
tion (Fig. 1). Moreover, the localization center has a sin-
gular dependence on ν: as ν approaches ν′ the distance
between localization centers of ψν and ψν′ diverges. In
addition, the localization length varies with ν. As a re-
sult, (i) if |r−r′| is sufficiently large, Cν varies rapidly
with ν. Thus Eq. (2) breaks down and the long-ranged
Mrr′ is athermal. (ii) For r, r′ in the same localization
volume, the sum in Eq. (1) is dominated by the sub-
set of {εν} that corresponds to this volume. Since each
localization volume is an effective chaotic cavity, we can
repeat the analysis of (B). As a result, we obtain Eq. (11),
but with dµ replaced by dµloc which gives the number of
eigenstates in a localization volume and the interval dν:

Mrr′ =
∫
dµloc(ν)(e

εν−µ
T + 1)−1Cν(r, r′). (13)

So we can use the short-ranged correlation to probe Λ∗.
New mechanism for eigenstate thermalization in non-

ideal Fermi gas – Now we switch on the direct hard-

sphere interaction between particles. For simplicity we
consider particles on a torus. This system is essentially
the same as what was studied in Ref. [3]. An eigenstate
Φ of this system, corresponding to the eigenenergy E, is
a superposition of λ ∈ ΩN,E , where ΩN,E is composed of

all λ satisfying
∑
νnν=N and

∑
νnνεν=E (εν=

p2ν
2 ):

|Φ〉 =
∑
λ∈ΩN,E

Cλ|λ〉,
∑
λ∈ΩN,E

|Cλ|2 = 1. (14)

Note that for this system the many-body eigenenergy E is
exactly the total kinetic energy, and the direct interaction
enters only into the coefficients Cλ. By simple algebra we
find the one-particle correlation function at Φ:

〈Φ|c†r′cr|Φ〉 =
∑
λ∈ΩN,E

|Cλ|2Mrr′

+
∑
λ∈ΩN,E

C∗λCλ′
∑
ν 6=ν′

ei(pν ·r−pν′ ·r
′)

L2 〈λ|c†νcν′ |λ〉,
(15)

where Mrr′=
1
L2

∑
νe
ipν ·(r−r′)〈λ|c†νcν |λ〉. The left-hand

side on Eq. (15) is translationally invariant, i.e., depends
on r, r′ via r−r′, for the system has the translation sym-
metry. But this invariance is violated by the second term
on the right-hand side. Thus this term must vanish, giv-

ing 〈Φ|c†r′cr|Φ〉=
∑
λ∈ΩN,E

|Cλ|2Mrr′ . On the other hand,

for generic Φ, most weights of |Cλ|2 go to λ satisfying
Λ(λ)=Λ∗, because as shown above W [Λ] has a sharp peak
at Λ∗ [38]. For these λ and corresponding Mrr′ we use
the results for (A1) summarized in Table I. In particular,
Mrr′ takes the typical value (11) for |r−r′|�L, with T ,µ
in Eq. (11) determined by N,E. As Mrr′ are insensitive
to the fine structure of λ, it can be further pulled out of
the sum:

∑
λ∈ΩN,E

(...)Mrr′ , giving

〈Φ|c†r′cr|Φ〉 = Mrr′
∑
λ∈ΩN,E

|Cλ|2 = Mrr′

=
∫

dp
(2π)2

eip·(r−r
′)

e(p2/2−µ)/T+1
.

(16)

Thus the eigenstate thermalization is justified for short-
ranged one-particle correlation at both low- and high-
lying Φ. Note that unlike Ref. [3], we did not use Berry’s
conjecture made for many-particle chaotic motion, which
has not yet been proven.

Relations between Λ∗ and the limit shape of random
geometric objects –Finally, we wish to understand from
more rigorous viewpoints why the thermal structure Λ∗

can arise merely from the particle indistinguishability.
Let us view λ={nν} as a geometric object – a collection
of “skyscrapers” located at ν wherever nν=1 (see, e.g.,
Fig. 3). It turns out that despite the shapes of such
objects look random, as discovered by mathematicians
[23–27], when they are large and rescaled properly, they
can concentrate on a smooth and nonrandom limit shape.

To keep quantitative discussions as simple as possible
we consider N indistinguishable free fermions confined in
a harmonic potential. The space G is the single-particle
eigenenergy spectrum, i.e., the set of natural numbers N.
(The zero energy is irrelevant and ignored.) For a Fock
state λ, E=

∑∞
ν=1νnν . This maps λ into a partition of

integer E into N distinct summands, a research area for
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which Euler laid down a foundation [39]. To be precise,
an eigenenergy ν, when its corresponding eigenstate is
occupied (nν=1), mimics a summand. In 1941 the field
of random integer partitions was opened up [40], and in
the past few decades such partitions have been found to
bear rich structures [25–27]. (One should not confuse this
with the old subject of using standard statistical mechan-
ics to study the number of partitions [41].) In particular,
the observable ϕλ(t)≡

∫∞
t

∑∞
ν′=1nν′δ(ν

′−ν)dν, counting
at given λ the number of summands ≥t or, equiva-
lently, the number of particles occupying single-particle
eigenstates with eigenenergies ≥t [42], defines a random
stepped curve. As proven rigorously [26], this curve has
a limit shape. Our results have intimate relations to this.

For illustrations we consider the case where N is not
fixed, i.e., µ = 0. In this case for sufficiently large E,
Eq. (10) shows that for an overwhelming number of λ,

ϕλ(t)
E�1
=
∫∞
t

dν
eν/T+1

= T ln(1 + e−t/T ), T =
√

12E
π

(17)

[E=
∫∞

0
ϕλ(t)dt], in agreement with the theorem [26]:

limE→∞ µE
{
λ :
∣∣∣ 1√

E
ϕλ(
√
Et) + s(t)

∣∣∣ < ε
}

= 1, ∀ε > 0.

Here s(t) is given by the Vershik curve: e
− πs√

12−e−
πt√
12 =1.

This theorem implies that if the set of all partitions λ de-
fined above is equipped with a uniform probability mea-
sure µE , then a typical partition has a limit shape of −s.
Our method, though less rigorous, has the advantage of
being applied to more general conditions and systems.

ν

nν
Nm/Gm

fFD

n ν
,N

m
/G

m

FIG. 3: A Fock state λ={nν} of N=400 fermions of total en-
ergy E=87800 confined in a harmonic potential, or a partition
of E into N distinct summands in number theory, is generated
randomly in simulations. For the observable-resolved struc-
ture Λ={Nm} (Gm=40) of a typical λ, Nm/Gm is fitted well
by fFD with µ=400.1 and T=68.84.

Indeed, for generic N,E, for which rigorous results are
not available, we have confirmed Eq. (10) numerically.
Specifically, we use Monte Carlo method to draw ran-
domly a partition λ={nν} of E (with N distinct sum-
mands) from the uniform probability measure. As shown
in Fig. 3, a typical λ (green dashed curve), though looks
random, has a nonrandom Λ (stepped curve) fitted well
by fFD (red dashed curve) [30]. The pattern of {NmGm }
concentrates on the smooth curve fFD. (Gm corresponds
to the scale over which Cν varies and thus to Mrr′ with
specific ranges of r,r′.) We see that fFD is justified not
only for an individual λ, but also for N as small as 400.

Summarizing, we have shown analytically how the ex-
change interaction namely the particle indistinguishabil-
ity gives rise to a hidden thermal structure in the Fock
space, and opens up a door to the emergence of thermal
equilibrium phenomena from eigenstates of many-body
systems with or without the direct interaction between
particles. Furthermore, we have uncovered a new mech-
anism for eigenstate thermalization of a nonideal Fermi
gas on a torus [Fig. 1(A1)]. It is natural to generalize this
result to a nonideal Fermi gas in an Anderson localized
cavity [Fig. 1(C)]. This issue is currently under investi-
gations. We expect the outcomes to shed new light on
the many-body localization [43–45], especially in view of
that the many-body localization is equivalent to local-
ization in the Fock space. In this work, we focused on
the kinematic aspect. The dynamical aspect, especially
the interplay between relaxation and the hidden ther-
mal structure, is an important issue in future studies. In
a separate work [46], we will show that given a typical
non-thermal initial state, under the unitary evolution,
the observable will relax to the thermal value discussed
here, and the relaxation time is the Ehrenfest time.

We are grateful to G. Casati, S. Fishman, J. C. Gar-
reau, I. Guarneri, D. Huse, H.-H. Lai, A. Polkovnikov and
B. Wu for inspiring discussions at various stages of this
work. This work is supported by the National Natural
Science Foundation of China (Grants No. 11535011, No.
11747601 and No. 11335006) and the National Science
Foundation (Grants No. DMR-1644779 and No. DMR-
1442366).

[1] R.V. Jensen and R. Shankar, Phys. Rev. Lett. 54, 1879
(1985).

[2] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[3] M. Srednicki, Phys. Rev. E 50, 888 (1994).

[4] V. Zelevinsky, Annu. Rev. Nucl. Part. Sci. 46, 237 (1996).
[5] H. Tasaki, Phys. Rev. Lett. 80, 1373 (1998).
[6] S. Popescu, A. J. Short, and, A. Winters, Nat. Phys. 2,

754 (2006).



6

[7] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi,
Phys. Rev. Lett. 96, 050403 (2006).

[8] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854
(2008).

[9] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,
Adv. Phys. 65, 239 (2016).

[10] F. Borgonovi, F. M. Izrailev, L. F. Santos, and V. G.
Zelevinsky, Phys. Rep. 626, 1 (2016).

[11] C. Gogolin and J. Eisert, Rep. Prog. Phys. 79, 056001
(2016).

[12] J. M. Deutsch, Rep. Prog. Phys. 81, 082001 (2018).
[13] F. Borgonovi, I. Guarneri, F. M. Izrailev, and G. Casati,

Phys. Lett. A 247, 140 (1998).
[14] F. Borgonovi, F. Mattiotti, and F. M. Izrailev, Phys. Rev.

E 95, 042135 (2017).
[15] L. D. Landau and E. M. Lifshitz, Statistical physics, Part

1, 3rd Ed. (Butterworth-Heinemann, Oxford, UK, 1980).
[16] H. H. Lai and K. Yang, Phys. Rev. B 98, 081110(R)

(2015).
[17] S. Nandy, A. Sen, A. Das, and A. Dhar, Phys. Rev. B

94, 245131 (2016).
[18] X. Li, J. Pixley, D.-L. Deng, S. Ganeshan, and S. D.

Sarma, Phys. Rev. B 93, 184204 (2016).
[19] J. M. Magán, Phys. Rev. Lett. 116, 030401 (2016).
[20] F. D. M. Haldane, Phys. Rev. Lett. 66, 1529 (1991).
[21] Y.-S. Wu, Phys. Rev. Lett. 73, 922 (1994).
[22] The particle mass, the Boltzmann and Planck constants

are all set to unity throughout.
[23] A. Okounkov, Bull. Amer. Math. Soc. 53, 187 (2016).
[24] A. M. Vershik, J. Math. Sci. 119, 165 (2004).
[25] A. M. Vershik, Proceedings of the International Congress
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