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Unsupervised machine learning methods are used to identify structural changes using the melt-
ing point transition in classical molecular dynamics simulations as an example application of the
approach. Dimensionality reduction and clustering methods are applied to instantaneous radial
distributions of atomic configurations from classical molecular dynamics simulations of metallic sys-
tems over a large temperature range. Principal component analysis is used to dramatically reduce
the dimensionality of the feature space across the samples using an orthogonal linear transformation
that preserves the statistical variance of the data under the condition that the new feature space
is linearly independent. From there, k-means clustering is used to partition the samples into solid
and liquid phases through a criterion motivated by the geometry of the reduced feature space of the
samples, allowing for an estimation of the melting point transition. This pattern criterion is con-
ceptually similar to how humans interpret the data but with far greater throughput, as the shapes
of the radial distributions are different for each phase and easily distinguishable by humans. The
transition temperature estimates derived from this machine learning approach produce comparable
results to other methods on similarly small system sizes. These results show that machine learning
approaches can be applied to structural changes in physical systems.

PACS numbers: 64.30.Ef, 64.60.Ej, 64.70.dm

I. INTRODUCTION

Machine learning (ML) has seen rapid development
over the last decade or so. At present, rather sophis-
ticated packages are readily available for the application
of various ML methods.[1, 2] Conceptually, the ML ap-
proach can be regarded as a data analysis approach for
detecting patterns in data and then using the extracted
patterns for classification or regression. Modern scien-
tific investigations, in particular numerical study, nat-
urally involve large data sets. However, conventional
approaches often neglect possible nuance the structure
of the data. Although inference methods, such as the
maximum likelihood method and the maximum entropy
method[3, 4] have been routinely applied on certain phys-
ical problems, applications which utilize other ML meth-
ods have not attracted much attention until recently. The
advances in ML algorithms and implementations provide
a exciting new proposal for applying them to understand-
ing data from physical sciences and perhaps improving
upon existing numerical methods.[5]

In contrast with conventional approaches, ML provides
a new avenue for unveiling the underlying structure in
data beyond simply measuring the mean, variance, or
higher moments of the data. This provides not only a
new method for a deeper understanding of old problems,
but also new problems which have been hitherto impos-
sible to approach and therefore ignored. An interesting
topic which can benefit from this new approach is the
study of interacting systems at both quantum and clas-
sical scales. Currently outstanding problems include the
calculation of phase transition points and the prediction
of phase diagrams. Some remarkable recent papers have
shown that certain ML algorithms can be used to identify

phase transitions of lattice models, particularly on spin
systems.[6, 7]

Utilizing the ML approach for studying phase transi-
tions implicitly assumes that there is some form of change
in the pattern of the measured data across the phase tran-
sition. This is in fact exactly what happens in most phase
transitions. For instance, in the melting of a crystal,
the widely adopted Lindemann parameter is essentially
a measure of the deviations of atomic positions in the
system from equilibrium positions.[8] Similar behavior is
found in most phase transitions of molecular systems, of-
ten in the form of pattern changes in the atomic positions.
Perhaps more importantly, for sufficiently complex sys-
tems, their phase transitions do not have obvious order
parameter or the order parameter is simply an unknown,
often prohibiting the detection of such pattern changes.
This is not a hypothetical situation, indeed this is the
case for some interesting materials, such as heavy fermion
materials.[9] ML is a new route of studying those tran-
sitions by searching for hidden patterns in the measured
data.

Pattern recognition is a strong suit of ML methods and
many existing applications of ML methods are designed
for identifying patterns in figures, such as the classic ex-
ample of handwriting recognition.[10] Given the relation
between phase transitions and pattern changes in mea-
sured data, using ML methods to identify phase tran-
sitions is an attractive prospect. There are two major
categories of ML methods, supervised and unsupervised.
Both categories have been considered as good candidates
for identifying phase transition in the lattice Ising model
in two dimensions.[6, 7, 11, 12] For the well studied Ising
model, in which the phase diagram and even the critical
point are known exactly in two dimensions, [13] those
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known results facilitate the application of supervised ML
methods. There have also been efforts in classifying crys-
tal structures and predicting melting points in octet AB
solids.[14] For a system with minimal a priori informa-
tion, applying a supervised ML method may be challeng-
ing. As interest in multi-component high entropy alloys
grows, oftentimes a problem arises in the fact that the
phase diagrams are largely unknown. For this reason,
we decide to explore an unsupervised ML method in this
paper.

The pattern recognition capabilities of ML methods
can be applied to structural changes found in physical
systems by partitioning a large data set of structural in-
formation according to a similarity criterion into distinct
classes. The distributions of the partitions with respect
to some physical property associated with the structural
change can be used to predict the transition point. As
such, this approach is an empirical method for detecting
structural changes.

As an example of the application of this unsuper-
vised machine learning approach to detecting structural
changes, this paper focuses on the detection of the solid-
liquid phase transition in small titanium and aluminum
systems by analyzing the structural information of clas-
sical molecular dynamics (MD) simulations about the
melting point. Within the context of this computation,
the approach described above is similar to the single-
phase hysteresis method, which is an existing empirical
method for calculating melting points. This involves ei-
ther heating a bulk solid until it melts or cooling a bulk
liquid until it solidifies at fixed pressure, using an order
parameter to classify the system as solid or liquid. This
method incurs a large error due to the effect of either
overheating or undercooling, where the material melts at
higher temperatures and solidifies at lower temperatures
in MD simulations with respect to the experimental data.
The discrepancy can be as large as 20% at the same pres-
sure [15, 16]. This is largely due to the surfaceless fea-
ture of the bulk material, which inherently restricts the
nucleation to being homogeneous rather than heteroge-
neous. This can be assuaged through the use of the hys-
teresis method, which is empirically based in nucleation
theory.[17] The melting temperatures from the heating
and cooling methods, T+

M and T−M , can respectively be
used to establish a melting temperature TM according

the the equation TM = T+
M + T−M −

√
T+
MT

−
M , which can

be in good agreement with experiment.[18] Due to its sta-
tus as an empirical method, however, there is no physical
significance to the relationship itself. Error analysis from
this method is also difficult to quantify. It is also worth
mentioning that depending on the system and the exper-
imental conditions, overheating and undercooling effects
can also be seen in experiments. The approach presented
in this paper can be thought of as an automated version
of this empirical method, using unsupervised machine
learning to classify the crystal structure instead of an or-
der parameter, which requires a priori information. See

Appendix A for information about additional methods
for calculating melting temperatures of materials.

The organization of this paper is as follows. In the
next section, we explain, in detail, the ML algorithms for
the present project. In section III, we present the main
results from the calculations for titanium and aluminum.
In the last section, we conclude and discuss the future
directions for applying ML approaches to molecular sys-
tems.

II. UNSUPERVISED MACHINE LEARNING
METHOD FOR CALCULATING MELTING

POINTS

The machine learning approach used in this paper fol-
lows a procedure similar to that used in the single phase
method described in the preceding section. A perfect lat-
tice is heated from a temperature well below the melting
point to a temperature well beyond the melting point.
Then, the system is cooled back down to the original
starting temperature. In this manner, both the melting
and solidification phenomena are captured. The MD it-
self should be considered as a sampling method, as we
do not study the dynamics explicitly in this study. One
of the foremost ways that humans distinguish solid and
liquid structures in MD data obtained for crystalline ma-
terials is the radial distribution function. In principle,
machine learning methods can be applied to achieve a
similar result, but with much higher throughput. For this
study, the radial distributions for a subset of the simu-
lation steps were passed through a clustering algorithm.
Qualitatively, this means that the dataset is partitioned
into two groups based on a measure of similarity.

The notion of what “similarity” means varies from
method to method. For the k-means algorithm, origi-
nally from signal processing, n samples are partitioned
into k clusters such that the clusters exhibit prototypi-
cal centroids by which each sample is grouped with ac-
cording to geometrical proximity.[19–21] The Euclidean
metric is used for this application and the procedure iter-
atively produces the best choice of centroids by restarting
multiple times to avoid falling into local minima.[1] This
is done by making an initial random choice of centroids
from the sample space, classifying the remaining sam-
ples by proximity to the chosen centroids, then updating
the choice of centroids based on the average positions of
the member samples in each cluster. The procedure is
considered complete when the centroids no longer shift
beyond a defined threshold in the update step. In this
application, k = 2 and the two clusters are intended to
represent the solid and liquid phases. See Appendix C
for detail about the k-means clustering procedure.

The clustering results using the radial distribution data
itself is not particularly easy to visualize, as the dimen-
sion of the feature space for the samples is the number
of bins used for constructing the radial distribution data.
The dimensionality of this data can be reduced using
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principal component analysis (PCA).[22] This procedure
involves performing an orthogonal linear transformation
to a new feature space of equal or lesser dimension such
that the principal components composing the projections
on to the new feature space guarantee the largest ex-
plained variance between the samples under the condition
that the features are linearly independent. The princi-
pal components are ordered by their explained variance
ratios. This smaller feature space is easier to analyze
and allows for the curse of dimensionality to be avoided
while simultaneously ensuring that the statistically sig-
nificant features of the data are preserved and easy to
demonstrate. Prior to performing PCA reduction, it is
important to always scale the features beforehand to pre-
vent inappropriate domination of a subset of the features
over the others. Min-max scaling was used in this appli-
cation such that each of the features shared a common
domain ranging from 0 to 1. See Appendix B for detail
about the PCA procedure.

After performing a PCA feature space reduction with
two principal components, k-means clustering with two
clusters is used to partition the structural data into two
groups, clusters A and B, according on structure simi-
larity. Note that the chosen clustering method may need
to be adjusted depending on the shape of the data pro-
duced by the PCA reduction. For example, clustering
for data that exhibits irregular boundaries or is well-
connected but not necessarily dense may perform bet-
ter with agglomerative clustering or spectral clustering.
These cluster centroids are the prototypical radial distri-
butions that the samples in their respective clusters most
closely resemble as a group, at least in terms of mini-
mizing the variance of the samples within the clusters.
The cluster labels can also be verified to be the same or
similar for both the raw and the PCA reduced data to
ensure that the important statistical features are being
preserved by the PCA procedure. Once the clusters are
verified to represent the desired phases, a temperature
distribution is constructed for each cluster. There will
be a range of temperatures for which the cluster temper-
ature distributions overlap which will be referred to as
the transition region since samples that belong to either
cluster coexist within this temperature range. To investi-
gate the transition region more closely, the contributions
from each of the cluster distributions that are contained
by the range of temperatures defined as the transition
region are isolated by truncating the full cluster distri-
butions such that they are restricted to the transition
region. The truncated distributions are then renormal-
ized such that correct means and standard deviations can
be extracted from them. The mean temperatures of the
truncated distributions, TA and TB , can be averaged in
various ways to estimate the transition temperature. In
this paper, arithmetic and geometric means were used.

A similar approach using PCA has been recently ex-
plored for the two-dimensional lattice Ising model, in
which snapshots of the spin configurations are used
as learning samples to detect the second order phase

transition.[7] The present work, when applied to the de-
tection of melting points, can be considered as a gen-
eralization of this approach, with continuous variables
instead of discrete spin, a continuum instead of a lattice,
and a first order transition instead of a second order tran-
sition. Additionally, we further refine the method used
in the Ising model by clustering the data after the PCA
reduction and by estimating the transition temperature
through analysis of the clustered data distributions.

III. RESULTS

This method is applied to two small systems of 128
titanium atoms and 108 aluminum atoms. We choose
these two systems as representative examples of metals
with body-centered cubic (BCC) and face-centered cubic
(FCC) crystal structures. The MD simulations were car-
ried out with the LAMMPS simulation package.[23] The
titanium potential used is a modified embedded atom
model (MEAM) spline potential specifically made for
describing phase transitions of titanium with a stable
titanium-β phase.[24] The aluminum potential used is
also a MEAM potential, albeit not a spline function.[25,
26] For each MD simulation phase, the systems were held
at 0 bar in the isobaric-isothermal (NPT) ensemble us-
ing 3-chain Nose-Hoover thermostats and barostats with
damping parameters of 128 and 1024 time steps, respec-
tively, and a simulation time step of .00390625 ps. The ti-
tanium system is initialized in the BCC titanium-β phase
with velocities generated by a Gaussian distribution to
produce a temperature of 1280K and the aluminum sys-
tem is initialized in the FCC configuration with velocities
generated in the same manner to provide a temperature
of 256K. A null value was enforced for the aggregate lin-
ear and angular momenta of both systems when gener-
ating the velocities. In the first MD phase, the systems
are held at the initial temperature for 2.048 ns. The
second phase then ramps the temperature to 3072K for
the titanium system and 2560K for the aluminum sys-
tem over 8.192 ns. The systems are then held at those
maximum temperatures for 2.048 ns in the third phase
before ramping back down to the initial temperature over
8.192 ns in the fourth and final phase. Only the second
and fourth phases that respectively characterize the melt-
ing and solidification processes are included in the data
analysis. The energy, pressure, volume, and atomic posi-
tion data are recorded every 32 time steps. The datasets
generated and/or analyzed during the current study are
available from the authors upon reasonable request. In
other simulations, various reasonable minimum and max-
imum temperatures were tested with the method without
significant impact on the final results.

After all of the data is collected, the radial distribu-
tion functions are calculated with 256 bins for all of the
recorded time steps out to

√
3l0/2 where l0 is the mini-

mum side length of the simulation box, with each value
in the function acting as a feature and each function it-
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self acting as a sample for the purposes of the machine
learning approach to analysis. All work-flow and post-
processing programming are done with Python.[27] For
handling large data arrays, the NumPy Python library
is used.[28] The scikit-learn Python package is used to
perform the PCA and k-means procedures.[1] All plots
were made using the Matplotlib library for Python and
the perceptually uniform “plasma” color map is used for
all color maps.[29]

FIG. 1. K-means cluster centroids for the unreduced titanium
radial distribution function data. These cluster centroids rep-
resent the prototypical radial distributions for each cluster.

FIG. 2. K-means cluster centroids for the unreduced alu-
minum radial distribution function data. These cluster cen-
troids represent the prototypical radial distributions for each
cluster.

As seen in Fig. 1, the k-means cluster centroids for the
unreduced titanium radial distribution data paint a very
clear picture of the molecular structure exhibited by the
clusters. There are two clusters, one cold (A), with an av-
erage temperature well below the reported melting point

for the potential of around 1900K,[24] and one hot (B),
with an average temperature well above the known melt-
ing point. The centroid of cluster A very strongly resem-
bles that of an equilibrium BCC lattice, albeit smoothed
out a bit. This is consistent with the initial structure
of the titanium-β system. Cluster B resembles that of a
typical liquid, albeit with a slight kink near the first local
minimum after the first shell. These results would sug-
gest that the k-means clustering is indeed clustering the
samples in a manner that is consistent with the expected
structures in the sample space.

Similar to the titanium data, the k-means cluster cen-
troids for the unreduced aluminum radial distribution
data in Fig. 2 show the molecular structure exhibited by
the clusters. The colder cluster (A) has an average tem-
perature well below the melting point of 937K[26] and
the warmer cluster (B) also has an average temperature
above the melting point. Cluster A resembles a softened
FCC equilibrium lattice, which is consistent with the ini-
tial FCC structure as expected. Cluster B also clearly
resembles the structure of a liquid with the same small
kink in the first minimum after the first shell that was
seen in the titanium results. Once again, the k-means
clustering results are consistent with the expected parti-
tion of the samples by molecular structure into solid and
liquid phases.

For both systems, the results of the k-means clustering
suggest that the centroids of the clusters can be inter-
preted as the prototypical solid and liquid structures by
which the other samples are categorized with by similar-
ity.

FIG. 3. Scatter plots of the PCA-reduced two-dimensional
radial distribution samples for titanium with respect to the
first two principal axes, x0 and x1. (a) Samples colored with
respect to their instantaneous temperatures. (b) Samples are
colored by cluster temperature average with a line marking
the cluster boundary and circles marking the cluster centroids.
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FIG. 4. Scatter plots of the PCA-reduced two-dimensional
radial distribution samples for aluminum with respect to the
first two principal axes, x0 and x1. (a) Samples are colored
with respect to their instantaneous temperatures. (b) Sam-
ples are colored by cluster temperature average with a line
marking the cluster boundary and circles marking the cluster
centroids.

In Fig. 3a, the data shows a very strong relation-
ship between the sample temperature and sample posi-
tion along the first principal axis (x0) for titanium. The
shape of the data also pinches off, almost partitioning
the samples along the second principal axis, suggesting a
naive clustering. In Fig. 3b, the clustering assignments
and the line separating them show that the data is parti-
tioned into clusters slightly to the side of the recess noted
in the shape of the data, towards the colder sample. Fur-
thermore, the line is almost vertical with respect to x0,
consistent with the temperature gradient along the axis,
likely because of of the near-symmetry of the data about
the said axis. Indeed, the PCA analysis reports that x0
explains 35.94% of the variance in the data while the sec-
ond primary axis (x1) explains only 1.98% of the variance
in the data.

Fig. 4a also shows a very strong relationship between
the sample temperature and the sample position along
x0 for aluminum. Once again, there is a pinching in the
data for aluminum, though not quite along x0 as with
titanium. The shape of the aluminum samples is more
curved and lacks the symmetry about x0 that the tita-
nium data exhibited. However, the aluminum samples
are more stretched along x0 than with the titanium sam-
ples such that said axis explains 73.95% of the variance
in the data and x1 explains 4.39%. The clustering re-
sults show that the boundary is not quite vertical, as one
could presume from the curvature of the data, and the
boundary is once again slightly biased towards samples
colder than the location of the recess in the data, albeit
a bit more biased than was seen with the titanium data.

The reason for the elongated “tail” in the data seen in
the aluminum samples but not in the titanium samples
may be due to the different initial structures of the two
metals. An FCC lattice can be expected to exhibit much
more variation in structure as it approaches its melting
point since it bears much less similarity than a BCC lat-
tice does to a liquid structure.

For both systems, there is ample evidence that the
PCA analysis is adequately capturing the statistical sig-
nificance of the features and that a third principal axis is
unneeded as it necessarily explains less variance than the
axis that precedes it. Furthermore, the cluster assign-
ments are found to be nearly identical to the unreduced
case, with some minor deviations near the cluster bound-
ary for both systems. Thus, PCA reduction is found to
be useful for representing the data in a much more eas-
ily visualized manner with very minor loss of statistical
significance or fidelity in the analysis for both systems.

FIG. 5. Temperature distributions for the PCA reduced ti-
tanium radial distribution clusters with arithmetic and ge-
ometric mean temperatures of the overlap region truncated
distributions.

The temperature distributions of the clusters in Figs.
5 and 6 provide some more detailed insight into the rela-
tionship between the temperatures and the structures of
titanium and aluminum that are suggested by the PCA
reduced scatter plots in Figs. 3 and 4. The overlap region
for titanium extends from 1639K to 2604K and the over-
lap region for aluminum extends from 593K to 1182K. In
order to determine the transition temperature between
the two structures, the distributions are truncated and
renormalized such that the domain of the new distribu-
tions lays solely within the overlap region. The mean
temperatures of these regions are then determined both
arithmetically and geometrically. The arithmetic formu-
lae for determining the means (Tarith) and standard de-
viations (σarith) of each cluster with N samples of tem-
perature Ti and weight wi (the proportion of the data at
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FIG. 6. Temperature distributions for the PCA reduced alu-
minum radial distribution clusters with arithmetic and ge-
ometric mean temperatures of the overlap region truncated
distributions.

temperature Ti) within the transition region is as follows

Tarith =

N∑
i=1

wiTi, (1)

σarith =

√√√√ N∑
i=1

wi(Ti − Tarith)
2

(2)

The corresponding geometric formulae for Tgeo and
σgeo are then

Tgeo = exp

{
N∑
i=1

wi log Ti

}
, (3)

σgeo =

exp


√√√√ N∑

i=1

wi log2

(
Ti
Tgeo

)− 1

Tgeo (4)

For titanium, the arithmetic mean temperatures of
clusters A and B within the overlap region are 1867K and
2325K, respectively, with standard deviations of 175K
and 198K, respectively. The arithmetic mean of these
values gives a temperature of 2096K with a standard de-
viation of 186K. The geometric mean temperatures of
clusters A and B in the overlap region are 1859K and
2316K, respectively, with geometric standard deviations
of 178K and 211K, respectively. The geometric mean of
these values then gives a temperature of 2075K with a
standard deviation of 194K. The single standard devi-
ation intervals for the predicted transition temperature
with arithmetic and geometric averaging are then [1910K,
2282K] and [1881K, 2269K], respectively. The known

transition temperature of 1900K is only contained by the
interval obtained with geometric averaging.

For aluminum, the arithmetic mean temperatures of
clusters A and B within the overlap region are 724K and
989K, respectively, with standard deviations of 115K and
140K, respectively. The arithmetic mean of these values
gives a temperature of 856K with a standard deviation
of 128K. The geometric mean temperatures of clusters A
and B in the overlap region are 715K and 978K, respec-
tively, with geometric standard deviations of 117K and
157K, respectively. The geometric mean of these val-
ues gives a temperature of 836K with a standard devia-
tion of 136K. The single standard deviation intervals for
the predicted transition temperature with arithmetic and
geometric averaging are then [728K, 984K] and [700K,
972K], respectively. The known transition temperature
of 937K is contained by both intervals.

IV. CONCLUSIONS

The results show that unsupervised machine learning
methods can be used to both isolate the statistically rel-
evant data in structure information as well as cluster
that data into groups that represent the expected phases
present in a structural change as evidenced by the ex-
amples identifying the melting point transitions in tita-
nium and aluminum. The results of the clustering with
or without dimensionality reduction are almost identi-
cal, indicating that large data sets can be reduced safely
without loss of fidelity. The results of the dimensional-
ity reduction with PCA also showed that the majority of
the variance in the data is captured by the first principal
axis, especially by comparison with the second principal
axis. The location of a sample along the first principle
axis is also very well-correlated with the temperature of
the sample and the partitions made by the k-means clus-
tering are almost exactly along said axis. These features
of the unsupervised ML approach to detect structural
changes show that this method is promising for unsuper-
vised classification of structures in physical systems.

In the melting point examples, the reported estimates
for the melting temperatures are close to but not exactly
coincident with the best estimates, though considering
the system size, this is to be expected. The melting tem-
perature estimates tended to be off by about 10% for both
cases (9.21% and 10.67% for titanium and aluminum, re-
spectively) using the geometric averaging scheme, though
the result for titanium is an overestimate and the re-
sult for aluminum is an underestimate. The ranges con-
structed using the standard deviations of the tempera-
tures did indeed capture the true melting temperatures of
the potentials in both cases, though the ranges are rather
large. Various maximum temperatures well beyond the
expected melting point are used to generate MD simu-
lation data and they did not affect the results with any
statistical significance. These results are omitted because
they provided superfluous information, but serve to indi-
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cate that this method is not necessarily sensitive to the
temperature range chosen for the simulation data. As it
stands, this method does not necessarily outperform ex-
isting methods for calculating the melting temperature
in terms of accuracy. It may seem to reduce the impor-
tance of this approach at first sight, but we stress that
these results provide proof of principle for the application
of the ML approach to investigating structural changes
in physical systems. It has the benefits of conceptual
simplicity, ease of application, and speed. More impor-
tantly, it can be applied to complicated systems in which
there is little a priori data available, contrary to many
conventional approaches.

Further improvements on the method may increase
performance, such as improved sampling methods for
procuring data, more appropriate choices of structural
data, and more complex ML methods. For instance, in
the melting point example, Monte Carlo sampling may
prove more appropriate than MD sampling[16] as well as
a different choice of structural information other than the
radial distribution function. It is also worth mentioning
that a larger system size can also improve results. For the
ML analysis, alternative data scaling, nonlinear dimen-
sionality reduction methods, different clustering meth-
ods, or a supervised approach may prove to be more ef-
fective.
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Appendix A: Additional Methods for Identifying
Melting Points

Melting is an important physical phenomenon that has
inspired the development of many MD methods for in-
vestigating said phenomenon. In general, there are three
methods that have been used to determine the melting
curves of materials using MD that will be discussed here
in addition to the single-phase hysteresis method in the
main body.

The first method is the two-phase coexistence method
which involves allowing a coexisting system to evolve to
the temperature at which the free energies of the solid
and liquid phases are identical.[30, 31] This works by
providing an initial guess for the melting temperature.
A large solid system is then equilibrated at that temper-
ature. Half of the atoms in the system are then frozen
while the atoms in the other half are heated to a temper-
ature sufficient for melting. After cooling or rescaling the

velocities of the liquid atoms back to the guessed melt-
ing point, a short NPT equilibration step is run. If the
entire system solidifies or melts during this equilibration
run, then the guess is too far from the melting tempera-
ture and must be revised. After the NPT run, the system
is allowed to evolve for a much longer time in either the
microcanonical (NVE) ensemble or more accurately the
isobaric-isenthalpic (NPH). During this last step, the sys-
tem will melt or solidify while the temperature decreases
or increases towards the melting temperature due to the
latent heat of fusion. From the latter part of the last
step, the average temperature is calculated and used as
a new guess for the melting temperature. After multiple
iterations, the guess will have converged to within uncer-
tainty to the melting temperature; the interface positions
and temperature in the final step will be stable and the
free energies of the phases will be equal. The physical sig-
nificance of this method is well-established and there are
no superheating/supercooling issues as with the hystere-
sis method, but to obtain an accurate melting tempera-
ture this method requires tens of thousands of atoms and
rather long simulation times, which makes the method
much more computationally expensive and inaccessible
to ab initio MD. However, there are methods for using
the coexistence approach with small systems that can
predict the melting point within 100K in systems of more
than 100 atoms that can be used with ab initio MD.[32]

The second method is the free energy method, which as
the name implies involves directly calculating and com-
paring the free energy from the solid and liquid phases
separately. However, for this method, the free energies
of solid and liquid phases are calculated by way of ther-
modynamic integration [33–35] from phases with exactly
known free energies and with carefully chosen paths to
avoid singularity. The melting temperature is obtained
when the difference between the free energies is null and
the results are generally consistent with the coexistence
method.[36, 37] This method does not require particu-
larly large systems as it does not require stabilization of
the two phases simultaneously, so it can be used for both
classical [34] and ab initio [35] MD. However, the ther-
modynamic integration procedure has to be done with
utmost care and for some complicated systems, the ref-
erence crystal phase free energy is unknown.

Lastly, the Z method starts with a perfect lattice that
is allowed to evolve in the NVE ensemble. In principle,
there is a maximum energy ELS that can be granted
to a crystalline system before the system melts.[38] If
the energy surpasses this quantity, then the system will
spontaneously melt at temperature TLS , but due to the
increase in potential energy largely due to the latent heat
of fusion, the temperature will then decrease.[38, 39] The
temperature reached during this step coincides with the
melting temperature TM . The name of this method is due
to the ‘Z’ shape that is traced out by the temperature as
a function of the energy as the temperature rises with
the energy, suddenly drops at the melting point, then
continues to increase. This method can be used with ab
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initio MD.[40]
However, there are two problems with the Z method

involving the waiting time and critical assumptions about
melting.[41] First, before the system melts into a liquid,
it will stay in the solid phase for a short time called
the waiting time that is proportional to both the inverse
square of the overheating excess and the inverse of the
number of atoms.[42] Consequently, the melting results
are dependent on the simulation time such that the sim-
ulation time must be greater than the waiting time. The
second problem is that there is an assumption in the Z
method that melting occurs homogeneously throughout
the system, which is not true in general, especially as
system size and simulation time are increased.[42] These
two problems are in conflict with one another, but the
modified Z method was developed to solve both prob-
lems simultaneously by using a parallel piped simulation
box such that one dimension is effectively infinite com-
pared to the others and seeking a time evolution into the
steady solid-liquid coexistence state.[41]

Appendix B: Principal Component Analysis

Principal component analysis (PCA) is a linear dimen-
sional reduction algorithm using singular value decompo-
sition to project data into a lower dimensional space.[1]
The name is in reference to being an analogue of the
principal axis theorem from classical mechanics. Assum-
ing that the intial data is encoded in a matrix X of shape
(m, n) such that there are m observations for n samples
that may be correlated with one another. The goal of
PCA is to perform an orthogonal transformation into a
new basis set of linearly uncorrelated observations called
principal components such that the first one encompasses
the largest possible variance in the data and each subse-
quent principal component also has the largest possible
variance under the constraint that they are orthogonal
to every preceeding principal component.[22] Thus, the
principal components are guaranteed to be an uncorre-
lated orthogonal basis set. The dimensionality reduction
is accomplished by only considered the first k principal
components necessary to capture the variance in the orig-
inal data set sufficiently well. The mathematical proce-
dure is as follows. The initial data X is of the structure

X =
[
x1 . . . xn

]
; xi =

xi1...
xin

 (B1)

Where each xi contains all of the observations for a
sample. Note that at this point, it is assumed that the
data is in the mean deviation form such that the mean
value for each observation across all of the samples has
been subtracted off each entry. The basis of this data is
the m-dimensional identity matrix. In order to change
the basis of the data, consider the linear transformation

PX = Y where the new matrix Y is the projection of the
data for the samples in X onto a new basis encompassed
by the rows of the matrix P. This is clear when you write
the transformation explicitly.

Y = PX =

p1 · x1 . . . p1 · xn

...
. . .

...
pm · x1 . . . pm · xn

 (B2)

The rows of P are defined to be orthonormal such that
pi · pj = δij . Where δij is the Kronecker delta function.
The covariance matrix of X is defined as

SX =
XXT

n− 1
(B3)

The diagonal entries are the variances of the observa-
tions and the off diagonal entries are the covariances of
the observations. Thus, the covariance matrix describes
the pairwise correlations between all observations. The
goal is to determine the basis set P such that the off-
diagonal elements of the covariance matrix for Y (SY)
are minimized. This effectively removes redundancy in
the observations and requires the diagonalization of SY.
The covariance matrix of Y can be expressed as follows.

SY =
YYT

n− 1
=

(PX)(PX)
T

n− 1
=

PXXTPT

n− 1
(B4)

The matrix XXT can be diagonalized such that it is
equivalent to EDET where the rows of E are the right
eigenvectors and D is a diagonal matrix of the corre-
sponding eigenvalues. The choice of P = ET alongside
the property of orthonormal matrices such as P that
P = P−1 gives the result

SY =
P
(
P−1DP

)
P−1

n− 1
=

D

n− 1
(B5)

This gives the intended result of minimizing the covari-
ances in the data through an orthogonal transformation.
Note that according to the earlier definition of the co-
variance matrix of X, the following is true.

SX =
XXT

n− 1
=

P−1DP

n− 1
(B6)

Thus, an eigenvalue decomposition of the covariance
matrix of X must be performed to determine P, where
the rows of the matrix are the principal components.
They are ordered form least to greatest variance, which
is given by their corresponding eigenvalues. The eigen-
value decomposition is calculated using the singular value
decomposition algorithm.
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In practical terms, PCA is a useful tool for summariz-
ing data. As was stated prior, the approach is fundamen-
tally intended for reducing redundancy in data. When
considering data composed of many observations, one will
often find that the observations overlap greatly in com-
mon properties amongst the samples that they describe.
A naive approach would involve selecting individual ob-
servations that appear to contain the most underlying
information in the data and ignoring the rest. This risks
missing important patterns from the data set by neglect-
ing the possibility of linear combinations of the observa-
tions, however. PCA assuages this situation by providing
a new orthogonal basis set that maximizes the variance
with a linear transformation. The primary weakness of
this method is that it can fail to account for nonlinear
characteristics in the original data.

Appendix C: K-means Clustering

K-means clustering is a method of partitioning scat-
tered data into distinct groups. [19–21] Assume that the
initial data of the i-th data point X is an n−dimensional
vector.

xi =

xi1...
xin

 (C1)

There are N data points in total. The goal of a general
clustering method is to partition these N data points
into k different groups according to some criteria. For
k-means clustering, the each partition is characterized
by the “center of mass” or centroid, Ci, which is an n-
dimensional vector. There are a total of k “center of
masses”, one for each group that the N data points are
partitioned into. The criterion for choosing the centroids
and the assignment of a group label to each data point
is given by minimizing the total “moment of inertia”,

I =

k∑
j=1

∑
xi∈Cj

|xi −Cj |. (C2)

The term |xi−Cj | is defined as the the norm that can
be any metric in general. In this work we defined it as∑

k(xik−Cjk)2. The algorithm used employs an iterative
approach to find the centroids commonly referred to as
the expectation maximization method.[1] This involves
initially choosing the centroids, assigning the data points
to the centroids by the minimization criterion, then up-
dating the centroids according to the expected mean of
the cluster assignments.
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