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We present the equations for wicking in two- and three-dimensional porous media when liquid is
evaporating through the wet front using the Green–Ampt saturated capillary flow model in polar
and spherical geometries. The time-dependent behavior of two-dimensional wicking influenced by
front interface evaporation manifests distinctly from the influence on wicking by normal surface
evaporation. This is shown in several ways; notably, the first order effects of the front evaporation,
as considered via an evaporation-capillary number, is of a lower order in the front position than
normal evaporation. Furthermore, the front evaporation-induced steady states of the front position
and bulk velocity vary significantly with the dimensionality of the flow expansion in the porous
domain; with respect to the dimensionality, the front position decreases while the bulk velocity
increases.

I. INTRODUCTION

Evaporation, gravity, and the geometry of a porous
medium, among numerous physical phenomena, have sig-
nificant effects on capillary flow behavior [1]. These in-
clude reducing or enhancing the rate of flow, modify-
ing the saturation profile, and changing the flow symme-
try [2–4]. At present, the effects of gravity and geometry
on the capillary flow behavior are better understood than
evaporation [5, 6]. For thin porous materials, there are
three modes of evaporation losses; each are related to
the interface through which the evaporation occurs and
are accounted for distinctly in the physical model. The
dominant mode is commonly through the static surface
which is normal to the thin two-dimensional (2D) plane
of the porous medium; we refer to this as normal surface
evaporation and dealt with this extensively in Ref. [7].
The second mode, which is physically identical to normal
surface evaporation but mathematically distinct, occurs
through the external boundaries of the porous medium
which are within the 2D plane and commonly orthog-
onal to the flow; this is side boundary evaporation [8].
Finally, evaporation may also occur at the front of the
flow through the advancing capillary interface between
the wetting and the dry portions of the domain; this is
front interface evaporation, and we investigate its’ effects
on capillary flow in this paper.

Novel technologies are being developed which make
use of capillary flows to drive a liquid reacting solvent
mixture in small microfluidic and fuel cell devices [9–13].
These flows are sensitive to the effects of evaporation over
long timescales, so these microfluidic experiments require
accurate predictive fluid models for the rate of liquid ad-
vancement and bulk flow into the porous medium under
evaporation [7]. The evaporation can also be used as a
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means of controlling the flow rate through the device [10].
Liquid losses through evaporation from capillary flows
should be understood for design of porous containers,
wells, and construction materials, in addition to drying
porous materials [14–16]. Furthermore, analysis of evap-
orative cooling processes requires accurate estimates of
liquid uptake and saturated volume to couple with heat
and mass transfer models for heat loss calculations. In
this paper, we present novel analytical solutions for cap-
illary flow through two- and three-dimensional (3D) ge-
ometries when effected by front evaporation, specifically.

The effect of the 2D polar and 3D hemispherical
geometries on pure saturated wicking are given by
Hyväluoma et al. [17] and Xiao et al. [18], respec-
tively. These solutions, and the one-dimensional (1D)
Lucas–Washburn (LW) equation [19, 20], are compared
in Ref. [1] showing clear variations in the flow behav-
ior with the dimension of the expansion. Phillip [4] also
considers 2D and 3D expanding geometries but for capil-
lary flow with a continuous saturation profile. In all the
studies, it has been observed that a greater dimension-
ality of the expansion reduces the rate of advancement
of the wet front, but increases the volumetric flow into
the porous medium. These effects are further acceler-
ated by evaporation [7]. We are interested in quantifying
these variations under front evaporation beyond that of
the more prevalent normal surface evaporation.

Occurring through physically different interfaces of the
wetted porous domain, the three modes of evaporation—
normal, and side, and front—are introduced in Ref. [8],
where it is shown that the normal and front evaporation
behave differently as a function of time and dimensionless
evaporation-capillary number—the ratio of the evapora-
tion rate to the intrinsic capillary flow rate. All three
evaporation types are relevant to thin porous domains,
which may have flows that are either 1D (constant cross-
section) or 2D (expanding flow) in character. For fully
3D porous domains, the infinitely thin approximation is
invalid and normal surface evaporation is not a physi-
cally relevant model, but side and front evaporation may
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still influence the capillary flow. Normal surface evapo-
ration with capillary flow through porous media of con-
stant cross section was first discussed in Fries et al. [21],
and extended to 2D expanding geometries in Refs. [7, 13].
When the sides of the domain parallel to the flow and the
normal surfaces are sealed off, the corresponding modes
of evaporation cease; then if the far end of the domain
is left open to the atmosphere, vapor loss may still oc-
cur through the wetting interface into the medium it-
self. This gives rise to the front evaporation effect. No
prior experimental or theoretical work on front evapora-
tion from 2D or 3D expanding flows in porous media is
known.
Green–Ampt [22] theory describes the motion of the

liquid into a porous medium by a discontinuous satura-
tion profile [23]. In our Green–Ampt theory-based model,
we assume the porous medium itself does not expand dur-
ing wetting, the evaporation rate is constant, the process
is isothermal, and viscous fingering instabilities may be
ignored [24]. We quantify the effects of front evapora-
tion on the rate of advancement of the wet front and the
fluid uptake by the medium. In particular, we consider
the onset of evaporation effects, where the Green–Ampt
model is most relevant, and the evaporative steady state
to understand how the evaporation comes to dominate
the flow. Also, we compare the 2D normal surface evap-
oration effect found in Ref. [7] with our 2D front evapora-
tion results to consider the relative asymptotic behaviors
under given evaporation-capillary numbers.
The paper is organized as follows: In the next section,

we outline the expressions of capillary wicking with mass
loss by evaporation. Sec. III presents the derivations for
the 2D and 3D expanding flows and other relevant solu-
tions of capillary flow with evaporation. In Sec. IV we
discuss effects of the front evaporation on the flow and
variations in the flow behavior due to dimensionality. Fi-
nally, we summarize the conclusions in Sec. V.

II. GOVERNING EQUATIONS FOR

CAPILLARY FLOW IN POROUS MEDIA WITH

FRONT INTERFACE EVAPORATION

We incorporate evaporation through the wet front into
the governing equations for the Lucas–Washburn method
to analyze the effect on capillary wicking in porous media
[8]. The potential flow formulation of the LW method be-
gins with the conservation of mass equation in the liquid-
filled portion of the domain,

∇ · v = −Q, (1)

where the linear liquid velocity, v, may be reduced
through a given control volume by an evaporation loss,
Q > 0, in that volume. In exposed thin porous media,
we refer to this as normal surface evaporation, and this
evaporation rate is the fractional mass loss rate given in
units of inverse time.

Macroscale flow in porous media is irrotational [25], so
the velocity may be given as the gradient of a velocity
potential, ϕ;

v = ∇ϕ. (2)

Substituting into the conservation equation (1),

∇2ϕ = −Q (3)

for finite normal surface evaporation rates. When there
is no evaporation loss through the normal surface, the
conservation equation is simply ∇·v = 0, and we obtain

∇2ϕ = 0 (4)

for the velocity potential equation where the liquid-filled
domain driven by capillary flow is affected only by front
evaporation.
From the Darcy law, we may relate the internal pres-

sure to the velocity potential, ϕ = −kP/µ, where k is
the permeability, µ is the viscosity, and P is the fluid
pressure. Setting the velocity potential to zero at the
front, the velocity potential at the inlet, ϕ0, is then de-
termined by the magnitude of the pressure change across
the wetted regime, which is the capillary pressure, Pc, so
ϕ0 = −kPc/µ, when the effect of gravity via hydrostatic
pressure is ignored. For the fully-saturated Green–Ampt
flow model, the mass balance equation at the front in-
terface may be expressed by equating the velocity of the
actual front interface to the difference of the natural ve-
locity in the liquid by capillary pressure minus the veloc-
ity reduction due to the evaporation, or

dxf

dt
= [∇ϕ|

xf
− qfnxf

, (5)

where xf is the position of the front at time, t; qf is the
rate of loss through the front interface; and nxf

is the
outward vector normal to the front interface. The side
boundaries, xs, are insulated from the atmosphere, so
there is no velocity flux, or [∇ϕ|

xs
·nxs

= 0. The rate of
liquid entering the medium, U , which we also refer to as
the bulk velocity, is the integral of the velocity through
the inlet over the inlet cross-section;

U = −
¨

xi

[∇ϕ|
xi

· nxi
dxi. (6)

III. CAPILLARY DRIVEN FLOW WITH

EVAPORATION THROUGH VARIED INLET

AND DOMAIN SHAPES

A. Expanding flow through a semicircular inlet

with evaporation

Two-dimensional expanding flows in porous media are
described most simply by polar coordinates as given
by [26]

x = r cos(θ), (7a)

y = r sin(θ). (7b)
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FIG. 1: Saturated capillary flow from a reservoir through a
semicircular inlet of radius r0 expanding two-dimensionally at
velocity vf into a dry porous domain described by polar co-
ordinates as given in Eq. (7). Evaporation is occurring either
through the wet front interface (located at rf ) at a rate of
qf or through the normal surface at rate Q when the porous
medium is open to the air.

Figure 1 illustrates the coordinate system overlaying the
wetting porous domain. The thickness of the porous
medium in the z-direction, δ, is sufficiently small that
we consider only behavior in the plane. The liquid en-
ters the domain through a semicircular inlet of radius, r0,
and the domain is saturated with liquid out to the front
radius, rf . We first consider fluid being lost through the
front by evaporation with a rate of qf , but we will also
briefly consider the case of evaporation through the nor-
mal surface with a rate of Q dominating the flow. This
system only needs to be analyzed by changes in the vari-
ables along the line of the radial coordinate because the
flow is not influenced in the angular direction by any
other forces such as side evaporation or gravity.

1. Front Interface Evaporation

To consider the effect of front evaporation, per Eq. (4)
the mass of the liquid is conserved within the wetted
porous domain, and in polar coordinates. the radial
Laplace equation is

∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
= 0. (8)

The boundary conditions, ϕ(r=r0) = ϕ0 and ϕ(r=rf ) =
0, account for the capillary force. The corresponding
velocity potential is

ϕ̃ = − ln(r̃f )− ln(r̃)

ln(r̃f )
, (9)

where the dimensionless variables are defined by ϕ̃ =
(µ/kPc)ϕ and r̃ = r/r0. Using the expression P =
−µϕ/k, this equation is also equivalent to the negative

of the dimensionless fluid pressure, P̃ = P/Pc.

The internal liquid velocity in the radial direction is
found from the derivative of the potential, Eq. (2),

ṽr =
1

r̃

1

ln(r̃f )
, (10)

where the dimensionless velocity is ṽ = (µr0/kPc)v. As
defined in Eq. (5), substituting for the front radius and
reducing the velocity by the front evaporation rate, we
get the front velocity,

ṽf =
dr̃f

dt̃
=

1

r̃f

1

ln(r̃f )
−Nf, (11)

where t̃ = (kPc/µr
2
0)t. The last term is the dimensionless

front evaporation rate and is a form of the evaporation-
capillary number discussed in Ref. [7]. It is defined

Nf =
µr0qf
kPc

, (12)

where the subscript ‘f’ refers to the front interface. This
dimensionless number is the ratio of the rate of evapo-
ration to the characteristic rate of flow due to capillary
wicking. We will usually refer to it simply as the evap-
oration number or as the front evaporation number in
contrast to other quantities.
The equation for the front (11) may be put into integral

form

ˆ r̃f

1

r̃′f ln
(

r̃′f

)

1−Nfr̃′f ln
(

r̃′f

) dr̃′f = t̃, (13)

but the integral in the left hand side is not analytically
tractable. However, to analyze the onset of front evapo-
ration on the wicking rate, we may expand the integral
to the first order evaporation term;
[

1

2
r̃2f ln(r̃f )−

r̃2f − 1

4

]

+Nf

{

r̃3f [ln(r̃f )]
2

3
−

2r̃3f ln(r̃f )

9
+

2(r̃3f − 1)

27

}

+O
(

Nf
2r̃4f [ln(r̃f )]

3
)

= t̃.

(14)

In the absence of evaporation, orNf = 0, Eq. (14) reduces
to the known relation of 2D radial capillary flow as given
by equation (7) in Hyväluoma et al. [17]. For small values
of the evaporation number, the highest order terms in the
radius will come to dominate the asymptotic behavior,
and we may simplify to

1

2
r̃2f ln(r̃f ) +

1

3
Nfr̃

3
f [ln(r̃f )]

2 ≈ t̃. (15)

Conversely, for the steady state induced by the evapo-
ration, indicated by the ‘ss’ subscript, the front velocity
equation (11) reduces to

r̃f, ss ln(r̃f, ss) = 1/Nf, (16)
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wherein the front evaporation fully dominates the sys-
tem.
Substituting the velocity at the inlet determined from

Eq. (10) into Eq. (6), we find the dimensionless bulk ve-
locity is

Ũ =
π

ln(r̃f )
, (17)

where Ũ = (µ/kPcδ)U . This is valid for front evaporation
because that effect is accounted for by the front velocity
equation only and therefore does not directly affect the
bulk velocity.

2. Normal Surface Evaporation

In the results, we will compare the time-dependent be-
havior of front evaporation with normal surface evapo-
ration to consider distinctions in their phenomenological
manifestations. The model of two-dimensional capillary
flow with normal evaporation was first derived by Liu,
et al. [13] and was advanced in Ref. [7] where the results
were presented in a dimensionless formulation. In the
process of non-dimensionalizing the system, the normal
surface evaporation-capillary number was shown to be

Nn =
µr20Q

kPc
, (18)

where the ‘n’ subscript indicates the quantity is specifi-
cally for the normal surface.
When a physical system includes both front and nor-

mal surface evaporation, the normal surface evapora-
tion number, Nn, will be significantly greater than the
front evaporation number, Nf. This arises from the fact
that δQ > qf because qf is into the porous medium, so
Nn > (r0/δ)Nf. Furthermore, the aspect ratio is assumed
to be large, so for a thin system that includes both effects
Nn > Nf. For this reason, we primarily compare the two
evaporation effects asymptotically.
By solving Eq. (3), the implicit analytical solution for

the front position with time was given in equation (12)
of Ref. [7]:

ln

{

1− 1

4
Nn

[

r̃2f ln
(

r̃2f
)

−
(

r̃2f − 1
)]

}

= −Nnt̃, (19)

Similar to Eq. (13), asymptotics were derived for the
front position equation in Ref. [7] which will be revisited
in this paper.

B. Expanding flow through a hemispherical inlet

with front evaporation

We next consider a porous medium of a half-space do-
main with a hemispherical inlet of radius r0, as shown in
Fig. 2, which is the simplest example of 3D flow. This

vf
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z

r0

rf

θ

r

ψ

qf

FIG. 2: Three-dimensionally expanding wicking from a hemi-
spherical inlet into a dry porous domain with front evapo-
ration loss, qf , described by spherical coordinates given in
Eq. (20). The volume is rotated symmetrically around the
z-axis.

system is described by spherical coordinates as defined
by [26]

x = r sin(θ) cos(ψ), (20a)

y = r sin(θ) sin(ψ), (20b)

z = r cos(θ). (20c)

Evaporation again occurs through the front at a rate qf ,
where the capillary force is driving the fluid motion and
the two phenomena are only affecting the flow along the
local radial direction.
The spherical Laplace equation for the velocity poten-

tial within the wetted region is

∂2ϕ

∂r2
+

2

r

∂ϕ

∂r
= 0, (21)

and the capillary boundary conditions are ϕ(r=r0) = ϕ0

and ϕ(r=rf ) = 0. The resulting velocity potential is

ϕ̃ = − r̃f − r̃

r̃f − 1

1

r̃
. (22)

Differentiating the potential, the velocity in the radial
direction is

ṽr =

(

r̃f
r̃f − 1

)

1

r̃2
. (23)

When we again include the front evaporation effect,
Eq. (5), the front velocity is

ṽf =
1

r̃2f − r̃f
−Nf. (24)

In integral form,

ˆ r̃f

1

r̃′2f − r̃′f
1−Nf(r̃′2f − r̃′f )

dr̃′f = t̃. (25)
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Expanding the integral in powers of r̃f and Nf, we find,

(

r̃3f
3

−
r̃2f
2

+
1

6

)

+Nf

(

r̃5f
5

−
r̃4f
2

+
r̃3f
3

− 1

30

)

+ O
(

Nf
2r̃7f
)

= t̃.

(26)

Without evaporation, this reduces to the implicit relation
for 3D capillary flow given in equation (8) of Xiao et

al. [18]. The early-time, first-order perturbation effect of
the front evaporation for small Nf is

1

3
r̃3f +

1

5
Nfr̃

5
f ≈ t̃. (27)

From Eq. (24), we find the front evaporation steady state
is

r̃2f, ss − r̃f, ss = 1/Nf, (28)

so for 3D flows with Nf ≪ 1, r̃f, ss ≈ 1/
√
Nf .

Unlike with the front velocity equation in polar coor-
dinates, the integral in Eq. (25) is analytically tractable,
and the implicit solution for the capillary flow with front
evaporation is

2
√

4/Nf + 1

[

tanh−1

(

1
√

4/Nf + 1

)

− tanh−1

(

2r̃f − 1
√

4/Nf + 1

)]

+Nf (r̃f − 1) = −Nf
2t̃.

(29)

Expanding Eq. (29) in powers of Nf yields the identical
series given in Eq. (26). Also, when the term within the
parenthesis of the second tanh−1 function is set to one,
we recover Eq. (28), which indicates that the solution will
correctly approach the asymptotic limit of the steady-
state.
The bulk velocity is determined from the ra-

dial velocity at the inlet and Eq. (6) via Ũ =

(1/δ̃)
´ 2π

0
dψ
´ π/2

0
r̃f/(r̃f − 1) sin(θ) dθ and simplifies to

Ũ =
2π

δ̃

r̃f
r̃f − 1

. (30)

The aspect ratio of the thin planar domain, 1/δ̃ = r0/δ,
arises for this 3D case due to the change in inlet shape
from flat to hemispherical through the original definition
of the bulk velocity. For a steady state with Nf ≪ 1,
the bulk velocity is Ũss ≈ (2π/δ̃)(1+

√
Nf ). Here we ob-

serve again the finite capillary steady state of the three-
dimensional system [1, 18].

C. Flow through a medium of constant

cross-section with evaporation

Before proceeding to analyze the solutions for two- and
three-dimensional flow, we must review the prior results

vf

y

x
a−a

yf

Q

qf

FIG. 3: Wicking through a medium of constant cross-section
into a dry porous domain with front evaporation, qf , or nor-
mal surface evaporation, Q.

for capillary flow in one-dimension with evaporation to
facilitate comparison amongst all three geometries. We
refer to this as the 1D flow or the 1D geometry to distin-
guish it from the 2D and 3D cases above.
The effects of normal surface and front evaporation

on capillary flow through a rectangular constant cross-
sectional porous medium were covered in Ref. [8]. Fig-
ure 3 illustrates the geometry for the two systems, where
the effects of each form of evaporation is considered sep-
arately. The porous medium maps onto standard Carte-
sian coordinates, where the inlet has width 2a along the
x-axis, the front is moving in the positive y-direction, and
the front position is denoted by yf .

1. Front Interface Evaporation

The front position equation for 1D capillary flow with
front evaporation may be derived by the same procedure
as above, and is given by equation (46) of Ref. [8];

Nfỹf + ln |1−Nfỹf | = −Nf
2t̃. (31)

Incidentally, this solution is identical in form to the equa-
tion of capillary rise against restraining gravity. Similar
to Eq. (29), the steady-state is reached when the terms in
the logarithm equal zero (the function singularity), and
so

ỹf,ss = 1/Nf, (32)

which constitutes an evaporative analogue to the Jurin
height [6]. (See also equations (37) and (54) in Ref. [8].)
As we have discussed with Eq. (17), the bulk velocity

does not explicitly include the front evaporation and is
thus the simple 1D capillary flow bulk velocity,

Ũ =
2

ỹf
; (33)

this is shown with equation (49) of Ref. [8].
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2. Normal Surface Evaporation

The 1D normal surface evaporation solution was first
given in Fries, et al. [21] which additionally included re-
straint by gravity. Their solution reduces to

ln

(

1− 1

2
Nnỹ

2
f

)

= −Nnt̃, (34)

which may also be derived from Eq. (3) as shown by
equation (31) of Ref. [8]. Finally, the steady-state front

position is given by ỹf,ss =
√

2/Nn .

IV. RESULTS AND DISCUSSION

A. Time dependence of penetration length in the

presence of front evaporation

Figure 4 shows the position of the front with time, or
the front behavior, for capillary flows with front evapo-
ration. The front position for the 2D radially-expanding
flow given by Eq. (11) is shown in Fig. 4a, where the evap-
oration causes the advancement to decrease to a steady
state for all values of Nf. Furthermore, the 2D front
expansion without evaporation (Nn = 0) advances very
nearly in the shape of a sideways parabola; only a loga-
rithmic deviation is expected as indicated in Eq. (11). In
Fig. 4b we observe that for the 3D expanding flow given
by Eq. (24) the front does not penetrate as deeply as the
2D case. Furthermore, the front does not significantly
advance beyond the inlet unless Nf < 1. At the limit of
no evaporation, Nn = 0, the front position function con-
forms to the inverse cubic dependence on time, r̃f ∼ 3

√
t ,

as predicted in Eq. (27).
Figure 5 compares the time dependent behavior of the

expanding 2D front similar to Fig. 4a but with vary-
ing evaporation numbers for both front and normal sur-
face evaporation. The front evaporation is computed
via Eq. (11), and the normal surface is determined by
Eq. (19), then both are plotted in logarithmic form. To
consider the real distance the front has moved from the
inlet instead of from the origin of the coordinate system,
we define the front penetration length, ∆r̃f = r̃f − 1,
as the new variable from which we consider motion of
the front. The unity term comes from the dimensionless
inlet radius, r̃0 = 1. This is particularly useful for com-
paring the motions of the fronts at early times, where
the higher dimensions may be asymptotically similar to
one-dimensional flow.
We observe in Fig. 5 significant distinctions between

front and normal surface evaporation as to when the
evaporation begins to clearly influence the flow. For high
evaporation numbers, Nf = Nn > 1, the front evapo-
ration begins to influence the flow sooner and reaches
a steady state earlier than normal surface evaporation.
The reverse occurs for low evaporation numbers, Nf =
Nn ≪ 1.
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FIG. 4: Front position, r̃f , versus time, t̃, for varying evapora-
tion number, Nf. (a) 2D flow through circular inlet described
by polar coordinates in Figure 1. (b) 3D flow through hemi-
spherical inlet described by spherical coordinates in Figure 2.

Let’s first consider the onset of the evaporation effect
for the early times and high evaporation numbers, il-
lustrated by Nf = Nn = 10, and analytically contrast
the front evaporation effect with that of the normal sur-
face evaporation. The two-dimensional expanding geom-
etry of the flow does not have a significant effect when
the propagation has advanced much less than the inlet
size, so in this regime, we may consider the simpler one-
dimensional solutions.

In the 1D-like geometry, or a medium of constant
cross-section, the ỹf variable is also the front penetra-
tion length. The simplest relation of 1D capillary flow,
the Lucas–Washburn equation, indicates the front po-
sition is proportional to the square root of the time, or
ỹ2f ∼ t̃. The asymptotic relation for the onset of the front
evaporation effect on 1D capillary flow may be derived
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FIG. 5: Logarithmic comparison of the front penetration
length, ∆r̃f , with time, t̃, for 2D expanding flows between
front and normal evaporation effects by varying values of the
front evaporation number, Nf, and the normal surface evapo-
ration number, Nn.

by expanding Eq. (31);

1

2
ỹ2f

(

1 +
2

3
Nf ỹf

)

≈ t̃. (35)

In effect, this shows how the front advancement rate be-
gins to deviate from the LW equation. The first-order
term for the front evaporation is technically cubic in the
front length, and therefore deviates from the ideal by
the front length to the first power. However, when we
consider the asymptotic relation for the normal surface
evaporation, the first-order evaporation term for the front
length is quintic,

1

2
ỹ2f

(

1 +
1

4
Nn ỹ

2
f

)

≈ t̃, (36)

and so the deviation from LW is determined by the length
to the second power. This expression is given in equa-
tion (38) of Ref. [7] as an expansion of Eq. (34). From the
coefficients and the exponents of the evaporation terms,
we ascertain that the front evaporation will have stronger
deviations from capillary flow (the LW Eq.) sooner than
normal evaporation for N ≥ 1. For low evaporation num-
bers, however, due to the higher-order spatial effect of the
normal surface evaporation, it both onsets sooner and
more rapidly than for front evaporation, as we observe in
Fig. 5.
Physically, this difference is due to the surface area

through which the front evaporation occurs not chang-
ing as the front position advances (effectively zero-
dimensional behavior), while the surface area for nor-
mal surface evaporation is growing linearly (1D-like be-
havior). Thus, normal evaporation progressively gains a
larger surface area for evaporation to occur and through
which the mass lost per time increases, while the the mass
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FIG. 6: Contour plot of front penetration length, ∆r̃f , over
evaporation number, Nf, and time, t̃. Dashed black lines in
the lower left and upper right of each figure correspond to
Nf

2 t̃ = 0.01 and Nf
2t̃ = 10, respectively. The lower left sec-

tion is primarily dominated by the capillary flow, and the
upper right has reached evaporative steady state. (a) 2D flow
through circular inlet. (b) 3D flow through hemispherical in-
let.

loss from the liquid phase due to front evaporation is a
constant.
To visualize the onset of the initial evaporation effect

and the steady state, Figure 6 presents contours of the
front penetration length as a function of both evapora-
tion number and time. These figures are computed from
Eqs. (11) and (24) for the 2D and 3D radial expansions,
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respectively. The lines of Nf
2t̃ = 0.01 and Nf

2t̃ = 10
are shown to indicate the approximate separation of the
regimes of the flow behavior between capillary dominated
flow, evaporative steady state, and the coupled transition
of evaporation-influenced capillary-driven motion. This
stems from the time portion of the solutions being most
naturally expressed with Nf

2t̃ in the general solutions for
the front motion as illustrated in the right hand sides of
Eqs. (31) and (29) for 1D and 3D geometries, respec-
tively. This is in contrast to normal surface evaporation,
where the phenomenology is constrained by the direct
product of the evaporation number and time, Nnt̃, as
suggested in Eqs. (34) and (19) for the 1D and 2D ge-
ometries, respectively. This nature of the time scale of
effects of normal surface evaporation is further detailed
in Refs. [8] and [7]. Thus, we find that the product Nf

2t̃
renders an easy estimate of the flow dominance of the
front evaporation effect on the capillary flow.
Figure 6a shows the flow behavior regimes for the wick-

ing into a 2D expansion with front evaporation. At high
evaporation numbers, the values are consistent with the
purely 1D flow case as we noted above, where both the
onset of evaporation and the end of the front motion are
governed by the product, Nf

2t̃. As derived in Eq. (15) for
2D radial expansion, the lowest order effect of the evapo-
ration, and highest order effect in space for capillary flow
(which is dominant for large expansions), is described by

1

2
r̃2f ln(r̃f )

[

1 +
2

3
Nf r̃f ln(r̃f )

]

≈ t̃. (37)

As was the case for 1D evaporation, the lowest-order
evaporation effect on the front length by the front
evaporation—the r̃f ln(r̃f ) term—differs from normal sur-
face evaporation by being one polynomial order less
[r̃2f ln(r̃f )], as we see in

1

2
r̃2f ln(r̃f )

[

1 +
1

4
Nn r̃

2
f ln(r̃f )

]

≈ t̃, (38)

which may be derived from Eq. (19) as shown with equa-
tion (39) of Ref. [7]. Thus, between each of the 1D and
2D cases, it appears that the first-order evaporation term
is one polynomial order lower for the front evaporation
than for the normal evaporation.
Also, like with the 1D case, this may be physically re-

flective of the fact that the surface area through which
the front evaporation occurs is only growing linearly (1D-
like) with the front advancement, while for the normal
evaporation, the area is growing quadratically (2D-like).
In regards to the geometry, this means the front evapo-
ration generally begins to affect the flow sooner for 2D
than for 1D expansions, and the steady state is reached
a little more rapidly in the 2D expanding flow domains.
In Figure 6b we plot the contours of the front penetra-

tion for the 3D spherical expansion. First, recall Eq. (27),
which gives the power law for 3D radial capillary flow
with front evaporation;

1

3
r̃3f

(

1 +
3

5
Nf r̃

2
f

)

≈ t̃. (39)

In the figure, we notice stronger differences in the lower
evaporation and long-time regime of the flow (the bottom
right corner). The vertical contour lines indicating the
capillarity-dominated regime are more spread out due to
the slower advancement of the front in the large time
limit, as suggested analytically by the r̃3f term, which is
higher-order than the capillary terms for both 1D and
2D flows, as shown in Eqs. (35) and (37), respectively.
This results in the nearly-vertical contour lines contact-
ing Nf

2t̃ = 0.01 already having begun to curve before
reaching the dashes. Such deviations indicate the evapo-
ration effect has already set in, and also for this param-
eter region of the 3D system, Nf

2 t̃ does not accurately
predict the transition region from capillary-driven flow
to evaporation steady state. We observe that the lowest-
order evaporation term deviates from the dominant cap-
illary term by r̃2f , whereas it only differed linearly, r̃f ,
for the 1D case. This contributes to the stronger low-Nf

evaporation effect onset from the 1D-like flow and sug-
gests that for 3D expanding flows with a very low front
evaporation number, the evaporation transition regime
is determined by Nf

nt̃ with n < 2. Finally, the surface
area of the interface through which the front evaporation
occurs is now growing for 3D expansions quadratically
(2D-like), so the evaporation rapidly becomes more sig-
nificant as the front advances.

B. Rate of liquid absorption

We consider the flow rate into the porous medium as
a function of time with varying evaporation numbers in
Figure 7. Here and for all later figures, the bulk velocity
is normalized to the same inlet area for all dimensional-
ities so that the bulk velocity relations are comparable
at early-time and high evaporation number asymptotics.
The new normalized bulk velocities are defined for each
dimensionality by Ũ∗

1D = Ũ/2 for flow in a medium of

constant cross section; Ũ∗
2D = Ũ/π for flow through a

circular inlet into a thin half-plane; and Ũ∗
3D = (δ̃/2π)Ũ

for flow through a hemispherical inlet into a half-space.

Using Eq. (17), the 2D bulk velocity behavior is shown
in Fig. 7a, where we see the flow deviates from the 1D in-
flow rate after dimensionless times greater than unity. In
addition to the capillarity and dimensionality, the evap-
oration determines the magnitude of the bulk velocity,
resulting in a higher steady state value. In Fig. 7b, where
the 3D bulk velocity given by Eq. (30) is plotted for vary-
ing Nf, we see the usual finite steady state for pure capil-
lary flow [1] which causes the evaporation to have a nearly
negligible affect on the bulk velocity for Nf < 0.01. For
high values of Nf, the normalized bulk velocity is slightly
greater than for the 1D and 2D geometries.
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FIG. 7: Inlet-normalized bulk velocity, Ũ∗, versus time, t̃,
for expanding flows with evaporation from the front. Liquid
absorption rate through (a) 2D semicircular inlet and (b) 3D
hemispherical inlet.

C. Front evaporation steady states for varying

expansion dimensionality

As we have observed with sufficiently long times, the
capillary flow reaches a steady state due to the front evap-
oration; Figure 8 plots the magnitude of the steady state
variables as a function of the evaporation number. In Fig-
ure 8a, we see the evaporative steady state in a constant
cross-sectional medium (i.e. 1D) is determined trivially
by

ỹf,ss = 1/Nf, (40)

as given in Eq. (32). In other words, for wicking in 1D
domains the steady state front position simply equals the
inverse of the front evaporation number. In the 2D sys-
tem, the steady state front position is given implicitly in

10−4 10−3 10−2 10−1 100 101 102

Nf
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10−1

100
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ỹ
f
,
∆
r̃ f
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(a)
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Ũ
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(b)

FIG. 8: Steady state variation of front penetration and bulk
velocity with dimensionality over Nf. Dimensionalities are
represented by wetting porous domains of constant cross sec-
tion (1D), circular inlet into half-plane (2D), and hemispher-
ical inlet into half-space (3D). (a) Front penetration length
vs. evaporation number. (b) Inlet-normalized bulk velocity
vs. evaporation number. Bulk velocity is normalized for all
inlet sizes.

Eq. (16) which may be formulated as

(∆r̃f, ss + 1) ln(∆r̃f, ss + 1) = 1/Nf. (41)

For high evaporation numbers, we may expand the left
hand side; ∆r̃f, ss+∆r̃2f, ss/2 ≈ 1/Nf, which also matches
the 1D case since ∆r̃f, ss < 1 in this region. In the low
evaporation region, the 2D steady state deviates from
the 1D as the ln(∆r̃f, ss + 1) term grows with increasing
∆r̃f, ss.
As shown in Figure 8a in the low evaporation limit,

the deviation of 3D flow from the 1D steady state front
position is related approximately to the inverse square
root of the evaporation number for small values of Nf, or
∆r̃f, ss ∼ 1/

√
Nf . This was predicted by Eq. (28), which



10

exactly reformulates in terms of the front penetration
length to

∆r̃2f, ss +∆r̃f, ss = 1/Nf (42)

for all evaporation numbers. This relation clearly gives
the observed 1D-like behavior with high evaporation
numbers for 3D flows. Furthermore, this suggests that
for small to intermediate length expansions (∆r̃f, ss ≤ 1
in Figure 8a) the quadratic term for the 3D case is nearly
twice that of the 2D case. So the steady-state front pen-
etration the 3D case deviates increasingly from the 1D
case by about twice as much as the 2D case for high
evaporation numbers.
Figure 8b shows the steady state bulk velocity versus

the evaporation number for flows of each dimensionality.
From Eqs. (32) and (33), the bulk velocity for 1D steady
state front evaporation in inlet normalized notation is

Ũ∗
1D,ss = Nf, (43)

which matches the trend observed in the figure. The
2D steady state bulk velocity cannot be expressed by
transcendental functions for the low evaporation number
asymptotics due to the non-invertible r̃f ln(r̃f ) term in the
steady state front position. We see the 2D trend deviates
from the 1D with a significantly greater steady state for
Nf < 1. From Eq. (30), Ũss for the 3D geometry goes
to a constant with respect to Nf due to the 3D intrinsic
finite capillary steady state. For finite Nf less than 0.1,
this asymptotic behavior is

Ũ∗
3D,ss ≈ 1 +

√

Nf . (44)

This deviation brought by the evaporation number is
small in the low evaporation number region of Fig. 8b.
Thus, for the 3D domains, front evaporation does not sig-
nificantly increase the flow rate through the inlet relative
to the intrinsic flow due to the geometry itself.

V. CONCLUSIONS

Front evaporation affects the behavior of capillary
flows in two- and three-dimensional porous domains in
distinct ways from normal surface evaporation. We have
shown that for small evaporation numbers and large ex-
pansions the evaporation onset on the 2D front behav-
ior may be implicitly approximated with the truncated
power series r̃2f ln(r̃f ) + 2Nfr̃

3
f [ln(r̃f )]

2/3 ∼ t̃, and for the

3D case, the power series is r̃3f + 3Nfr̃
5
f /5 ∼ t̃. The

first-order affect of the evaporation in each front position
power series for front evaporation are one polynomial or-
der less than the equivalent power series for normal sur-
face evaporation, which indicates the normal evaporation
affect is stronger for small values of the two evaporation
numbers, Nf and Nn. Conversely for large evaporation
numbers, the front evaporation affects the flow at an ear-
lier time than normal evaporation. These power series

also indicate that front evaporation affects the front mo-
tion sooner for 3D than 2D geometry.

Generally, the onset of the evaporation effect from cap-
illary flow—the flow transition region—for front evap-
oration is governed by the product of the evaporation
number squared and the time; Nf

2 t̃, unlike the normal
surface evaporation where the transition region is gov-
erned by Nn to the first power. As an estimate of the
regions of phenomenological dominance, when the dimen-
sionless time has become greater than 10/Nf

2 the system
will have reached evaporative steady state. Similarly, for
flow analysis timescales about three orders of magnitude
smaller or less, the process remains dominated by cap-
illary flow. However, for very low evaporation numbers
some deviation occurs in the 2D, and more noticeably
the 3D, expansions such that the evaporation influences
the flow earlier than this estimate.

Finally, we showed the high accuracy of given power
laws approximating the steady state dependance of front
length and bulk velocity as a function of the evapo-
ration number. While in the steady state the front
penetration is proportional to the inverse evaporation
number, ỹf,ss = 1/Nf, for the 1D flow, it deviates to
∆r̃f, ss ≈ 1/

√
Nf for small evaporation numbers with

3D flow. The steady state net liquid flow rate into the
medium is directly proportional to the front evaporation
number for 1D flows, Ũ∗

1D,ss = Nf. However, the 3D bulk
flow goes quickly to the 3D geometric steady state with
a deviation by the square root of the evaporation num-
ber in the low evaporation limit, or Ũ∗

3D,ss ≈ 1 +
√
Nf ,

which highlights the necessity of accounting for the 3D
geometry in steady-state analysis with front evaporation.

Further work remains in the development of the theory
of front evaporation affects on capillary wicking. To the
authors’ knowledge, no published experiments have been
conducted on either of the systems analyzed in this pa-
per. In particular, the front evaporation rate versus sat-
uration relation is unknown and should be determined
empirically before further theory or computation may
be done. Earth’s gravity is also a likely technical chal-
lenge to experiments due to the significant deformation
of the front shape which gravity may cause before the
front evaporation measurably influences the flow. Fur-
thermore, capillary condensation in the porous medium
may diffuse the wetting front such that Green–Ampt the-
ory may hold for a limited time under such front evap-
oration [16, 27]. Thus, the phenomenon of front evap-
oration during wicking should be further investigated
through the framework of partially saturated capillary
wetting via Richards equation coupled with a Brooks–
Corey model to accommodate the great variety of empir-
ically observed diffuse wetting fronts and general satura-
tion profiles [23, 28]. This future analysis may be carried
out by continuum simulations of partially saturated flow
or three-dimensional pore-scale computational models of
two phase flow.
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