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Abstract

A model for shear band width as a function of applied strain is proposed that describes shear

bands as pulled fronts which propagate into an unsteady state. The evolving structural state

of material ahead of and behind the front is defined according to effective temperature shear-

transformation-zone (ET-STZ) theory. The model is compared to another that is based on dimen-

sional analysis and assumes shear band dynamics is governed by the strain rate within the shear

band. These models are evaluated on three material systems: a two-dimensional binary Lennard-

Jones glass, a Cu64Zr36 glass modeled using an embedded atom method (EAM) potential, and

a Si glass modeled using the Stillinger-Weber potential. Shear bands form in all systems across

a variety of quench rates and appear to either broaden indefinitely or saturate to a finite width.

The dimensional analysis based model appears to apply only when band growth is unconstrained,

indicating the dominance of a single time scale in the early stages of shear band development.

The front propagation model, which reduces to the dimensional analysis model, applies to both

constrained and unconstrained band growth. This result suggests that competition between the

rate of shear-induced configurational disordering and thermal relaxation sets a maximum width

for shear bands in a variety of material systems.

1



I. INTRODUCTION

Strain localization, also known as shear banding, is a deformation mechanism present in

a variety of amorphous systems including gels [1], granular media [2] and metallic glasses [3].

Despite the ubiquitous nature of shear bands, their phenomenological origins remain largely

unknown [4]. Strain localization is often the precursor to brittle failure in systems such as

metallic glasses, which limits the utilization of these materials as structural components [4].

In spite of their brittle nature, metallic glasses often have many desirable properties such

as high strength-to-weight ratios and corrosion resistance [5]. By understanding how shear

bands form, we could potentially engineer metallic glasses that avoid strain localization.

Unfortunately, attempts to characterize the nature of shear bands in experimental systems

have been limited by the small length and short time scales over which they form [3].

Simulation of shear bands presents an alternative method of studying this phenomenon.

In this study we propose a model for the time-evolution of the width of a shear band

as a function of applied strain in simulated glassy systems driven at constant strain rate

in simple shear. This model assumes that shear bands are pulled fronts which propagate

into an unsteady state. Effective temperatures characterize the structural states of material

ahead of and behind the front, and these states evolve with strain according to effective

temperature shear-transformation-zone (ET-STZ) theory. We refer to this model as the

shear-transformation-zone pulled front (STZ-PF) model and compare it to an existing model

derived from dimensional analysis. The second model, originally developed by Jagla [6],

assumes a single material length scale and that the strain rate within the shear band controls

the time scale of material response. These assumptions result in a shear band width that is

proportional to the square root of strain. We refer to this model as the shear band strain

rate (SBSR) model.

We test the applicability of the SBSR and STZ-PF models to three simulated systems: a

two-dimensional binary Lennard Jones glass, a three-dimensional embedded atom method

(EAM) Cu64Zr36 glass and a three-dimensional Stillinger-Weber Si glass. Three quench du-

rations are used for each system yielding nine configurations. We generate multiple replicas

of each configuration to reduce sample-to-sample variation. The geometry of the simulation

and applied load is chosen such that shear bands form in all configurations. Two phenom-

ena are observed: unbounded growth, where shear bands eventually envelope the entire
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simulation cell; or bounded growth, where bands broaden to a fixed width.

A number of alternative frameworks for the deformation of amorphous solids exist and

are able to recreate some aspects of the elastoplastic response shown in our simulations [6–9].

Some of these models [7, 9] bear a number of similarities with ET-STZ theory, most notably

the invocation of a dynamically varying “fictive temperature.” Where these models differ

is in the particulars of how the structural state is defined and the resulting details of the

dynamical equations.

This paper is arranged as follows. In the Theoretical Background section, we introduce

the concepts of effective temperature and shear transformation zones. We then detail the

derivation of the linear spreading speed of a moving front propagating into an unsteady

state based on an explicit form of the structural evolution state taken from STZ theory. In

the Methods section we outline how model systems were prepared and deformed as well as

the procedure used to determine the width of the shear band. In the Results section we fit

our models to simulation data and comment on the fit parameters they generate. Lastly, in

the Discussion section we summarize our work and comment on future directions.

II. THEORETICAL BACKGROUND

A. The shear band strain rate (SBSR) model

In deformed systems where strain localization dominates the response, Jagla proposed

that a simple geometrical relationship is observed between the global strain rate, γ̇, and the

strain rate within the shear band, γ̇b [6]:

γ̇b =
L

w
γ̇ (1)

In this expression L is the length of the simulation cell perpendicular to the direction of the

applied load and w is the width of the shear band.

If one assumes that the strain rate is the dominant time scale in such simulations we can

justify the existence of a simple relationship between the rate of broadening of the shear

band, ẇ, and the global strain rate:

ẇ =
L
2
γ̇b (2)
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where we introduce another length scale L which dictates the magnitude of broadening for

a given configuration driven at constant strain rate. We surmise that this is a material

length scale, with some dependence on the internal structure of the glass. A factor of 1/2 is

included in Eq. 2 for convenience.

Taken together, these equations result in a simple analytic expression for the predicted

width of a shear band as a function of applied strain:

w =
√
w0

2 + LL(γ − γ0) (3)

where w0 and γ0 are the respective band width and strain at shear band nucleation. We will

refer to this model as the shear band strain rate (SBSR) model. The SBSR model suggests

that, at sufficiently large applied strain, the width of the shear band is proportional to the

square root of the applied strain, w ∝ γ1/2.

In the SBSR model the physics of the evolving glass is expressed using a single empirically

determined parameter L. This limits our ability to intuit response for a variety of glassy

systems (metallic, covalent, etc.) or to draw connections between the response and the

internal structure of a particular glass. To overcome these limitations, we seek an alternative

expression for shear band broadening which incorporates the physics of ET-STZ theory,

where a strong connection is drawn between material structure and response.

B. The shear-transformation-zone pulled front (STZ-PF) model derivation

We propose an alternative framework where band broadening is modeled as a pair of

moving interfaces which separate jammed and flowing material inside and outside of the

shear band. We assume that the leading edge of each interface, or front, moves outward

at the linear spreading velocity v∗. This velocity can be determined by linearizing the

dynamical equations describing the state of material ahead of the front about the unsteady

state. Our approach was adapted from a review of front propagation dynamics by W. van

Saarloos [10].

In his review, van Saarloos defines pulled fronts as the class of interfaces whose propaga-

tion speed is exactly v∗ in steady-state. The speed of a growing and spreading perturbation,

u(x, t), can be characterized by constructing a level set line through this curve at some

fixed, arbitrary value u(x, t) = C. The time-rate-of-change of the position of the intersec-
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tion point of the line and the curve, dxc(t)/dt, is expected to reach an asymptotic velocity,

v∗ as t → ∞ . This velocity can be calculated by linearizing the dynamical equations de-

scribing the structural state of the material ahead of the front and using a saddle-point

approximation.

The details of this procedure are discussed extensively in [10]. In this subsection we first

introduce effective temperature and shear transformation zones. These concepts are then

combined in a dynamical model that describes the evolution of the structural state of our

glassy systems. We linearize this model about a spatiotemporal perturbation to obtain a

dispersion relation. The dispersion relation is analyzed at the saddle-point to find the linear

spreading velocity, which is taken to determine the rate of band broadening. Finally, we

find an analytic expression for the shear band width as a function of strain using this rate.

The concept of an effective temperature stems from the idea that non-equilibrium sys-

tems can be thought of as consisting of two, weakly-coupled subsystems [4, 11]. The first

subsystem is what we traditionally imagine when referring to temperature and encompasses

the fast kinetic/vibrational degrees of freedom that quickly come into equilibrium with the

surroundings, while the second subsystem refers to the slow configurational degrees of free-

dom in the system. If one imagines a vitreous system surrounded by a reservoir that is

quickly cooled from a high temperature above its melting point down to a temperature far

below its glass transition temperature, at some point the slow sub-system and reservoir will

fall out of equilibrium with each other, leaving the slow sub-system in a configuration on

the potential energy landscape drawn from an ensemble typical of the glass transition tem-

perature [12], often referred to as the fictive temperature. If we repeat this procedure at a

slower cooling rate the system and reservoir remain in thermal equilibrium with each other

for longer and fall out of equilibrium at a lower temperature. The slow sub-system of this

second glass will have a configuration drawn from this lower temperature ensemble and will

thus have a higher degree of structural order and a lower effective temperature.

In the effective temperature shear transformation zone (ET-STZ) theory it is proposed

that when one does plastic work on such a glassy system nanoscopic defects called shear

transformation zones (STZs) undergo shear-induced structural rearrangements dissipating

energy. A typical STZ contains ∼100 atoms [13]. A simple model of STZs assumes that

they have two states and, once rearranged, cease further transformation unless the direction

of shear is reversed. For systems driven at constant strain rate, new STZs must be created
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via the dissipated plastic work to sustain the flow.

ET-STZ theory has undergone numerous changes and appeared in various forms since

its introduction [11, 14, 15]. Our simulations are performed at finite temperature there-

fore we desire a dynamical equation for the dimensionless effective temperature, χ, which

includes the effects of shear-induced rejuvenation and thermal relaxation. We consider the

shear banded system as spatially invariant in all but the y-dimension, reducing shear band

broadening to a spatially one-dimensional problem. At lower strain shear bands can be

spatially heterogeneous as evinced by various topological features and potential energy fluc-

tuations. Shear bands become increasing homogeneous at higher strain, suggesting that

effective temperature transport occurs in driven glassy systems. The dynamical equation

for the evolution of the structural state should include a diffusive term to account for this

effect.

We combine elements of STZ equations from two sources to achieve an expression for

the evolution of the structural state of a deformed glassy system that incorporates changes

due to both mechanical deformation and thermal relaxation. The effects of shear-induced

disordering are sourced from an athermal study performed by Manning et al. [16]. A term

for the thermal contribution is detailed by Langer [11]. A full derivation of our expression

can be found in Appendix A. The dynamical equation for the evolution of the structural

state is:

χ̇ =
ε0χ

c̃0τ0

{
2

ε0s0
sf(s)e−1/χ

[
1− χ

χ̂

]
+ κρ(T )e−β/χ

[
1− χ

θ

]}
+ l2

2

τ0
f(s)e−1/χ

∂2χ

∂y2
(4)

The first term in braces accounts for structural disordering due to mechanical work. Pa-

rameters χ and θ are the dimensionless effective and bath temperatures, respectively. It is

assumed that the structural state of the shear-deformed system evolves towards an upper-

limiting value χ̂. The parameter c̃0 is a dimensionless specific heat, τ0 is an internal time

scale comparable to the phonon frequency, and ε0 is a strain increment of order unity. STZ

transitions occur when the deviatoric stress s surpasses the minimum flow stress s0 at a rate

proportional to f(s). We hold off explicit definition of f(s) until later in our derivation.

The second term in the braces in Eq. 4 represents the structural relaxation due to thermal

fluctuations and consists of the following parameters: κ is a dimensionless scaling parameter,

ρ(T ) is a thermal rate factor, and β is an activation term which dictates the susceptibility
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of STZ transitions to thermal fluctuations. The explicit form of ρ(T ) will not be detailed

in this analysis. The final term of Eq. 4 allows the effective temperature to diffuse and

contains a length scale l on the order of an STZ radius.

Prior studies [16] indicate that Eq. 4 is unstable to strain localization due to a non-linear

instability. However, the question we ask now is: Once this instability takes place, how

does the resulting band broaden as material adjacent to the band is induced to flow along

with the material in the initially nucleated band? To answer this question, we refer to the

literature on the propagation of fronts into unstable states [10], noting that the jammed

material outside the band is unstable in the ET-STZ model. If we assume the propagation

is consistent with a pulled front, the unstable spreading speed can be obtained by analyzing

the linear stability of the unstable state, i.e. the material outside the band. To undertake

this analysis, we decompose the structural state of the system far from the band into a

spatially invariant term, χ0(t), and some small perturbation u(y, t) where u� χ0:

χ(y, t) ≡ χ0(t) + u(y, t) (5)

We give the perturbation the form u = u0 exp(iky−iωt), a generic plane wave with amplitude

u0, wavenumber k and angular frequency ω. Parameters y and t represent position and time,

respectively. The plane wave equation is complex with imaginary number i. The evolution

of the uniform part of the solution is:

χ̇0 =
χ0ε0
c̃0τ0

{
2

s0ε0
sf(s)e−1/χ0

[
1− χ0

χ̂

]
+ κρ(T )e−β/χ0

[
1− χ0

θ

]}
(6)

Since u� χ0, we can make the following approximations:

exp

(
−1

χ0 + u

)
≈ exp(−1/χ0)

[
1 +

u

χ0
2

]
, (7)

exp

(
−β

χ0 + u

)
≈ exp(−β/χ0)

[
1 +

βu

χ0
2

]
, (8)

We now solve for the linear solution of u̇, excluding any terms of order O(χ0
−2) or higher:

u̇ =

{
s

s0
αf(s)− κ̃

}
u

τ0
+ l2

2

τ0
f(s)e−1/χ0

∂2u

∂y2
(9)
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In this expression α and κ̃ are rate factors that determine the magnitude of perturbation

growth due to shear-induced disordering and structural relaxation, respectively. These rate

factors are explicitly defined below.

The factor α has the following form:

α =
2

c̃0

(
1 +

1

χ0

− 1

χ̂

u̇

τ0
− 2

χ0

χ̂

)
e−1/χ0 (10)

Recall that χ0 characterizes the structural state of jammed material. There is a critical

effective temperature χc beneath which a perturbation is expected to grow, i.e. for χ0 < χc <

χ̂. When the structural state of the jammed material exceeds this critical value, χ0 > χc, a

perturbation will decay. The parameter χc represents the crossover from heterogeneous to

homogeneous deformation when thermal relaxation is ignored.

The rate factor κ̃ is:

κ̃ = −κρ(T )
ε0
c̃0

(
1 +

β

χ0

− β

θ
− 2

χ0

θ

)
e−β/χ0 (11)

The term in parenthesis is always negative because θ ≤ χ0 ≤ β while all other terms are

positive. A minus sign is introduced in order to yield a positive rate factor. A sign change

also occurs in Eq. 9 and indicates that thermal relaxation dampens perturbations.

If we further assume that the stress in our systems is equal to the minimum flow stress,

s = s0, we arrive at the following:

u̇ =
1

τ0
(αf(s0)− κ̃)u+ l2

2

τ0
f(s0)e

−1/χ0
∂2u

∂y2
(12)

Recall that u = u0 exp (iky − iωt). We can obtain the dispersion relation:

ω =
i

τ0

[
af(s0)− κ̃− l2

2

τ0
f(s0)e

−1/χ0k2

]
(13)

where the spatial wavenumber k is complex and can be expressed as k = kr + iki where its

real and imaginary components are denoted using subscripts r and i, respectively.

As discussed at length in Ref. [10], the linear spreading speed of the interface can be

extracted from the dispersion relation via a saddle-point approximation. The k-value of the

saddle-point k∗ and the linear spreading speed v0
∗ are then given by Eq. 12 of Ref. [10]:

dω

dk

∣∣∣∣
k∗

=
ωi(k

∗)

ki
∗ , (14)

v0
∗ =

ωi(k
∗)

ki
∗ (15)
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Equation 14 can be separated into its real and imaginary components and used to determine

the critical wave number:

k∗ = i

√
af(s0)− κ̃

2l2f(s0)e−1/χ0
(16)

The linear spreading speed is therefore:

v0
∗ = 2

√
2l
f(s0)

τ0

√
ae−1/χ0

√
1− κ̃

af(s0)
(17)

We assume that the STZ activation rate is proportional to the strain rate within the

shear band:

f(s0) ∼
τ0
2

V

w
e1/χ̂ (18)

where V is the constant velocity imposed on the simulation cell at the boundary, w is the

width of the shear band, and the density of STZs within the shear band is assumed constant

and given by exp (−1/χ̂). The rate of band broadening is therefore:

ẇ = 2v0
∗ = 2

√
2le1/χ̂

√
ae−1/χ0

V

w

√
1− 2κ̃w

aτ0e1/χ̂V
(19)

We define the dynamic length scale:

L = 4
√

2le1/χ̂
√
ae−1/χ0 (20)

that governs the initial rate of band broadening at low strain when w � w∞. This length

scale appears in the SBSR model and is now explicitly defined in terms of the ET-STZ theory.

Its functional form suggests that shear bands that arise within more disordered initial states

broaden faster than bands that arise within less disordered initial states. Analysis of this

expression is found in Appendix B.

We can also define a band width saturation length scale:

w∞ =
1

2

a

κ̃
τ0V e

1/χ̂ (21)

This length scale determines when the rate of shear band broadening goes to zero. The

dependence of w∞ on rate factors a and κ̃ suggests that it is set by the competition between

shear-induced rejuvenation and thermally-activated structural relaxation. Further analysis

of the behavior of w∞ is found in Appendix C.
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Substitution of Eqns. 20 and 21 into 19 results in the following expression for the band

broadening rate:

ẇ =
LV
2w

√
1− w

w∞
(22)

From this expression the aforementioned effects of L and w∞ are apparent. When w � w∞,

the rate of band broadening is proportional to L and inversely proportional to w and narrow

bands are expected to grow faster than wider ones. As the band width approaches its

saturation value, w → w∞, the band growth rate is reduced to zero, ẇ → 0.

The analytic solution to Eq. 22 is:(
2 +

w

w∞

)√
1− w

w∞
−
(

2 +
w0

w∞

)√
1− w0

w∞
=

3

4

LV
w∞2

(t− t0) =
3

4

LL
w∞2

(γ − γ0) (23)

In this expression, w0 and γ0 are the band width and global strain at shear band nucleation.

We refer to this expression as the shear-transformation-zone pulled front (STZ-PF) model.

In the limit where w0 � w∞ and w � w∞, w2 ≈ w0
2 + LL(γ − γ0), which is the same

functional form as the SBSR model.

III. METHODS

A. System Preparation

The shear band broadening models are tested on simulated glasses generated using

LAMMPS [17]. Three systems are chosen to represent metallic and covalent glasses with

planar geometry and correspond to a two-dimensional binary Lennard-Jones glass (LJ) [18],

a three-dimensional Cu64Zr36 glass (CZ) modeled using an Embedded Atom Method poten-

tial [19] and a three-dimensional silicon glass (Si) modeled with a Stillinger-Weber potential

[20]. We restrict the depth of the CZ and Si systems in the z-dimension such that they

are effectively two-dimensional. This simulation box depth is chosen to be larger than the

cutoff of the respective interatomic potentials, as evinced by plotting the radial distribution

functions (not shown) and observing that pair interactions are uncorrelated at this length.

All simulations have a total of 80,000 atoms, an aspect ratio Lx:Ly of 1:5 and periodic

boundaries in all directions. Shear bands form in all systems when deformed in simple

shear.

The LJ system was introduced by Lançon et al. in a study of phase stability of simulated

quasi-crystals [18] and shown to produce shear bands in previous studies [21]. We modify this
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system to include a pairwise interaction cutoff distance of 2.5 σ. The length of the simulation

cell perpendicular to the loading direction L is 639.5 σ. There are 35,776 large and 44,224

small particles. We prepare three LJ configurations via a constant volume quench from a

well-equilibrated liquid at 0.351 kB/ε to 0.0299 kB/ε over durations of 1,000 τ (LJ-1), 10,000

τ (LJ-2) and 100,000 τ (LJ-3). Temperature is controlled using a Nose-Hoover thermostat

[22]. We prepare ten replicas for each configuration to minimize sample-to-sample variation.

The internal structures of each LJ configuration are statistically different as indicated by

their respective average potential energies: -2.15 ε (LJ-1), -2.17 ε (LJ-2) and -2.19 ε (LJ-3).

Preparation of the CZ system follows the work of Ding et al. [23]. We use an aspect ratio

Lx:Ly:Lz of 4:20:1 with Ly = L = 502.98 Å. Our system is composed of 28,800 Zr and 51,200

Cu atoms. Three CZ configurations are prepared through constant pressure quench from

2000 to 300 K at rates of 1.00 (CZ-1), 0.10 (CZ-2) and 0.01 (CZ-3) K/ps. Temperature and

pressure are controlled using a Nose-Hoover thermostat and barostat. Five replicas of each

configuration are prepared, with the average atomic energy of Cu atoms of -3.569 (CZ-1),

-3.576 (CZ-2) and -3.589 (CZ-3) eV.

The final system is a silicon glass whose preparation was first introduced by Fusco et

al. [24]. This system has a 4:20:1 aspect ratio with L = 547.81 Å and 80,000 atoms. We

prepared three configurations by quenching from 3500 K to 300 K at constant pressure using

the Tersoff potential [25] and a Nose-Hoover thermostat and barostat. The quench rates

were 0.100 K/ps (Si-1), 0.010 K/ps (Si-2) and 0.001 K/ps (Si-3). The system is subsequently

annealed at 400 K for 100 ps using the Stillinger-Weber potential. Five replicas of each Si

configuration are prepared with average potential energy values of -4.09 (Si-1), -4.10 (Si-2)

and -4.11 (Si-3) eV.

B. Deformation

We deform our systems in simple shear by incrementally deforming the simulation cell

at a constant rate of 0.0001 ps−1 (τ−1, LJ). We integrate the SLLOD equations of motion

[26, 27] with fully periodic boundaries and velocity remapping for atoms which cross the

periodic boundaries in the y-direction. This shear protocol is consistent with Lees-Edwards

boundary conditions [28]. Strain localization occurs in all simulations; however, the chosen

geometry minimizes stress concentration allowing us to strain the systems in excess of 1000%.
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The systems are coupled to a Nose-Hoover thermostat at 300 K (CZ and Si) and 0.0299 kB/ε

(LJ) to remove heat generated during shear.

Figure 1 shows stress-strain curves for a individual LJ, CZ and Si configurations prepared

at the slowest quench rate (duration, LJ). The shear stress has been normalized by the max-

imum value. In spite of their different interatomic potentials and dimensionality, all systems

display linear-elastic behavior at low strain, followed by a transition to inhomogeneous de-

formation at their yield stress. A subsequent stress drop occurs once plastic deformation is

accommodated by a shear band. The geometry of our simulations allow them to deform in

excess of 1000% strain, as shown in the inset.

C. Measuring shear band width

Figure 2 is a schematic of the procedure used to approximate shear band width. We

compute the local atomic strain using OVITO [29] with the initial, undeformed configuration

as the reference state as shown in Fig. 2 (a). A cutoff radius of 6 Å (CZ and Si) or 2.2

σ (LJ) is used to establish the neighborhood of each atom. The neighbor cutoff is chosen

as roughly twice the distance to the highest peak of the radial distribution function. We

interpolate the atomic strain onto a square grid of length 1 Å (CZ and Si) or 1 σ (LJ) using

a natural method [30], as seen in Fig. 2 (b). Next, a binary mask is applied to the grid

which labels any square with an average atomic strain greater than or equal to 0.25 as one

and all others zero. A feature is defined as a cluster of adjacent ones and may cross the

upper or lower cell bounds in the y-direction. Figure 2 (c) shows two clusters. We assume

that the largest feature is the shear band and its width is measured by the average number

of adjacent squares along the y-direction, as in Fig. 2 (d).

Shear bands are present in all systems by 20% deformation, as shown in Figure 1. For

simplicity, we use γ0 = .2 as the global strain at band nucleation, and measure the respec-

tive w0. Additional measurements are taken from strain of 100% onward at 100% strain

increments. We limit our study to the broadening of a single shear band. Simulations are

excluded from subsequent analysis if additional system-spanning features are present at any

stage of the deformation, which would indicate the formation of a secondary shear band.
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IV. RESULTS

The relative stability of a glass is measured by its average atomic energy and the likelihood

that multiple shear bands will form increases with decreasing glass stability. Tables I and II

list the average atomic energy and number of simulations considered for each configuration.

For all systems, the 1st configuration is the least stable while the 3rd configuration is the

most stable due to its lower relative mean atomic energy. Consider the LJ system where

10 simulations are performed for each configuration. As LJ configurations are generated at

slower quench rates, the mean atomic energy decreases and fewer simulations are excluded

due to the formation of secondary shear bands. This trend is also observed in the CZ and

Si systems, but secondary shear bands are more infrequent due to the need for instabilities

to traverse both the width and depth of the three-dimensional simulation cell.

The SBSR and STZ-PF models assume that shear bands have well-defined edges and

constant width; however, actual shear bands have more complex structures. Figure 3 shows

several features for representative CZ (a, b) and LJ (c, d) simulations in black. These

features correspond to regions where the average atomic strain is greater than or equal to

25% when the system is deformed to 20% shear strain (top row) and 100% strain (bottom

row). The shear band shown in the CZ configuration (a) represents the ideal case where a

single shear band forms and remains the dominant feature throughout the study.

In Fig. 3 (b) a secondary shear band is present at 20% strain and broadening occurs

in both features. Secondary bands may form at any stage of deformation and we exclude

simulations from our analysis if they do. The formation of additional features indicates that

in addition to aging, plastic deformation occurs in material outside the primary shear band.

The STZ-PF model incorporates these effects by including a thermal relaxation term, κ and

a structural rejuvenation term that depends on the local strain rate γ̇.

Figure 3 (c, d) shows shear bands with poorly defined edges due to intermixed regions of

low strain. These pore-like features occur most often in the two-dimensional LJ simulations

at early stages of shear band formation (γ ≈ 20%) but are less pronounced at later stages

of deformation. The coexistence of low and high-strain regions within shear bands is less

prevalent in CZ and Si simulations, which may be the result of averaging strain over the

third dimension. We include simulations in the study when shear bands have rough edges

(or vertical features), excluding only those in which additional, system-spanning features
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are present.

Vertical shear bands may occur at early stages of deformation as shown by the tail of the

dominant feature in Fig. 3 (d). These features persist in our simulations at 100% strain and

dictate the preferred direction of band broadening. Vertical banding suggests that a stress

bias is not well established immediately after yielding, allowing initial STZ transitions to

occur in all directions. As a result, shear bands can form in both the horizontal and vertical

directions. As the system is driven to higher strain a stress bias begins to dominate the

response, causing STZ transitions to occur primarily in the loading direction. The geometry

of our simulation cell was chosen to minimize these effects as a high aspect ratio favors

horizontal banding.

Two scenarios are possible for simulations where a single shear band dominates the re-

sponse: (1) unconstrained growth, where the shear band widens to the extents of the simu-

lation cell, or (2) shear band saturation, where broadening ceases and a shear band persists

with finite width indefinitely upon further deformation. A fit to the STZ-PF model is unable

to determine a saturation length when w∞ � L, thus we exclude cases of unconstrained

growth from our assessment of this model. Results reported in Table III are for Ns sim-

ulations, where subscript s represents the simulations where a finite saturation width is

recovered.

Figure 4 plots band width as a function of global strain for the Si–1 configuration. Fits are

performed for each simulation and average model parameter values are used to plot the STZ–

PF (dashed line) and SBSR (dotted line) model results. Of the five simulations performed,

only two result in a persistent band of finite width, i.e. w∞ < L. Pane (a) averages over the

three Si-1 simulations where the STZ–PF model determines unconstrained band growth. In

this limit, w∞ approaches infinity and the STZ–PF model reduces to the SBSR model. As

expected, the SBSR and STZ-PF model fits coincide. In Figure 4 (b), models are compared

for the remaining two Si-1 simulations where shear bands saturate. The STZ–PF model is

far better at capturing the behavior of the Si–1 system at the low and high-strain limits.

We use R-squared (R2) as a metric for comparing the goodness of each model. We exclude

simulations where unconstrained growth is determined by the STZ–PF model because w∞

is undefined. Table III provides average coefficient data as predicted by each model. This

data is averaged over Ns configurations, where Ns is the number of simulations with a single,

persistent shear band of finite width. In all cases the STZ–PF model provides marked
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improvement over the SBSR model. The SBSR model tends to under–approximate the

dynamic length scale L, which effectively determines the band width at low strain.

Figure 5 compares both models on the LJ–1 configuration where all simulations show

constrained band broadening, i.e. N = Ns. The slope of the SBSR curve at early strain is

much smaller than that of the STZ–PF model. This is the result of the SBSR model having

to strike a balance between accounting for the rapid increase in band width at low strain and

the subsequent decrease and eventual plateau in band width at high strain. The addition

of the saturation length scale in the STZ–PF model significantly enhances the estimation of

band width and for the LJ–1 configuration the R-squared value increases from 0.89 (SBSR)

to 0.99 (STZ–PF).

Shear band saturation is a ubiquitous phenomenon in the systems studied and occurs

in the majority of simulations. In Figure 6 we plot shear band width normalized by the

height of the simulation cell as a function of applied strain for the LJ (a), CZ (b) and Si

(c) systems. Shapes correspond to configurations of a given system with circles indicating

the fastest quench and triangles the slowest. Averages are taken over simulations where the

STZ–PF model suggests band saturation with standard deviation bars shown. We assume

that shear bands initiate at 20% strain and find that the initial width and dynamic length

scale of the shear bands increases with increasing quench rate. The difference in initial band

widths is less pronounced in the Si system where values are identical to within measured

deviation. Saturation length also varies with quench rate with a larger width predicted for

quickly-quenched systems.

V. DISCUSSION

This study compares two models of shear band broadening – the shear band strain rate

(SBSR) model which assumes that the rate of band broadening is proportional to the strain

rate within the shear band and the shear transformation zone pulled front (STZ–PF) model

that describes shear band broadening as a pulled front propagating into an unsteady state.

We test these models on three systems: a two-dimensional Lennard-Jones glass, a three-

dimensional embedded atom method Cu64Zr36 glass and a three–dimensional Stillinger–

Weber silicon glass. Shear bands form in each system and their dynamics are well captured

by the STZ–PF model, even when configurations are generated at increasingly high cooling
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rates.

The initial rate of shear band broadening is proportional to the strain rate within the band

at low strain, but deviates from this behavior at high strain as bands approach a saturation

width. The SBSR model is able to capture the dynamics of shear bands at the onset of

strain localization or whenever band width is unconstrained; however, the SBSR model

breaks down as shear bands approach their limiting width. The STZ–PF model improves

upon this shortfall in the SBSR model by introducing a band width saturation length scale

that depends on the internal structure and rate of thermal relaxation of the glass. The STZ–

PF model reduces to the SBSR model whenever band width is much smaller than saturation

length, such as the case of unconstrained band growth.

Shear band saturation is observed in various simulations produced with different inter-

atomic potentials, dimensions and quench schedules. We argue that the saturation length

scale is a ubiquitous feature of sheared amorphous systems. Glassy configurations are gen-

erated by sampling from a distribution of structures in a potential energy landscape which

results in systems of the same potential, composition and preparation having a distribution

of saturation band widths. In select simulations, the observed unconstrained growth and the

inability of the STZ-PF model to recover this length scale can be attributed to a simulation

size that is less than the saturation width.

This work represents the first step in an ongoing study of strain localization in simulated

glasses. It demonstrates that the structural state of sheared glassy systems can be well-

described using an effective temperature (ET) and the dynamics of the state can be described

using shear transformation zone (STZ) theory. Our results suggest that shear bands can be

modeled as pulled fronts which propagates into an unsteady state. The dynamics of the state

on either side of the front can be described as a competition between increasing structural

disorder due to plastic work and increasing structural order due to thermal relaxation.

Experimental studies of shear banding in metallic glasses report widths ranging from

10 – 210 nm [31] while our STZ-PF model predicts band widths between 6.9 (CZ–3) and

34.7 (CZ–1) nm. Although these results seem promising, we acknowledge several difficulties

when drawing comparisons between simulated and experimental systems. The simplified

geometry of our simulations allows them to deform to strains typically unobservable in

experimental systems, where stress concentration often leads to catastrophic failure before

a steady-state flow stress is achieved. Our simulations are effectively two-dimensional, and
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our analysis is done in one dimension. In contrast, experimental systems have finite depth

and bands must broaden both perpendicular to the loading direction and along this depth.

The length and time scales of simulations and experiments vary by orders of magnitude.

Experimental systems have length scales of millimeters and time scales of milliseconds while

our simulations are on scales of nanometers and femtoseconds, respectively.

This preliminary study leaves many questions unanswered. A subsequent investigation

will focus on understanding the role of thermally–induced structural relaxation by shearing

LJ glasses at different bath temperatures. We predict that as the reservoir temperature

increases, thermal relaxation should play a larger role in the material response leading to a

decrease in saturation length. This study should provide insight into the functional form of

κ. Several model parameters depend explicitly on the structural state of the system, which

is poorly defined. We also hope to elucidate the relationship between potential energy and

effective temperature in order to quantify χ and completely define our systems in terms of

ET–STZ theory.
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VIII. TABLES

TABLE I. Simulation details for representative LJ configurations. Ten (10) simulations were per-

formed for each configuration; however, simulations were excluded from the study if secondary

shear bands formed during deformation.

Config. name Quench duration Average Atomic Energy N

(τ) (ε)

Lennard-Jones Potential

LJ-1 1e4 -2.15 ± .13 6

LJ-2 1e5 -2.17 ± .12 7

LJ-3 1e6 -2.19 ± .12 10

TABLE II. Simulation details for representative CZ and Si configurations. Five (5) simulations were

performed for each configuration; however, simulations are excluded from our analysis if secondary

shear bands form during deformation

Config. name Quench rate Avg. potential energy N

(K · ps) (eV)

Embedded Atom Method Potential

CZ-1 0.100 -3.57 ± .07 3

CZ-1 0.010 -3.58 ± .07 5

CZ-1 0.001 -3.59 ± .07 5

Stillinger-Weber Potential

Si-1 1.00 -4.09 ± .16 4

Si-2 0.10 -4.10 ± .14 5

Si-3 0.01 -4.11 ± .13 5
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TABLE III. Mean and standard deviation for SBSR and STZ-PF model parameters and R-squared

values. Values are computed using fit data from Ns simulations where shear bands saturate to finite

width w∞. Dimensionless lengths are reported by normalizing values by the system height L.

Config. Ns L/L R2 L/L w∞/L R2

LJ-1 6 0.018 ± 0.003 0.89 ± 0.08 0.034 ± 0.003 0.41 ± 0.03 0.99 ± 0.01

LJ-2 7 0.0069 ± 0.0008 0.94 ± 0.03 0.012 ± 0.001 0.27 ± 0.02 0.99 ± 0.01

LJ-3 7 0.0031 ± 0.0005 0.83 ± 0.19 0.006 ± 0.001 0.21 ± 0.16 0.97 ± 0.02

CZ-1 3 0.028 ± 0.002 0.98 ± 0.02 0.042 ± 0.005 0.69 ± 0.18 0.994 ± 0.005

CZ-2 4 0.0105 ± 0.0006 0.985 ± 0.004 0.014 ± 0.002 0.49 ± 0.15 0.995 ± 0.003

CZ-3 3 0.0019 ± 0.0003 0.70 ± 0.23 0.0037 ± 0.0004 0.138 ± 0.009 0.96 ± 0.03

Si-1 2 0.0108 ± 0.0007 0.967 ± 0.0004 0.017 ± 0.002 0.56 ± 0.19 0.988 ± 0.006

Si-2 5 0.0060 ± 0.0003 0.984 ± 0.007 0.0083 ± 0.0006 0.41 ± 0.05 0.997 ± 0.002

Si-3 3 0.0033 ± 0.0002 0.970 ± 0.01 0.0048 ± 0.0003 0.31 ± 0.03 0.997 ± 0.001
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IX. FIGURES

FIG. 1. Representative stress-strain curves for LJ (solid), CZ (dashed) and Si (dotted) systems.

Shear stress has been normalized by the maximum stress and presented for strain from 0 – 30%

(main) and 100% to 1000% (inlay). Data taken from a single simulation of the slowest-quenched

configuration for a given system.
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<
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FIG. 2. Procedure for measuring shear band width. First we calculate per atom atomic strain

γi, where i indexes over all particles (a). Strain is then averaged in regions of square length to

determine γ̄i (b). A binary mask is applied with cutoff γc = 0.25 and γ̄i < γc → 0 and γ̄i ≥ γc → 1.

Contiguous squares are grouped as features with special attention paid to features which lie on the

edges of the simulation cell. We treat the largest feature as the shear band and measure its height

in the y-direction to determine the bandwidth w as a function of strain (d).
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FIG. 3. High-strain material regions for multiple simulations when global strain is 20% (top row)

and 100% (bottom row). Material regions with average atomic strain equal to or greater than 25%

shown in black. (a) is representative of the ideal case where a single, horizontal shear band forms.

In (b) two shear bands are present, disqualifying this simulation from our analysis. The dominant

feature in (c) has a pore-like structure, with intermixed low and high-strain material regions. The

high-strain region of (d) features a large vertical component. Cases (a), (c) and (d) are included

in our analysis.

24



FIG. 4. Shear band width normalized by simulation height as a function of global strain for bounded

(a) and unbounded (b) Si–1 configuration simulations. A shear band is considered bounded if the

STZ–PF model fit yields a saturation width w∞ that is less than the height of the simulation cell in

the direction perpendicular to the applied strain, L, and unbounded otherwise. Standard deviation

bars are shown. Average model parameters are calculated from fits to individual simulations and

used to generate the STZ–PF (dashed) and SBSR (dotted) curves.
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FIG. 5. Shear band width normalized by simulation height as a function of strain for LJ–1 config-

uration. Data averaged over 6 simulations where band growth is constrained and w∞ < L in the

STZ-PF model. Standard deviation bars shown. Simulations are independently fitted to STZ–PF

and SBSR models and mean fit parameters are computed. The resultant STZ–PF (dashed) and

SBSR (dotted) fits are plotted.
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FIG. 6. Band width normalized by simulation height as a function of strain for LJ (a), CZ (b) and

Si (c) systems. Data averaged over simulations where band growth is constrained and w∞ < L in

the STZ–PF model. Standard deviation bars shown. Circles represent fastest quench and triangles

the slowest. STZ–PF model fit found by averaging over L and w∞ values and shown by dashed

line.
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Appendix A: Derivation of the effective-temperature dynamical equation, χ̇

The general structure for the evolution of the effective temperature proposed by Manning

et al. in [16] Equation A5 is:

χ̇ =
1

CeffTZ

{
Teff

(
dSC
dt

)
mech

[
1− χ

χ̂

]
+ Teff

(
dSC
dt

)
therm

[
1− χTZ

T

]}
+D

∂2χ

∂y2
(A1)

In this expression Ceff is a specific heat and TZ = EZ/kB, where EZ is the energy required

to nucleate a STZ and kB is the Boltzmann constant.

Heat due to mechanical work done on the system, Teff (dSC/dt)mech, drives the structural

state, χ = Teff/TZ , towards the steady-state value χ̂. The existence of χ̂ has been demon-

strated in a prior study of the LJ system [21] where a linear relation was assumed between

effective temperature and potential energy and the average potential energy of material

within the shear band was found to converge to a fixed value. Conversely, heat generated

from thermal fluctuations, Teff (dSC/dt)therm, relaxes the structural state towards the bath

temperature T . We introduce a dimensionless bath temperature θ = T/TZ , analogous to

the dimensionless effective temperature. A final term allows structural disorder to diffuse.

We assume the rate of diffusion is governed by the plastic strain rate γ̇ yielding a coefficient,

D = l2|γ̇|, where l is a length scale on the order of a STZ radius. The equation for the

plastic strain rate is:

γ̇ =
2

τ0
f(s)e−1/χ (A2)

The parameter τ0 is an internal time scale comparable to the phonon frequency and f(s) is

a function of the deviatoric shear stress, s. The plastic strain rate is the product of the rate

of stress induced STZ transitions, 2f(s)/τ0, and an Arrhenius term that is proportional to

the number density of STZs, exp (−1/χ). It is assumed that STZ transitions occur only in

the direction of loading. We hold off providing an explicit definition of f(s) until later in

our derivation.

In [16], Eq. A13 Manning et al. provide an expression for the rate of configurational

entropy production due to mechanical loading:

(
dSC
dt

)
mech

=
kBvZ

Ω

ε0
τ0

ΛΓ(s) (A3)
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where vZ is the number of molecules within an STZ, Ω is the volume per molecule, ε0 is a

strain increment of order unity, Λ = exp (−1/χ) is proportional to the STZ density and Γ(s)

is the energy dissipated per STZ.

Equation A10 of [16] provides the STZ energy dissipation term:

Γ(s) =
2

s0ε0
sf(s) (A4)

where s0 is the minimum flow stress and s is the deviatoric shear stress.

Combining Eqns. A3 and A4:

(
dSC
dt

)
mech

=
kBvZ

Ω

ε0
τ0
e−1/χ

2

s0ε0
sf(s) (A5)

Manning et al. analyze strain localization simulations performed at low temperature and

assume that the contribution due to thermal fluctuations is marginal. Consequently, an

expression for (dSc/dt)therm is not provided. We refer instead to [11] Eq. 6.2 where Langer

suggests the following form:

(
dSC
dt

)
therm

= κ
kBvZ

Ω

ε0
τ0
ρ(T )e−β/χ (A6)

In this expression κ is a dimensionless scaling parameter, ρ(T ) is a thermal factor whose

form is beyond the scope of this derivation, and β is an activation term which dictates the

susceptibility of STZ transitions to thermal fluctuations.

Manning et al. define a dimensionless effective temperature c̃0 = CeffΩ/(kBvZ). Com-

bining Equations A1 - A6 , the evolution of the structural state is expressed as:

χ̇ =
χε0
c̃0τ0

{
2

s0ε0
sf(s)e−1/χ

[
1− χ

χ̂

]
+ κρ(T )e−β/χ

[
1− χ

θ

]}
+ l2

2

τ0
f(s)e−1/χ

∂2χ

∂y2
(A7)

Appendix B: Analysis of the dynamic length scale L

The dynamic length scale that governs the initial rate of band broadening and is defined

as:

L = 4
√

2le1/χ̂
√
ae−1/χ0 (B1)
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In this expression l is a length scale on the order of an STZ radius, χ̂ is a steady-state

value of the dimensionless disorder temperature found inside the shear band, and χ0 is the

disorder temperature of material outside the band. The parameter α is a rate factor that

couples shear-induced disordering to instability growth with the form:

α =
2

c̃0

(
1 +

1

χ0

− 1

χ̂
− 2

χ0

χ̂

)
e−1/χ0 (B2)

where c̃0 is a dimensionless specific heat on the order of unity.

The dynamic length scale dominates the response when the shear band width is sig-

nificantly smaller than its steady-state value, i.e. when w � w∞. This length scale was

introduced as an empirical parameter in the SBSR model, but is now defined using ET-STZ

theory.

We examine the behavior of L as a function of the structural state of the jammed material,

χ0. Combining Eqns. B1 and B2 yields:

L = 8l exp

(
1

χ̂
− 1

χ0

)√
1 + 1

χ0
− 1

χ̂
− 2χ0

χ̂

c̃0
(B3)

The exponential term is the proportion of STZs within the jammed material at the maximum

allowed disorder due to amorphous packing and approaches 1 as χ0 → χ̂. As the jammed

material becomes more disordered, the radical term decreases, suggesting a reduction in

the energy dissipated into the configurational degrees of freedom. The combined effect is a

dynamic length scale which increases the shear band growth rate when the state of jammed

material is more disordered up to some critical value χ0 → χc. At even higher levels of

disorder the shear band growth rate sharply decreases until reaching zero at the degree of

disordering above which shear bands never form. The functional form of L thus suggests

that shear bands typically broaden faster in systems with more disordered states.

Appendix C: Analysis of the shear band saturation length scale, w∞

Transient shear bands are expected to broaden to a limiting width, as defined by the

saturation length scale:

w∞ =
1

2

a

κ̃
τ0V e

1/χ̂ (C1)
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In this expression τ0 is a material time scale on the order of the phonon frequency, V is the

rate of deformation imposed on the system, χ̂ is a steady-state value for the dimensionless

effective temperature and α and κ are rate factors for instability growth due to mechanical

work and thermal fluctuations, respectively.

As the width of the shear band approaches the saturation length scale the rate of shear

band broadening goes to zero. The saturation width depends both on a and κ̃, which sug-

gests it is set by a competition between stress-induced structural rejuvenation and thermal

relaxation.

We expand Eq. C1, substituting expressions for α (Eq. B2) and κ̃ (Eq. 11):

w∞ =
τ0V

ε0κρ(T )

(
1 + 1

χ0
− 1

χ̂
− 2χ0

χ̂

2χ0

θ
+ β

θ
− β

χ0
− 1

)
exp

(
1

χ̂
− 1

χ0

+
β

χ0

)
(C2)

The term in the parenthesis decreases as the effective temperature of the jammed state, χ0,

increases, once again demonstrating that thermal relaxation dampens the effects of shear

induced disordering resulting in the reduction of the saturation length scale. The exponential

term, by contrast, represents the fraction of STZs available to deform, which increases with

effective temperature. The combined effect is a saturation length scale that is small for less

disordered systems with low effective temperatures but which increases exponentially for

systems whose disorder temperature approaches the steady state value.
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