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ABSTRACT 
 
 Cell contractile forces deform and reorganize the surrounding matrix, but the relationship between the 
forces and the resulting displacements is complicated by the fact that the fibrous structure brings about a 
complex set of mechanical properties. Many studies have quantified nonlinear and time-dependent 
properties at macroscopic scales, but it is unclear whether macroscopic properties apply to the scale of a 
cell, where the matrix is composed of a heterogeneous network of fibers. To address this question, we 
mimicked the contraction of a cell embedded within a fibrous collagen matrix and quantified the resulting 
displacements. The data revealed displacements that were heterogeneous and nonaffine. The 
heterogeneity was reproducible during cyclic loading, and it decreased with decreasing fiber length. Both 
the experiments and a fiber network model showed that the heterogeneous displacements decayed over 
distance at a rate no faster than the average displacement field, indicating no transition to homogeneous 
continuum behavior. Experiments with cells fully embedded in collagen matrices revealed the presence of 
heterogeneous displacements as well, exposing the dramatic heterogeneity in matrix reorganization that is 
induced by cells at different positions within the same fibrous matrix. 
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I. INTRODUCTION 
 
  The mechanics of fibrous materials such as those that comprise the extracellular matrix (ECM) 
underpin many facets of biology. At the scale of tissues, the ECM provides mechanical support that 
resists forces and provides structure. At the cellular level, the ECM provides a complex set of physical 
cues that affect cell contraction and migration [1–5], differentiation [6,7], proliferation [4,8], and gene 
expression [9]. These cues often relate to mechanical forces and deformations. For example, forces 
applied to a cell through a substrate can affect cell contraction and the direction of migration [1,10]. In 
turn, cell contraction can reorganize the matrix, such as by producing aligned bands of matrix fibers [11–
15], which facilitate more persistent cell migration [3,5,8]. The interplay between the localized contractile 
forces of a cell and the matrix displacements remains unclear, in part because our understanding of the 
mechanics of fibrous materials across scales remains incomplete. Numerous studies have quantified non-
linear [16–19] and time-dependent properties [20–22] of fibrous ECM materials, but those studies 
typically considered average behavior of macroscopic specimens; how these studies apply to the 
microscale on which cells deform the matrix is far less clear. A key challenge at this scale is that the ECM 
is not a continuum but rather a heterogeneous network of fibers having lengths only slightly smaller than 
the size of a cell. 
 To characterize matrix heterogeneity at the scale of a cell, we examine how heterogeneity in the 
stiffness of a material affects the displacement field. Consider an affine loading, defined as one that would 
put a homogeneous material under uniform strain. If the material had local heterogeneities in stiffness, the 
resulting displacement field would deviate from the case of uniform strain, that is, the displacements 
would be nonaffine [23]. Therefore, for affine loading conditions, local fluctuations in stiffness can be 



quantified by nonaffinity. Numerous theoretical models for fiber networks have observed nonaffine 
displacements [24–28] by treating each fiber as a beam that resists axial forces and bending. As the fibers 
are long and thin, the dimensionless ratio of stiffness in bending to stretching, κ, is typically on the order 
of 10-5 to 10-4 [29–32]. Deformations are therefore dominated by soft bending modes, many of which 
produce nonaffine or heterogeneous fiber displacements. Though studies differ in their metrics used to 
quantify nonaffinity and heterogeneity, experiments have established that displacements in fibrous 
materials are heterogeneous, by quantifying, for example, rotation of fibers [33] or displacements at 
points [34–36]. 
 The magnitude of this heterogeneity on the length scale of a cell remains unclear. This is perhaps 
most relevant for recent endeavors to extend traction force microscopy to cells embedded within three-
dimensional fibrous materials. Those studies used constitutive relationships based on continuum 
mechanics [37–39], which requires the matrix to be homogeneous at the length scale of the cell. Even the 
studies that analyzed only the displacement field assumed the displacements to be smooth when 
computing the strains [40–42]. Some justification for these assumptions comes from the intuition that for 
some loading conditions, e.g, small deformations over large length scales, the matrix should become 
essentially homogeneous. Consistent with intuition, a model that simulated a local point force applied to a 
fiber network [25] predicted that heterogeneous modes in the displacement field decayed quickly over 
distance, with exponential decay having a decay constant of lcκ -1/6, where lc is the distance between fiber-
to-fiber connections, and κ is the dimensionless bending stiffness. For κ on the order of 10-4, this gives a 
decay constant of 4.6lc. If this is correct, any cell larger than a few fiber lengths would sense the network 
as being a continuum. However, a different model observed no length scale for which heterogenous 
displacements go to zero [27], which is consistent with a recent prediction that heterogeneous 
displacements decay no more quickly than average ones [28]. It is therefore unclear whether the matrix 
becomes essentially homogeneous at some length scale. 
 Here, we experimentally measured heterogeneous displacements within a network of collagen fibers. 
Using spherical microspheres made of an active hydrogel, poly(N-isopropylacrylamide) (PNIPAAm), we 
induced isotropic, microscale contraction mimicking that of a cell. The experimental data show that the 
heterogeneous displacements decay no more quickly than the total displacements, indicating no transition 
to homogeneous behavior, even for small displacements far from the contracting microsphere. Consistent 
with this, though heterogeneity is reduced by decreasing the fiber length, it remains nonzero for matrices 
having average fiber length as small as 4 µm. Cell-induced displacements are also observed to be 
heterogeneous, implying that at the scale of a cell, the matrix is better described as a network of fibers 
rather than as a continuum. 
 
II. MATERIALS AND METHODS 
 
A. Preparation of Samples for Imaging 
 
 PNIPAAm microspheres were made as described previously [43]. The PNIPAAm microspheres had a 
modulus of order 20 kPa [44], which is ~2 orders of magnitude larger than that of the collagen networks 
[16–19]. Therefore, compared to the collagen networks, the microspheres were essentially rigid. The 
PNIPAAm microspheres typically ranged in size from a few μm to more than 100 μm. For this study, we 
analyzed data for microspheres in the range of 50–100 μm. 
 The microspheres were embedded in networks of rat tail collagen I (Corning) that was fluorescently 
labeled with Alexa Fluor 488 (Thermo Fisher Scientific). To connect the collagen fibers to the PNIPAAm 
microspheres, the fibers were covalently bonded to the microspheres using sulfo-SANPAH (Proteochem). 
The sulfo-SANPAH (1 mg/ml, diluted in 0.05 M HEPES solution) was added to washed microspheres, 
and the solution was exposed to ultraviolet light of a biosafety cabinet for 10 minutes. After exposure, the 
sulfo-SANPAH solution was removed, and the treated PNIPAAm microspheres were washed with 0.05 
M HEPES solution and 1× PBS to remove excess sulfo-SANPAH mixture. Alexa-labeled collagen was 
then mixed 1:20 with unlabeled acidified rat tail collagen I (Corning) and neutralized with 2× HEPES 



solution as previously described [43,45]. It was diluted to its final concentration (ranging from 2.5 to 4 
mg/mL) with the addition of sulfo-SANPAH treated PNIPAAm microspheres. This collagen/PNIPAAm 
microsphere mixture was then slowly drawn through a PDMS microfluidic channel as previously 
described [43,45], and maintained at 22°C, 27°C, or 30°C, with increasing polymerization temperature 
producing collagen networks with shorter fibers [46,47]. Upon neutralization with the 2× HEPES solution 
(pH 7.4), the collagen solution self-polymerized, and no crosslinking agents were added. After 1 hr, 1× 
PBS was added to prevent dehydration during image acquisition.  
 For comparison to experiments in collagen, some experiments were performed with PNIPAAm 
microspheres embedded in polyacrylamide composed of 3% acrylamide and 0.06% bis-acrylamide, 
polymerized with 0.01% ammonium persulfate and 0.05% TEMED (Biorad). 0.5 µm red fluorescent 
particles (FluoSpheres, Life Technologies) were embedded in the polyacrylamide to enable fluorescent 
imaging. 
 To quantify fiber lengths resulting from different polymerization temperatures, 100 µl of the Alexa-488 
labeled collagen mixture was added to the bottom of a glass bottom dish (CellVis) and covered with an 18 mm 
circular cover glass to spread the gel uniformly. The neutralized collagen was then quickly transferred to the 
required temperatures and allowed to polymerize. 
 In experiments with cells, 4T1 cells were seeded at a density of 15,000 cells per ml and embedded in 
2.5 or 3.5 mg/ml Alexa 488-labeled collagen. The cell/collagen mixture was then drawn through a PDMS 
microfluidic channel as previously described [45], and polymerized at either 22°C or 37°C. Cells were 
incubated at 37°C overnight in Dulbecco’s Modified Eagle’s Medium with 10% fetal bovine serum 
before imaging. Prior to imaging, the cells were stained with a 6.25 μg/ml solution of dye (CellTracker 
Red CMTPX, Thermo Fisher) for 1.5 hrs at 37°C. 
 
B. Microscopy 
 
 Fluorescent images were collected on an Eclipse Ti microscope (Nikon) with a CSU-X confocal 
spinning disk (Yokogawa) and a Zyla sCMOS camera (Andor) and run by the IQ3 acquisition software 
(Andor). Unless stated otherwise in the text, imaging was performed with a 20× (0.75 numerical aperture) 
objective (Nikon), and image stacks were collected at 0.5 µm increments. As stated in the text, a 10× 
(0.45 numerical aperture) was used in some cases to achieve greater field of view; 10× imaging collected 
image stacks at 1.5 µm increments. To control contraction of the PNIPAAm microspheres, the 
temperature was controlled using a H301 stage top incubator with a UNO controller (Okolab). To 
quantify effects of changing temperature on the displacement field, we measured both total displacements 
(as described in section II.D.) and local nonaffine displacements (as defined in section II.G.), and 
observed both to be less than 0.1 μm on average (Supplemental Fig. S1 [48]). Therefore, any 
displacement measurement that is much larger than 0.1 μm is minimally affected by the temperature 
change. 
 Separate imaging occurred at higher resolution to measure fiber lengths. For this, fluorescent images 
of the collagen gels were collected on a Bruker multiphoton system with a Coherent Chameleon laser on a 
Nikon Eclipse Ti microscope base. The laser was tuned to 890 nm, and Prairie View 5.3 software was 
used to control acquisition parameters. A 40× (1.15 numerical aperture) objective (Nikon) was used to 
collect image stacks taken at 10 µm increments. Images were scanned at 1024 × 1024 pixels with a pixel 
size of 0.146 × 0.146 µm2. The image stack was started 50 μm from the bottom surface to avoid potential 
effects of the bottom cover glass. 
 
C. Quantification of Fiber Lengths 
  
 Single images from each stack of high resolution images were segmented using Seedwater Segmenter 
[49]. The segmentation gave areas, which corresponded to pores in the collagen network, and lines, which 
represented the collagen fibers. For each collagen network, we calculated the median of the pore areas for 
10 different segmented images; the fiber length was then taken to be the square root. For all networks, 



variability in fiber length from image to image was <2% of the estimated fiber length. Due to the finite 
resolution of the confocal microscope, the individual images had a thickness of about 1 µm, which 
resulted in unconnected fibers crossing one another in the images [50]. The segmentation detected these 
crossing fibers and incorrectly identified them as connections between fibers. To account for this, we 
manually counted the number of unconnected crossings for 10 fibers in each type of collagen network, 
finding the number to vary from 6.3 ± 0.9 (mean ± standard deviation) for short fibers at a collagen 
concentration of 4 mg/ml to 15.7 ± 1.0 for a collagen concentration of 2.5 mg/ml. The product of the 
segment lengths, computed from the segmented images, and the number of crossings per fiber thus gave 
the final estimate of average fiber length. For the 2.5 mg/ml collagen networks polymerized at 22°C and 
37°C, average fiber lengths were found to be 37.0 ± 4.2 µm (mean ± standard deviation, where the 
standard deviations result from variability in the number of unconnected crossings per fiber) and 13.7 ± 
0.9 µm, respectively. The 4 mg/ml collagen gels that were polymerized at 22°C and 30°C had average 
fiber lengths of 18.7 ± 3.3 µm and 4.2 ± 0.6 µm, respectively. 
 
D. Digital Image Correlation 
 
 After imaging the collagen fibers, displacements were computed using digital image correlation 
(DIC). From one time point to the next, the focus changed due to drift, which we accounted for using 
digital volume correlation [51] to compute the focal drift and to select the image plane corresponding to 
the center of the PNIPAAm microsphere or cell at each time point. Images were then analyzed with DIC 
using Fast Iterative Digital Image Correlation (https://github.com/FranckLab/FIDIC) [51]. Subsets of 64 
× 64 pixels were used with a spacing of 16 pixels. At 20× magnification, 1 pix = 0.325 µm; at 10×, 1 pix 
= 0.65 µm. To avoid errors in computing displacements near the boundary of each microsphere, 
displacements were computed only where a full subset overlapped regions of the fibrous matrix. As a 
result, displacements were not computed within half diagonal of a subset (i.e., within √2 × 32 pix) of the 
microsphere. Regions where displacements were not computed are shown in black. To correlate the large 
displacements, we ran the DIC incrementally and summed the results to compute the displacement with 
respect to the undeformed reference. 
 Because the contrast pattern for image correlation was the image of collagen fibers, the DIC 
computed erroneous values of displacement in locations where the fiber density was low. To avoid errors 
resulting from erroneous correlation, we eliminated points from the analysis using the following 
procedure. We computed the gradient of the image with the Sobel kernel using Matlab R2015a (The 
Mathworks) using the built-in edge command. A threshold was chosen; locations having a gradient 
greater than the threshold were identified. Those locations were then dilated by 3 grid points on each side. 
All displacements located in the dilated region were discarded from analysis; these locations appear as 
white spots in the figures. 
 
E. Definition of Heterogeneity 
 
 As the PNIPAAm microspheres contract uniformly, continuum mechanics would predict a 
homogeneous material to deform in the radial direction. To evaluate heterogeneous displacements, we 
first defined a homogeneous solution by fitting the radial displacements to the equation  
        ufit = –Ar –n,     (Eq. 1) 
where A and n are fitting parameters [43]. For linear elastic materials, n = 2, and the constant A depends 
on the moduli of matrix and microsphere and the contraction of the microsphere. By contrast, fibrous 
materials like collagen are nonlinear with n < 2, indicating long-range displacements that result from 
alignment of fibers in tension and buckling of fibers in compression [15,43,52,53]. Because the fibrous 
matrix is heterogeneous, displacements fluctuate over space. We thus define the heterogenous 
displacements u’ to be the deviation from average behavior:  
 ᇱ = u – ufit,     (Eq. 2)࢛         



where u is the experimentally measured displacement field and ufit  = –ufit er with scalar ufit given by Eq. 1 
and vector er being the unit vector in the radial direction with outward defined as positive. Note that the 
negative sign in the definition for ufit cancels the negative sign in Eq. 1. 
 
F. Autocorrelation of Displacement Field 
 
 An autocorrelation of the heterogeneous displacement field ࢛ᇱ was used to compute the typical size of 
a heterogeneous region. The autocorrelation followed the standard equation for autocorrelation of a vector 
field, 
,ሺܺܥ       ܻሻ ൌ ଵே௦మ ∑ ∑ ,ݔᇱതതതሺ࢛ ሻ௬௫ݕ ڄ ݔᇱതതതሺ࢛ െ ܺ, ݕ െ ܻሻ,    (Eq. 3) 
where ࢛ᇱതതത ൌ ᇱ࢛ െ ᇱ࢛  and ࢛ᇱ  is the mean of the heterogeneous displacement field ࢛ᇱ. The factor 1/ܰݏଶ, 
with ܰ equal to the number of data points and ݏଶ equal to the variance of ࢛ᇱ, gives a normalization such 
that the maximum value of ܥ is ܥሺ0,0ሻ ൌ 1. In this notation, bold symbols represent vectors, and the dot ሺڄሻ represents a dot product. Lower case ݔ and ݕ are spatial coordinates, and upper case ܺ and ܻ are 
coordinates in the autocorrelation space. 
 
G. Definition of Local Nonaffinity 
 
 In experiments with cells, we used a second definition of heterogeneity, called local nonaffinity. We 
began by choosing a 47×47 µm2 region of interest. (Justification for this size of region is given in section 
III.C.) In-plane displacement components within the region of interest u and v were fit to the equations u 
= a1 + b1x +c1y and v = a2 + b2x +c2y. As each of these functions were linear, they defined an affine 
displacement field in the region of interest. Deviations from the fitted affine displacements resulted from 
local heterogeneities in the displacement field. We therefore defined a second metric for heterogeneity by 
computing the difference between the actual displacement at the center of the region of interest and the 
affine displacement. We called the difference the local nonaffinity. This process was repeated for many 
regions of interest to give full-field data on local nonaffinity. 
 
H. Fiber Network Model 
 
 Two different methods were used to generate random fiber networks for theoretical modeling. The 
first is commonly used to mimic networks of intracellular fibers such as actin [24]. This method deposited 
fibers of a chosen length at random orientations and positions. All overlapping fibers were connected. 
This network is characterized by two length scales, the total fiber length lt and the average length between 
connections, lc. Here we used fibers having a ratio lt / lc = 25, which is in the middle of the range used in 
previous studies [24,25]. This produced networks with an average connectivity, defined as the number of 
fibers meeting at each node, of 3.8. The second method for generating the fiber network has been 
proposed to match the structure of extracellular matrix fibers such as fibrin and collagen [28,54,55]. Full 
details are described by Grimmer et al [28]. First, nodes were randomly seeded in the domain and a value 
of connectivity was given to each node. Next, fibers were randomly connected between nodes until each 
node’s connectivity was reached. After this procedure, the average connectivity of each network was 
found to be 3.3, which is close to the experimentally-measured value of 3.4 [54,55]. The network then 
underwent a simulated annealing process that matched the average fiber length to a desired mean fiber 
length L. Finally, the nodes were moved so that the fibers at each connection met with angles that more 
closely resembled the connections in networks of collagen fibers. As this the second type of model 
connected nodes rather than fibers, approximately half of the locations that fibers crossed were 
unconnected in this type of network. This is consistent with our observation of unconnected crossing 
fibers described in section II.C. To compare the actin and collagen network models, lc in the first model 
and L in the second model were set to be equal. For simplicity, we will call this length L for the rest of 



this manuscript. In the experiments, values for L in a collagen network range from 4 to 37 µm, as 
described in section II.C. 
 The domain simulated was an annulus with inner and outer radii of 5L and 100L. Though the model is 
two-dimensional, previous studies have shown that general trends match between two-dimensional and 
three-dimensional models [30,31,56], which allows us to compare qualitative trends observed in the 
model to those observed in the three-dimensional experiments. Five different networks of each type were 
generated. Nodes on the outer boundary were constrained to have no translation or rotation. Nodes with a 
radial position between 5L and 6L were displaced radially by 1% of the annulus’ inner radius and 
constricted not to rotate. This range of radial positions produced a uniform contraction along the inner 
boundary of the annulus. The fibers were modeled as linear two-node Timoshenko beam elements and 
connections were tied, which fully coupled displacement and rotation between the fibers. The bending 
stiffness kb and axial stiffness ka of the fibers were combined into a single dimensionless ratio κ given by 
κ = kb/(kaL2). Previous studies have reported that the value of dimensionless bending stiffness κ for 
collagen fibers is ~10-4 [29–32], which was also used here. The model was implemented in the finite 
element software Abaqus 6.12 (Dassault Systemes). The system was solved using the software’s implicit 
static solver. The radial displacements from the simulation were then fit to the equation 
        ufit = –(Arn + Br –n),     (Eq. 4) 
which is similar to Eq. 1 but with an added second term, which is necessary when using a fixed outer 
boundary [28]. This equation was then used with Eq. 2 to compute the heterogeneous displacements u’. 
To avoid artifacts from the fixed outer boundary, data are reported for nodes inside 70% of the outer 
radius. 
 
I. Statistical Analysis 
 
 Comparisons between groups used medians so that the results would be insensitive to locations 
having erroneous displacements. Statistical analysis was performed in Matlab R2015a using the rank sum 
test or, for multiple comparisons, the Krushkal-Wallis test, both of which are nonparametric. 
 
III. RESULTS 
 
A. Heterogeneous Displacements 
 
 To induce contractile displacement fields on the length scale of a cell, we embedded microspheres of 
PNIPAAm within a matrix of collagen I fibers [43]. Upon heating, the microspheres contracted, and we 
computed the resulting field of displacements using DIC (Fig. 1). Because the random contrast pattern 
used for DIC was the network of fibers itself, the DIC sometimes failed to determine displacements in 
regions of low fiber density. To identify these erroneous locations, we used a threshold based on the 
gradient of the displacement field as described in the Methods. Whereas many image correlation 
algorithms use interpolation to fill in erroneous regions, we show them here in white and leave them out 
of the following analyses. The equivalent of Fig. 1 with no erroneous data points removed is given in 
Supplemental Fig. S2. 
 The data show nonzero displacements in the angular (θ) direction (Fig. 1e). As the microsphere 
contracts uniformly, applying only radial displacements at its boundaries, the θ displacements result from 
local variations in stiffness of the fiber network. Heterogeneity is also present in the field of radial 
displacements, as indicated by the fluctuations over space (Fig. 1d). The heterogeneous displacements u’ 
as defined by Eq. 1 are large (Fig. 1g), with maximum magnitude approximately half that of the measured 
displacements (Fig. 1c). 
 To demonstrate that the heterogeneity was not simply a result of experimental noise, we imaged a 
PNIPAAm microsphere during three cycles of contraction. Before inducing contraction, we acquired an 
image of the reference state. We then induced a cycle of contraction that increased the temperature twice, 
generating states of low and high contraction, followed by recovery of the microsphere to its initial size. 



This cycle of low contraction–high contraction–recovery was carried out thrice; displacements were 
computed for the low contraction and recovered time points (Fig. 2). At the low contraction time point, 
displacements in the first cycle were smaller than in later cycles (Fig. 2b). Additionally, there were 
noticeable permanent displacements after the first loading cycle (Fig. 2c). These observations are 
consistent with studies that applied multiple cycles of uniform shear and observed permanent 
deformations after the first loading cycle [18,21]. The permanent displacements have been shown to result 
from preconditioning of the fiber network caused by fibers reorienting or increasing in length in 
directions of tension [21]. Strikingly, after the preconditioning of the first cycle, the displacements—both 
u and u’—appeared nearly identical (Fig 2b,c), indicating that the heterogenous displacements observed 
here are not due to random noise but rather result from repeatable local displacements within the network. 
To compare displacements at different cycles, we computed the normalized difference D in displacement 
between cycles according to the equation  

       ( ) ( )
1/22 2

m n m nD u u u u⎡ ⎤= − +
⎣ ⎦ ,  (Eq. 5) 

where u is the magnitude of the displacement, subscripts indicate cycles m and n (m, n = 1, 2, or 3), and 
the angled brackets  indicate a mean over all locations in the image. Numerous microspheres were 
then subjected to the same cycles of contraction and recovery illustrated in Fig. 2a. The normalized 
difference D was computed for each microsphere for both the total displacement field (Fig. 2d) and the 
heterogeneous displacement field (Fig. 2e). On average, total displacements of cycles 2 and 3 differed by 
only 3%, and heterogeneous displacements differed by only 10%. As these differences between cycles are 
so small, we conclude that experimental noise had a negligible effect on the results. 
 As the measurement of displacements is robust, we now consider how heterogeneity is affected by 
fiber length, which has been considered in previous studies [24,25,27,28,35]. We modulated the fiber 
length while keeping the overall protein concentration the same (4 mg/ml) by polymerizing mixtures of 
the same collagen concentration at 22°C (to generate longer fibers with average length 18.7 µm) or 30°C 
(to generate shorter fibers with average length 4.2 µm). We used a dimensionless metric for 
heterogeneity, χ = u’ / u, where χ was computed and averaged over all positions in each of the networks 
studied. As we will demonstrate in the next section this is a rigorous means to quantify the heterogeneity. 
Fiber networks having short fibers had lower dimensionless heterogeneity χ than those with long fibers 
(Fig. 3). Additionally, heterogeneity of networks with short fibers was not statistically different from 
polyacrylamide (Fig. 3), which is heterogeneous at small length scales [57,58]. For example, 
polyacrylamide made with the same concentration of acrylamide and bisacrylamide used here was tested 
with nanoindentation and found to have a mean Young’s modulus of 0.48 kPa with a standard deviation 
of 0.16 kPa [59]. Assuming a normal distribution, the modulus would therefore vary by a factor of >5. 
This is consistent with a different study that reported the shear modulus of polyacrylamide to vary by a 
factor of ~7 [57]. For the polyacrylamide used here, the pore size is ≈330 nm [60]. At larger length scales, 
such as the 4.2 µm collagen fibers, heterogeneity in the local stiffness may be lower than the factor of 5-7, 
but it is nonetheless significant as demonstrated by the nonzero values of χ. 
 
B. Decay of Heterogeneity Over Distance 
 
 An interesting observation is that the heterogeneous displacements are not always largest near the 
contracting microsphere—they sometimes have large magnitudes at distances of several tens of microns 
from the microsphere (e.g., Fig. 1g, arrow head). Intuitively one may expect that at sufficiently small 
displacements, the network should behave as a homogeneous continuum. This would imply that the 
regions of large heterogeneity as shown by the arrow head in Fig. 1g would occur only near the 
microsphere, where deformations are largest. For heterogeneous displacements to become negligible at 
small displacements, they would have to decay more quickly over distance than total displacements. This 
hypothesis is consistent with a previous theoretical model that predicted heterogeneous displacements to 



decay exponentially over distance [25], which is faster than the power law decay of total displacements 
observed in our experiments.  
 To determine whether the network becomes essentially homogeneous at small deformations, we used 
a theoretical model for a fiber network that simulates stretching, bending, and buckling of each fiber. Two 
different fiber networks were simulated. The first, typically used to simulate intracellular networks such 
as actin [24], deposited fibers randomly and connected the ones that crossed. The second, designed to 
match fibrous extracellular materials like collagen, deposited nodes, connected them with fibers, and 
moved the nodes to achieve a desired distribution of fiber lengths [28,54,55]. Representative images of a 
collagen network and the two simulated fiber networks are given in Fig. 4a-c. For both simulated 
networks, a contracting circle of initial radius 5 fiber lengths contracted by 1% within a network having 
radius of 100 fiber lengths. The heterogeneous displacements u’ were computed and their magnitudes 
were averaged around the circle to give heterogeneity over distance. The data are plotted on log-log and 
log-linear axes to compare power law and exponential fits (Fig. 4d-g). In agreement with a previous 
model [25] the first type of fiber network appears more linear on log-linear axes (Fig. 4d, correlation 
coefficient R2 = 0.988) than log-log axes (Fig. 4e, R2 = 0.950). By contrast, the second type appears more 
linear on log-log axes (Fig. 4g, R2 = 0.988) than log-linear (Fig. 4f, R2 = 0.957). These differences are 
small though, and for either model, the heterogeneous displacements fit to Eq. 4 with an exponent n that 
is not statistically different from the value of n computed by fitting the total displacements. This may 
imply that heterogeneous displacements decay over distance at the same rate as total displacements. 
 The two networks can be compared further by taking the ratio of heterogeneous and total 
displacements, to give dimensionless heterogeneity χ. Whereas χ initially increases for the fiber network 
made to match actin (Fig. 4h), it remains constant for the network made to match collagen (Fig. 4i). This 
observation agrees with the notion that in actin networks heterogeneous displacements may initially decay 
exponentially (Fig. 4d and ref. [25]), but in collagen networks, heterogeneous displacements decay at the 
same rate as total displacements. Therefore, in collagen χ gives a useful and rigorous dimensionless 
metric for heterogeneity, which supports the use of χ to analyze the experimental data in Fig. 3. 
Furthermore, the fact that the heterogeneous displacements decay at the same rate as total displacements 
implies that there is no transition to homogeneous continuum behavior at small deformations far from the 
contracting microsphere. 
 To test the predicted scaling of heterogeneous displacements over distance, we performed 
experiments using a lower magnification (10×) objective, thereby achieving a larger field of view and 
data at larger distances from each contracting microsphere (Fig. 5a,b). Heterogeneous displacements for 
multiple microspheres are plotted against distance r from the center of each microsphere on both log-log 
(Fig. 5c) and log-linear (Fig. 5d) axes. For all data, the curves appear more linear on the log-log axes (Fig. 
5c); at no point do the data appear linear on log-linear axes (Fig. 5d). Furthermore, the slopes of linear fits 
to the data on log-log axes were not statistically different for heterogeneous displacements as compared to 
total displacements, in agreement with predictions of the theoretical model. To determine whether the 
observed power law scaling was an artifact resulting from the fact that our definition of heterogeneous 
displacements (Eq. 2) depends on a power law fit to the radial displacements (Eq. 1), we repeated this 
analysis for only the angular component of displacement uθ. It should be noted that for the axially 
symmetric contraction imposed here, uθ is a heterogeneous mode of displacement, but it misses 
heterogeneity in the radial direction. Nevertheless, analyzing uθ offers the advantage that it does not rely 
on the fitting of Eq. 1. In analyzing uθ, we observed the same trend, with a power law better matching the 
decay of displacements than an exponential function (Supplemental Fig. S3). Therefore, heterogeneous 
displacements decay as a power law at a rate no faster than total displacements. 
 
C. Cell-Induced Heterogeneity 
 
 The definition of heterogeneity (Eq. 2) used the fitting of Eq. 1, which applies only for the case of 
spherically symmetric contraction or expansion. Quantifying heterogeneity for general loading conditions, 
such as forces due to a contracting cell, requires a different metric for heterogeneity. The heterogeneous 



displacements appear to occur within discrete regions of the same size in each image. It is therefore 
reasonable to establish a second metric for heterogeneity using a local region of size approximately equal 
to the size of a heterogeneous region. We began by quantifying the size of a heterogeneous region by 
performing an autocorrelation on the heterogeneous displacement data (Eq. 3 and Fig. 6a,b). To quantify 
the size, we define the radius R1/2 to be the distance over which the autocorrelation declines to a value of 
1/2. The typical size of a heterogeneous region is then 2R1/2, which has an average value of 42 μm (Fig. 
6c). Conveniently, the value of 42 µm is approximately equal to the size of a cell, indicating that 
quantifying heterogeneity over a region of this size will also quantify heterogeneity at the scale of a cell. 
 We then considered displacement data within a 47×47 µm2 square region of interest and computed 
the local nonaffinity as described in the methods. As this metric computes the deviation from a locally 
affine displacement, we refer to it as the local nonaffinity (Fig. 6d). To establish that this definition of 
local nonaffinity is meaningful, we compared it to our previous observations of heterogeneity, observing 
that the local nonaffine displacements fit to a power law and depend on fiber length (Supplemental Fig. 
S4). As these trends match those already presented, the local nonaffinity is a useful metric for 
heterogeneity. It offers the advantage that no fitted solution such as that in Eq. 1 is required, and thus it 
can be applied to any loading conditions, even those due to a contracting cell. 

To investigate heterogeneous displacements resulting from the forces of cell contraction, we 
computed local nonaffinity of the displacement fields produced by migrating cells embedded in collagen 
matrices (Fig. 7). Similar to experiments with the contractile isotropic PNIPAAm microspheres, cell-
induced displacements in collagen matrices made of short fibers were less heterogeneous than 
displacements in matrices of long fibers (Fig. 7e). This trend was observed for multiple collagen 
concentrations (2.5 mg/mL, Fig. 7; 3.5 mg/mL, Supplemental Fig. S5). Notably, compared to PNIPAAm 
microspheres, cells applied anisotropic forces along the axis of the cell, thereby magnifying the 
consequences of matrix heterogeneity. Whereas the isotropic forces induced by contractile PNIPAAm 
microspheres deformed fibers primarily in the radial direction, the anisotropic loads exerted by cells 
concentrated forces to a limited number of fibers oriented along the axis of the cell. With fewer fibers 
under tension, the directions of cell-induced displacements in longer fiber networks were more random 
and can be seen branching and propagating perpendicularly from the axis of cell contraction. This 
observation was not present in more homogeneous, shorter fiber networks wherein displacements were 
smooth and aligned with the axis of the cell (Fig. 7).  
 
IV. DISCUSSION 
 

The extracellular matrix is known for its complex mechanical cues that result in part from its 
heterogeneous fibrous structure. Here we mimicked the contractile forces of a cell, quantifying both 
heterogeneity and local nonaffinity of the resulting displacement field. Heterogeneous displacements were 
reproducible and significantly affected by fiber length, with more heterogeneity observed in matrices with 
longer fibers. Heterogeneous displacements decayed no more quickly than the total displacements, 
indicating no transition to homogeneous behavior. Heterogeneity in displacements induced by isolated 
cells migrating through a 3D matrix matched the findings from the acellular experiments with PNIPAAm 
microspheres. Additionally, under local anisotropic loads produced by a cell, the heterogeneous matrix 
structure takes on increasing importance: instead of aligning with the axis of the migrating cell, the vector 
field of displacements was observed to point in seemingly random directions. Importantly, these 
observations of heterogeneity represent the scale at which continuum behavior breaks down and 
contributions from individual fibers dominate.  

Our experiments highlight a subtle but important difference between networks of collagen and other 
fibrous materials such as actin. Whereas in collagen, decreasing the fiber length made the displacement 
field more homogeneous (Fig. 3), experiments in actin under uniform shear observed that decreasing the 
fiber length made the displacements less homogeneous [35]. This difference is likely to be caused by the 
different structures of actin and collagen networks. In actin networks, the fibers have two characteristic 
lengths, the total length of the fiber L and the length between fiber connections lc. But collagen fibers 



appear to connect only at their endpoints, so for collagen L = lc. As the key length for fiber bending is the 
distance between connections, the fiber length in collagen should be compared not to the total length of an 
actin fiber but rather to the distance between connections lc. Theoretical models matching the structure of 
actin networks have demonstrated that reducing lc makes the displacements more homogeneous 
[24,25,27], in agreement with our data. 
 Previous models have studied the effect of length scale on heterogeneity by averaging heterogeneous 
displacements over a region of some characteristic size and observing a decrease in the resulting average 
as the region size is increased [24,27]. We note, however, that in our experiments displacements decay 
with distance, so averaging over different region sizes is inappropriate. Instead, we can study how the 
heterogeneous displacements decay with distance from the center of the microsphere (Fig. 5, 
Supplemental Fig. S3). The power law decay that we observe is slower than predicted by a previous 
model [25], which predicted that heterogeneous displacements due to local forces decay exponentially 
over distance. Our modeling suggests that this difference is due to the network geometry simulated. 
Whereas fiber networks designed to match fibrous actin show exponential decay, networks designed to 
match fibrous collagen exhibit power law decay (Fig. 4). The power law decay is also present in the 
experimental data (Fig. 5, Supplemental Fig. S3), and it is consistent with a theoretical model that showed 
nonaffine displacements averaged over a region decay as a power law with increasing size of that region 
[27]. The power law is also consistent with the fact that fluctuations in local stiffness are correlated over 
space following a power law [61]. The power law scalings indicate that there is no length scale for which 
the fiber network becomes homogeneous, even for small deformations far from the applied loading. 
 That displacements are heterogeneous at all scales implies that strains defined based on the 
displacement gradient poorly characterize the displacement field. This has implications for efforts to 
quantify 3D tractions applied by cells embedded in fibrous materials. Some of those studies have inferred 
tractions by computing the strains [40–42], whereas others have also applied a constitutive relationship to 
compute tractions or energy exerted by the cell [37–39]. In principle, the power law scaling of 
heterogeneous displacements forbids either of these methods, though in practice the heterogeneity may be 
smaller than the experimental noise, in which case errors due to heterogeneity would be insignificant. A 
reasonable maximum level of heterogeneity may be that of polyacrylamide, which is often used for 
studies in cell mechanobiology. The polyacrylamide used in this study has a dimensionless heterogeneity 
of χ ≈ 0.1 (Fig. 3). To achieve values of heterogeneity this small in a collagen network, the fibers must be 
relatively short (e.g., 4 µm, Fig. 3). In many of the previous studies, this appears to be the case, though 
quantitative justification was lacking. The local nonaffinity presented here gives a quantitative means to 
verify that the heterogeneity is negligible. 
 A premise underlying this work is that the heterogeneous displacements result from local gradients in 
the stiffness of the fibrous network [23]. Other experiments have quantified local stiffness using active 
microrheology, observing stiffness to vary over space by an order of magnitude [62–65]. Similarly, an 
order of magnitude variation was observed in tractions at the interface between a fibrous network and a 
homogeneous polyacrylamide gel [66]. The variation in stiffness decreases with decreasing fiber length 
[65], in agreement with our data (Fig. 3). Our results are therefore consistent with data quantifying local 
stiffness of fibrous materials, but heterogeneous displacements should not be interpreted only through 
their effect on stiffness. As heterogeneity is a characteristic of the displacement field, it may offer insights 
for cases in which cell-induced displacement fields affect cell response to matrix mechanics. For example, 
cell-induced displacements propagate over a long range in fibrous materials, which may be a mechanism 
for long-range mechanical sensing [15,52,53]. As another example, fiber displacements are required to 
generate aligned bundles of fibers that direct cell migration [3,5]. As both of these examples depend on 
the displacements of the fibers, heterogeneity of the displacement field is likely to play an important role. 
 Matrix heterogeneity could produce variability in numerous cellular processes, adding to the already 
large set of factors causing biological variability. Recently, advanced profiling techniques like 
quantitative single-cell RNA sequencing have detected transcription of individual cells [67–70], 
observing the transcriptome to vary dramatically from one cell to the next. Chemical gradients and the 
availability of ligands almost certainly contribute greatly to this variability. Likewise, mechanical signals 



such as stiffness also affect expression profiles [6,9]. It is often assumed, however, that in fibrous 
networks, the mechanical environment is homogenous at the scale of an individual cell. But the 
displacements are heterogeneous as well, implicating mechanics as another source of biological 
variability. To the cell, this heterogeneity could manifest itself as changes in stiffness that vary 
dramatically over space, as has been predicted by recent theoretical models [42,71]. The cell would sense 
the matrix not as a uniform environment, but rather as a heterogeneous one composed of numerous stiff 
and compliant islands. The fibrous structure could further amplify that heterogeneity by bending cell-
induced displacement fields towards or away from those islands. 
 The heterogeneity observed here poses two interesting questions. Firstly, how does a cell sense 
stiffness in a heterogeneous mechanical environment? One study proposed that the cell may compensate 
by elongating to sample several locations simultaneously [71]. Alternatively, the cell could average 
measurements over time, thereby tempering its response to spatial fluctuations. Secondly, how do 
mechanical cues propagate through heterogeneous fibrous matrices? On two dimensional substrates, cells 
migrate toward stiffer environments and toward tensile mechanical forces [1], but in heterogeneous 
matrices, cell sensing is subject to the stochastic organization of the fibers. Voids or inclusions lying 
immediately in front of the migrating cell may be mechanically amplified or cloaked due to random 
features of the matrix. This poses the interesting idea that heterogeneity in cell sensing may not be driven 
totally by heterogeneity in the forces produced cell; rather, random features of the matrix and their local 
mechanics may predetermine the cell’s response. It remains to be determined whether such matrix 
features can be used to control cell behavior in tissue engineering and treatments to disease. 
 
ACKNOWLEDGMENTS 
 
 We acknowledge the Materials Science Center at the University of Wisconsin-Madison for use of the 
confocal microscope. This work was supported in part by National Science Foundation grant number 
CMMI-1749400 and by NIH NCI P30CA014520—UW Comprehensive Cancer Center Support Grant. 
 
  



FIGURES 

 
Figure 1 

 
Heterogeneous displacements. (a, b) Images of collagen network (4 mg/ml, polymerized at 22°C, average 
fiber length 18.7 µm) before (a) and after (b) contraction of the PNIPAAm microsphere. (c) Resulting 
displacement field. Arrows indicate direction; colors, magnitude of displacements. (d) Radial 
displacements ur with blue (negative) indicating inward. (e) Azimuthal displacements uθ with positive 
being counterclockwise. (f) Paths (e.g., red arrow in panel c) are drawn outward from the center of the 
microsphere, and displacements are computed along those paths. The opposite of the radial displacement, 
-ur, over distance, r, is shown for multiple paths (gray lines). The mean (solid green line) fits to Eq. 1, ufit 
= -Ar–n, (dashed line), which gives the fitted average displacement field. For this microsphere, n = 0.93. 
(g) The heterogeneous displacement field u’, as defined by Eq. 2. In panels (c), (d), (e), and (g), white 
spots indicate regions that were not included in the analysis. 
  



 
Figure 2 

 
Heterogeneous displacements are reproducible during cyclic loading. (a) PNIPAAm microspheres in a 
collagen network (3 mg/ml, polymerized at 27°C) are imaged at a reference temperature (27°C) and then 
repeatedly heated to different temperatures to yield reproducible contraction. Microspheres heated to 
34°C decrease in volume to yield low levels of contraction; subsequent heating to 38°C yields high levels 
of contraction. The microspheres are then cooled to the initial reference temperature, allowing them to 
recover to their initial size. Each cycle of low contraction–high contraction–recovery is repeated three 
times. (b, c) Total displacements u and heterogeneous displacements u’ for each of three cycles at low 
contraction (b) or after the PNIPAAm microsphere has recovered to its initial size (c). In all cases, the 
reference used for DIC is the first time point acquired at 27°C. Arrows indicate direction; colors, 
magnitude of displacements. (d, e) Relative difference D (Eq. 5) between cycles m and n for total 
displacements (d) and heterogeneous displacements (e). Each dot represents an independent measurement 
from a separate PNIPAAm microsphere. 
  



Figure 3 

 
Effect of fiber length on dimensionless heterogeneity χ. Collagen matrices (4 mg/ml) having long fibers 
(polymerized at 22°C, average length 18.7 µm) have statistically different χ from equivalent matrices with 
short fibers (polymerized at 30°C, average length 4.2 µm) or polyacrylamide (p < 0.05, Krushkal-Wallis 
test with Bonferroni correction for multiple comparisons). Each dot shows the median of χ for a different 
microsphere. Lines show medians over all microspheres. 
 
 
Figure 4 

 

 
Heterogeneous displacements due to a contracting inclusion predicted by the fiber network model. (a) 
Representative image of collagen fiber network. (b) Representative image of first type of network, 
designed to match the structure of actin. In this type of network, all fibers that cross are connected. (c) 
Representative image of second type of network, designed to match the structure of collagen. In this type 
of network, approximately half of the fibers that cross are unconnected. (d-g) Decay of magnitude of 
heterogeneous displacement u’ over distance for fiber networks matching the structure of actin (d, e) or 
collagen (f, g). Panels (d) and (f) plot the data on log-linear axes; panels (e) and (g) plot the data on log-
log axes. (h, i) Dimensionless heterogeneity χ for fiber networks matching actin (h) and collagen (i). For 
all plots, solid lines show results a different random network; dashed lines indicate the means over all 
networks. 
 
 



 
 
 
Figure 5 

 
Heterogeneous displacements decay as power law. (a, b) Representative field of total displacements u (a) 
and heterogeneous displacements u’ (b) in fibrous collagen matrices (4 mg/ml, polymerized at 22°C, 
average fiber length 18.7 µm). Arrows indicate direction; colors, magnitude of displacements. (c, d) As in 
Fig. 1f, heterogeneous displacements are determined along radial paths drawn outward from the center of 
each microsphere and averaged along these paths. Each gray line shows average of heterogeneous 
displacements for a single microsphere; blue lines show the average over all microspheres. Axes are log-
log (c) and log-linear (d). Dashed red lines are linear on each of the axes, corresponding to fits to a power 
law and an exponential, respectively. 
 
 
Figure 6 

 
 
Measurement of local nonaffinity. (a) Autocorrelation of heterogeneous displacement field in Fig. 1g. (b) 
The autocorrelation is averaged around angle by drawing circles centered at the origin of panel a and 
taking the average around each circle, giving autocorrelation versus distance. The distance R1/2 for which 
the autocorrelation drops to a value of 1/2 is a characteristic radius of a region of heterogeneous 
displacement. (c) The size of a heterogeneous region R1/2 is computed for multiple different collagen 
networks (all 4 mg/mL, polymerized at 22°C) having long fibers (average length 18.7 µm). Each dot 
represents a different network; line represents median of 42 µm. (d) Local nonaffinity, which is defined as 
the difference between the measured displacement u and an affine fitted one uaff. For each position in 



space, uaff is computed by fitting all displacements in a 47×47 µm2 window around that point to a plane of 
the form u = a + bx + cy. The fitting is performed for both components of the displacement vector. 
 
 
Figure 7 

 
Heterogeneous displacements induced by cell contraction as quantified by local nonaffinity. (a) Image of 
single cell (magenta) embedded in 2.5 mg/mL collagen network (green) with either long fibers 
(polymerized at 22°C, average length 37.0 µm) or short fibers (polymerized at 37°C, average length 13.7 
µm). (b) Cell-induced displacement field showing magnitude (colors) and direction (quivers). (c) Local 
nonaffine displacement. (d) Dimensionless local nonaffinity χlocal. (e) Comparison of median 
dimensionless local nonaffinity for networks having short or long fibers. Each dot represents median of 
local nonaffine displacements due to a different cell; lines represent the medians. The two data sets are 
statistically different (p < 0.01, rank sum statistical test).  
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