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An outstanding problem of interdisciplinary interest is to understand quantitatively the role of social contacts
in contagion dynamics. In general, there are two types of contacts: close ones among friends, colleagues and
family members, etc., and ordinary contacts from encounters with strangers. Typically, social reinforcement
occurs for close contacts. Taking into account both types of contacts, we develop a contact-based model for
social contagion. We find that, associated with the spreading dynamics, for random networks there is coexistence
of continuous and discontinuous phase transitions, but for heterogeneous networks the transition is continuous.
We also find that ordinary contacts play a crucial role in promoting large scale spreading, and the number
of close contacts determines not only the nature of the phase transitions but also the value of the outbreak
threshold in random networks. For heterogeneous networks from the real world, the abundance of close contacts
affects the epidemic threshold, while its role in facilitating the spreading depends on the adoption threshold
assigned to it. We uncover two striking phenomena. First, a strong interplay between ordinary and close
contacts is necessary for generating prevalent spreading. In fact, only when there are propagation paths of
reasonable length which involve both close and ordinary contacts are large scale outbreaks of social contagions
possible. Second, abundant close contacts in heterogeneous networks promote both outbreak and spreading
of the contagion through the transmission channels among the hubs, when both values of the threshold and
transmission rate among ordinary contacts are small. We develop a theoretical framework to obtain an analytic
understanding of the main findings on random networks, with support from extensive numerical computations.
Overall, ordinary contacts facilitate spreading over the entire network, while close contacts determine the way
by which outbreaks occur, i.e., through a second or first order phase transition. These results provide quantitative
insights into how certain social behaviors can emerge and become prevalent, which has potential implications
not only to social science, but also to economics and political science.

I. INTRODUCTION

The spreading of certain behaviors (contagion) in the hu-
man society has social, economical, and political implica-
tions, which has attracted a great deal of interdisciplinary re-
search effort. Conventional methods developed to uncover
and understand the dynamics of social contagion are more or
less based on some kind of threshold and memory effects [1–
10]. For example, it is likely for an individual to adopt certain
behavior if he/she possesses friends who have already adopted
the behavior. From a network point of view, for a node to
adopt certain behavior, the number of connected nodes who
have already accepted and exhibit the behavior must exceed
a threshold [1, 11]. That is, an individual will become will-
ing to adopt a behavior if he/she has received sufficient and
repeated information about the behavior from his/her friends
(or neighbors in the underlying social network) [12, 13]. In
the real world, the influences of network neighbors and the
tendency for any individual to adopt certain behavior can be
highly non-uniform. There is empirical evidence that individ-
uals and their social contacts tend to play heterogeneous roles
in contagion [14, 15]. For example, regardless of the nature
of the behavior, there always exist certain individuals who are

∗ shimin.cai81@gmail.com

reluctant to accept or adopt the behavior. To account for the
heterogeneity, a variant of the classic threshold model [1] was
introduced [11], where a certain fraction of nodes were as-
sumed to be immune to the behavior. These are the blocked
nodes, and if their number or density is large enough, both
the extent and diffusion speed of the contagion spreading will
be suppressed, provided that no cascading or avalanche type
of processes occur. The effects of heterogeneity in social con-
tacts have been recently studied [16] using a contagion thresh-
old model incorporating weighted edges, with the finding that
heterogeneity in the weights can suppress the propagation of
contagion.

The influences from connected neighbors in a social net-
work represent a kind of reinforcement effect, where the prob-
ability of adopting certain social behavior by an individual is
modified when he/she receives information about the behav-
ior through social contacts. In recent years, spreading dynam-
ics driven by reinforcement have attracted a great deal of at-
tention from researchers in diverse fields including social sci-
ence, economics, and physics [9, 12, 17–20]. The key fact that
motivated our present work is that, with respect to reinforce-
ment, the nature of social contacts can have drastically differ-
ent impacts. In particular, from close social contacts such as
family members, friends, and colleagues, reinforcement can
be much stronger than that from conventional or ordinary so-
cial contacts with, e.g., strangers. For a model of social conta-
gion to capture the real behaviors as accurately as possible, the
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distinct reinforcement effects from close and ordinary social
contacts must be taken into account.

The need to distinguish two types of social contacts in terms
of their influences has been well documented in the litera-
ture. Historically, Lazarsfeld and Merton pointed out that
mass media messages can be reinforced by interpersonal com-
munications [21]. There were empirical evidence and theo-
ries for the conjecture that more interpersonal conversation
or discussions can promote the impact of media information
through reinforcement [22, 23]. In general, individuals are
more likely to engage in interpersonal communications with
family, friends or colleagues as often as they get media news
or messages from newspapers or other individuals [24]. That
is, for reinforcement, close social contacts are more effective
than interaction with machines or strangers. At the present,
there exists considerable empirical evidence that, even for in-
terpersonal communications, there is heterogeneity in their
role in social reinforcement. In general, the degree of rein-
forcement depends on factors such as individual responsive-
ness, the number of neighbors capable of reinforcing, and
respondent-reinforcer pairing [25–27]. For example, the num-
ber of reinforcers is determined by the degree of the individ-
ual in the social network, and reinforcement among strangers,
even if there are social contacts among them, is far less likely
than that among close relationships [27]. That is, in reality,
social contagion is strongly contact-based, and not all social
contacts can lead to reinforcement.

To our knowledge, in the current literature, there is no work
on social contagion dynamics which takes into account the
two distinct types of social contacts: close and ordinary. In
general, both types of contacts exist, and the question is how
their coexistence affects the basic dynamical behaviors. In
this paper, we propose a general model of social contagion
with two distinct transmission channels: one through close
and another through ordinary contacts. For random networks,
we develop an analytical edge-based compartmental method
to solve the model, which enables us to make a number of
predictions in terms of the fundamental characterizing quanti-
ties such as the final outbreak size, the outbreak threshold, and
the nature of the phase transition.We also carry out extensive
agent-based, stochastic simulations to assess the performance
of the model. For random networks, the computations reveal
that continuous (second order) and discontinuous (first order)
phase transitions coexist in random networks, which is ascer-
tained by an analytic bifurcation analysis of the system. A
computational study of two representative empirical networks
with a heterogeneous degree distribution from the real world
reveals that only continuous transitions can be expected. We
provide a physical understanding of the basic spreading dy-
namics through a detailed statistical analysis, uncover the con-
ditions under which contagion prevalence can arise, and vali-
date the existence of an optimal fraction of ordinary contacts
for outbreak at a global scale.

Two striking phenomena are uncovered. One is that an in-
terplay between ordinary and close contacts is necessary for
generating prevalent spreading on random networks. In par-
ticular, only when there are propagation paths of sufficient
length which involve both close and ordinary contacts are

large scale outbreaks of social contagions possible. The sec-
ond phenomenon is that, for heterogeneous networks, a con-
siderable number of close contacts will promote outbreak of
the contagion by forming channels for successful transmis-
sions among hubs. Taken together, ordinary contacts make
possible spreading over the entire network, while close con-
tacts not only shape the way by which outbreaks occur, i.e.,
through a second or first order phase transition in random
networks, but also facilitate local spreading and outbreaks in
heterogeneous networks. These results provide quantitative
insights into how social behaviors can emerge and become
prevalent, which has potential implications not only to social
science, but also to economics and political science.

In Sec. II, we present our general model of spreading dy-
namics with two distinct types of social contacts. In Sec. III,
we describe the edge-based compartmental analysis approach.
In Sec. IV, we implement our spreading model on random
networks and carry out agent-based simulations and a com-
prehensive theoretical analysis, and then extend our study to
empirical heterogeneous networks. In Sec. V, we present con-
clusions and an outlook.

II. MODEL

To gain basic insights into the roles of close and ordinary
contacts in social contagion dynamics, we firstly assume that
the individual social relationships are described by a random
network of size N (i.e. Erdös-Rényi (ER) networks), where
a pair of nodes are connected with each other with probabil-
ity pe so that the network degree distribution and the mean
degree are p(k) = e−〈k〉〈k〉k/k! and 〈k〉 = Npe, respec-
tively. The total number of edges is E = N〈k〉/2, where
each edge represents a particular social contact between two
individuals. The dynamics of social contagion are governed
by the standard susceptible-adopted-recovered (SAR) model,
where any node (individual) can be in one of the three states.
In particular, a node in the susceptible state may adopt a be-
havior when it receives information about it from its neigh-
bors who have already adopted the behavior. If a node is in
the adopted state, with certain probability it will transmit the
information to its susceptible neighbors. A node in the re-
covered state is “idle” and does not transmit any information.
A unique feature, which makes our model distinct from the
classic SAR model, is that there are two distinct ways for an
adopted node to transit information to a susceptible neighbor,
depending on whether the underlying social contact is close or
ordinary. Empirical evidence [25–27] suggests that the trans-
mission associated with a close contact contributes to rein-
forcement, but that with an ordinary contact does not. For a
close contact, there is a memory effect in that the numberm of
times that a susceptible node receives the information from the
adopted neighbors is stored and used to determine the proba-
bility that the node actually adopts the behavior [13], mak-
ing the underlying dynamics non-Markovian. However, for
an ordinary contact, a susceptible individual would accept the
behavior from any adopted neighbor with probability p. We
subsequently extend our model to empirical networks.
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The dynamical process of social contagion can be de-
scribed, as follows. Initially, Ec = Eµ edges are randomly
selected as close contacts, associated with which is reinforce-
ment. µ denotes the probability that an edge is assigned as a
closed contact. The remaining edges represent ordinary con-
tacts. A contagion is initiated within a single adopted cluster
of size Nρ0, while the remaining nodes are in the susceptible
state. The spreading process starts and proceeds according to
the SAR model, and the nodal dynamical states evolve using
the synchronous updating rule. Specifically, an individual (i)
who has adopted the behavior attempts to transmit the behav-
ioral information to its susceptible neighbors (j). For a close
social contact, the transmission from the adopted end to the
susceptible end occurs with probability q, and j will success-
fully adopt the message or behavior only if it has received the
information at least T times, where T is the adoption thresh-
old. In this case, there is reinforcement. For an ordinary con-
tact, j becomes adopted with probability p, or the transmission
rate, without contributing to the accumulated times m. The
spreading process is repeated until all adopted individuals be-
come extinct in the network and the dynamics have reached a
stable steady state.

For simplicity, we assume in our study that the recovery
probability is r = 1, i.e., an individual who adopts the behav-

ior at time t will transmit the behavior to all its susceptible
neighbors at time t+ 1, after which it will lose interest in the
behavior and will not transmit the message or behavior again.
In all cases, we set q = 1.0.

III. THEORY

We present a theoretical analysis to elucidate the roles
of close and ordinary contacts in social contagion dynamics
based on the edge-based compartmental theory [28–31]. In
our model, a node u in a cavity state cannot transmit the be-
havioral information to its neighbors, but can receive it from
others [32]. The dynamical correlation among the states of
the neighbors is characterized by the two types of the con-
tacts. If node u with degree ku is susceptible at time t, it
does not belong to the cluster of initial seed of contagion and
it receives the information less than T times from close con-
tacts. We write ku = kCu + kOu , where kCu and kOu are the
numbers of close and ordinary contacts of u, respectively. Let
θX(t) (X ∈ {C, O}) be the probability that, up to time t, the
message or behavioral information has not been successfully
transmitted from one end of one close or ordinary contact of v
to the other end u. Combining the two conditions, we obtain
the probability that node u is in the susceptible state as

s(k, t) = (1− ρ0)

k∑
kC=0

(
k

kC

)
µk(1.0− µ)k−kC

T−1∑
mC=0

φCmC
(kC , t)θ

k−KC

O , (1)

where φCmC
is the probability that node u has received mC

pieces of information from close contacts by time t. The term∑k
kC=0

(
k
kC

)
µk(1.0− µ)k−KC represents the probability that

node u has kC edges corresponding to close contacts. The
detailed expression of φXmX

is given by

φXmX
(kX , t) =

(
kX
mX

)
θkX−mX

X (1− θX)mX . (2)

The fraction of susceptible nodes is

S(t) =
∑
k

p(k)s(k, t). (3)

We wish to obtain the expression of θX(t) according to its
definition of θX(t). In our model, an edge of a susceptible in-
dividual u can connect to a susceptible, an adopted or a recov-
ered neighbor v. Accordingly, θX(t) consists of three parts:

θX(t) = ξXS (t) + ξXA (t) + ξXR (t), (4)

where ξXS (t), ξXA (t) and ξXR (t) are the probabilities that the
neighbor is in the susceptible, adopted and recovered state,
respectively, and the information or message has not been suc-
cessfully transmitted to u up to time t.

If v is in the susceptible state, it cannot transmit the behav-
ioral information or message to u. Moreover, because node u
is in the cavity state, node v can only obtain the information
or message from other neighbors excluding u. Up to time t,
node v with degree kv = kC + kO can obtain mx pieces of
information from contacts of type X with the probability

τXmX
(kX , t) =

(
kX − 1

mX

)
θkX−mX−1
X (1− θX)mX . (5)

Node v will remain in the susceptible state if it has not re-
ceived more than T pieces of message or information through
close contacts, neither has it received any message from any
ordinary contact. There are two cases because the contact be-
tween v and u is either close or ordinary. Combining Eqs. (2)
and (5), we obtain the probability that node v is in the suscep-
tible state in each case as
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ΘC(k, t) =

k∑
kC=0

(
k

kC

)
µk(1.0− µ)k−kC

T−1∑
mC=0

τCmC
(kC , t)θ

k−kC
O , (6)

ΘO(k, t) =

k∑
kO=0

(
k

kO

)
µk−kO (1.0− µ)kO

T−1∑
mC=0

θkO−1O φCmC
(kC , t). (7)

From the degree distribution p(k), we obtain the probability
that the edge of type X is connected to a susceptible neighbor
as

ξXS (t) = (1− ρ0)

∑
k kp(k)ΘX(k, t)

〈k〉
, (8)

where kp(k)/〈k〉 is the probability that an edge is connected
to a neighbor of degree k in an uncorrelated network.

If v is an adopted node, it would transmit the information
or message to a susceptible neighbor through an edge with
probability λX ∈ {p, q}, leading to a decrease in θX(t). We
thus have

dθX
dt

= −λXξXA . (9)

Otherwise, v fails to transmit the information or message to
neighbor and becomes recovered, ξXR will increase. This
means that the increment dξXR must satisfy two conditions:
(a) the adopted neighbor has not transmitted the behavioral
information or message to neighbors, which occurs with the
probability 1 − λX , and (b) the adopted neighbor recovers
with probability γ. We thus have

dξXR
dt

= γ(1− λX)ξXA . (10)

From Eqs. (9) and (10) as well as the initial conditions
θX(0) = 1 and ξXR (0) = 0, we obtain

ξXR (t) = γ[1− θX(t)](1− λX)/λX . (11)

Combining Eqs. (4), (8), (9), and (11), we obtain the following
equation that governs the evolution of θX(t):

dθX(t)

dt
= (1− ρ0)λX

∑
k kp(k)ΘX(k, t)

〈k〉
(12)

+ γ[1− θX(t)](1− λX)− λXθX(t).

Using the identity S(t) + A(t) + R(t) = 1 and the fact that
the rate dA(t)/dt is equal to the rate at which S(t) decreases,
we have

dA(t)

dt
= −dS(t)

dt
− γA(t), (13)

dR(t)

dt
= γA(t), (14)

where A(t) and R(t) are the fractions of the adopted and
recovered population at time t, respectively. Accordingly,
R(∞) represents the final fraction of the recovered popula-
tion after the system has reached a steady state that no longer

has any adopted node. Equations (1-3) and (12-14) describe a
full and general picture of the contagion dynamics.

The steady state fraction of nodes that have adopted the
behavior can be obtained from Eq. (12) by taking the limit
t→∞ as

θX(∞) = (1− ρ0)

∑
k kp(k)ΘX(k,∞)

〈k〉
(15)

+ γ[1− θX(∞)]
1− λX
λX

.

It is now feasible to analyze the critical information trans-
mission probability. In the presence of social reinforcement
(T > 1), a vanishingly small number of seeds cannot trigger
a global adoption. It is useful to consider a finite fraction of
seeds: ρ0 > 0. In this case, θX(∞) = 1 is not a solution of
Eq. (15). At the critical point of first-order phase transition,
the condition

∂θC(θC(∞), θO(∞))

∂θO(∞))

∂θO(θC(∞), θO(∞))

∂θC(∞))
= 1 (16)

is fulfilled [33], where θX [θC(∞), θO(∞)] is the right-hand
side of Eq. (15).

IV. RESULTS

A. Erdös-Rényi (ER) networks

We simulate the spreading dynamics on ER networks with
Nr = 500 independent realizations. A new random network
with the same rewiring probability pe is built after every 25
independent realizations of the spreading dynamics. Unless
otherwise specified, the simulation parameter values in most
cases are N = 104, ρ0 = 0.003, q = 1.0 and 〈k〉 = 10.0
(corresponding to pe = 0.001). The number of edges is thus
E = 5 × 104. For small values of ρ0, analytic prediction can
be obtained to uncover the roles of the two distinct types of
social contacts in contagion dynamics.

A fundamental feature of the spreading dynamics of social
contagion is the emergence of phase transitions: as a system
parameter varies through a critical point, an outbreak occurs.
The transition can be continuous (second order) or discontin-
uous (first order). To gain insights into the role of close ver-
sus ordinary contacts in the characteristics of phase transition,
we calculate the final fraction of the recovered population for
different values of T and µ numerically and theoretically, as
shown in Fig. 1. In all cases, there is a phase transition. As the
fraction of close contacts in the network is increased, there is
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a change in the nature of the phase transition from being con-
tinuous to discontinuous, where the abrupt change in the final
recovered population at the transition point can be quite large
for relatively large values of the fraction. The dynamical ori-
gin of the discontinuity can be attributed to the relative abun-
dance of the close contacts that lay the ground for the occur-
rence of a drastic avalanche type of process, as suggested by
the previous result that a sufficient number of close contacts
with a relatively large transmission rate can trigger a massive
outbreak of contagion [13, 34]. For relatively higher values
of the adoption threshold T , second order transitions are more
likely, as illustrated in Fig. 1(c). The reason lies in the sus-
ceptible individuals in the critical state, i.e., the individuals
who have been informed by their adopted neighbors through
close contacts but have not adopted the message or informa-
tion yet. For a large value of T , it is more difficult to make
these individuals adopt the behavior, thereby requiring more
transmission to trigger a massive adoption process. The con-
tribution of reinforcement in this case is insignificant, leading
to a smaller avalanche size [34, 35]. Note the good agreement
between numerical and theoretical results, which validates the
edge-based compartmental approach.

Figure 1 also shows that close contacts of sufficient number
tend to delay the outbreak of massive contagion, as the corre-
sponding threshold values are larger than TC = 〈k〉/(〈k2〉 −
〈k〉) = 〈k〉−1 as predicted by the bond-percolation theory
for the conventional susceptible-infected-refractory (SIR) dy-
namics [36, 37]. More close contacts are more effective at
preventing a large scale outbreak, regardless of the values of
the transmission rate and adoption threshold T . This is quite
surprising as previous work had concluded that dense contacts
with social reinforcement would in general facilitate conta-
gion [17].

The counterintuitive phenomenon can be understood by es-
timating the contributions of the two types of distinct contacts
to the spreading dynamics. Figure 2 shows the key statistical
characterizing quantities for p′ = 0.3: the fraction of recov-
ered population (the first column), the numbers of three types
of transmission events (the second column), the distribution
P (L) of diffusion path lengths L (the third column), and the
frequency spectrum of the occurrence of ordinary transmis-
sion events in the various diffusion paths (the 4th column).
More specifically, in our model, transmission events can be
classified into three major categories: (a) transmission asso-
ciated with ordinary contacts which occurs with probability
p - ordinary transmission, (b) transmission along close con-
tacts which is able to drive the individuals to successfully
receive the information about the behavior for mi(t) < T
- intermediate reinforced transmission, and (c) transmission
associated close contacts which results in acceptance of the
behavior when the condition mi(t) = T is met - success-
ful reinforced transmission, which occurs with probability q.
The numbers of the three types of transmission events are
denoted as nO(t), nM (t), nS(t), respectively. The quantity
nD(t) = nM (t)/(T − 1) − nS(t) represents the required
additional minimum number of transmission events to stim-
ulate all the remaining susceptible individuals in the critical
state, after stimulation from successful reinforced transmis-

sion. About the statistical distribution P (L), we note that a
diffusion path of length L is a combination of LS successfully
reinforced transmission events and LO ordinary transmission
events: L = LS + LO. With respect to the frequencies of
occurrence of the ordinary transmission events along various
diffusion paths, each color square at the position (L′, L′O) of
the spectrum represents the probability that there are L′O or-
dinary transmission events along the diffusion path of length
L′, where the non-empty squares below the diagonal lines in-
dicate that ordinary transmission events are engaged in prop-
agating the contagion forward together with the successful re-
inforced transmission events.

Figure 2 illustrates a key feature of the system: when
the number of ordinary transmission events approximately
matches nD(t) during the spreading process, i.e., nO(t) ≈
nD(t), the system evolves into the state of maximum con-
tagion. For a relatively small value of µ [Fig. 2(a)], close
contacts are insufficient so that the amount of susceptible in-
dividuals in critical state are less than ordinary transmissions
ought to stimulate. For a larger value of µ, ordinary trans-
mission events are rare and the two types of reinforced trans-
mission events decrease in number even for a fixed value of
the transmission rate p. The third column of Fig. 2 indicates
the existence of an appreciable number of diffusion paths of
intermediate and long length (e.g., L ≥ 7) for the case where
contagion is prevalent [Figs. 2(a,b)], and that short paths dom-
inate when contagion is prohibited [Fig. 2(c)]. The behavior
of the recovered population size suggests that long diffusion
paths favor contagion when the value of the transmission rate
and the fraction of ordinary contacts are proper to enable the
dynamics.

Which elements contribute to the long paths and how do
they facilitate contagion? The fourth columns of Fig. 2 pro-
vide a partial answer. For the cases shown, short paths (L ≤ 5)
are mostly due to ordinary transmission events, while ordi-
nary and successful reinforced transmission events have dif-
ferent contributions to longer diffusion paths for different val-
ues of µ. In the fourth column of Figs. 2(a,b), the non-empty
squares below the diagonal lines have a relatively wide distri-
bution, indicating that ordinary transmission tends to “cooper-
ate” with successful reinforced transmission to propagate the
contagion forward together, enabling persistent transmission
and generating long diffusion paths. Specifically, the more
frequently ordinary transmission events are engaged in conta-
gion propagation along longer paths (more non-empty squares
below the diagonal lines in regions of large values of L), the
population has more adopted individuals. That is, the exis-
tence of the long diffusion paths containing a substantial num-
ber of ordinary transmission events imply a long-time cooper-
ative relationship between the two different types of transmis-
sion events. The extent of contagion is maximized when the
number of susceptible individuals in the critical state induced
by close contacts matches the number of ordinary transmis-
sion events as induced by ordinary contacts. There then exists
an optimal fraction of close contacts to facilitate contagion to
the maximum extent.

Note that, in the first column of Fig. 2(c), there is a discrep-
ancy between the analytical and numerical results, especially
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near the critical point. This is due to the fluctuations as the
system evolves from a local contagion state to a global preva-
lent state, as indicated by the spread in the gray curves from
individual realizations.

The existence of an optimal fraction of close transmission
events can be further illustrated numerically and analytically,
as shown in Fig. 3, where the existence of the optimal frac-
tion is more apparent for small values of p and T . This means
that the system can be harnessed to reach a maximum level of
contagion without the need to change the transmission rate p.
For a relatively large value of p and a not too large value of µ,
ordinary contacts can be exploited to maximize the spreading
in that it is more likely that the interplay between ordinary
and successful reinforced transmission events will generate
long diffusion paths. Note that the transitions with respect to
varying µ are mostly discontinuous, especially in cases where
there exists an interval of µ values with maximum spreading.

Figure 4 provides a visual picture of the results in Fig. 3,
which further validates the physical picture for achieving
maximum contagion in Fig. 2 through a match between the
numbers of close and ordinary transmission events: nm(t)�
ne(t) for µ2 = µo = 0.31. Prevalence of the recovered popu-
lation is not possible when close contacts dominate so there is
a lack of cooperation with ordinary contacts, regardless of the
occurrence of intermediate reinforced transmission [e.g., the
second plot in Fig. 2(c)]. Overall, frequent cooperation be-
tween ordinary and successful reinforced transmission events
along long diffusion paths is key to and plays a more impor-
tant role in contagion prevalence rather than the mere exis-
tence of the long diffusion paths. Ordinary contacts are thus
indispensable for successful social contagion.

Further support for requiring a non-trivial interplay be-
tween close and ordinary contacts in promoting large scale
spreading is provided in Fig. 5, where the colored square in
the red circle reveals the cooperation between close and ordi-
nary contacts along a long diffusion path of length L = 16
that consists of 15 ordinary and one successfully reinforced
transmission events. Note that, in this case, longer diffusion
paths exist, e.g., a path of length L = 17, which consist of
only one type of transmission events for small contagion size
(the third and fourth plots in Fig. 5(c) - the symbols in the
brown circles). However, these paths do not contribute to
global spreading. The main reason for the discrepancies be-
tween analytical predictions and simulated results illustrated
in the first columns of (b,c) in both Figs. 4 and 5 is again the
increasing fluctuations of the system near the outbreak thresh-
old.

The phase transition scenarios of the system can be graphi-
cally understood through a bifurcation analysis of Eq. (15), as
shown in Fig. 6. There are three distinct scenarios: continuous
transition [Fig. 6(a)], transition at the triple point [Fig. 6(b)],
and discontinuous transitions [Fig. 6(c)]. For the continuous
transition, the graphical solution (the crossing point between
the two relevant curves) moves gradually away from the po-
sition of θs = 1 and θn = 1 to that of θs < 1 and θn < 1.
The crossing point begins to leave the top right corner of the
plot at the critical point p = pC . Associated with the triple
point transition, although there exists one crossing point, two

curves are close to each other near the crossing point that tends
to move abruptly, which is indicative of a discontinuous tran-
sition. Note that the triple point can be estimated with the
aid of pattern features of the solution lines, as illustrated in
Fig. 6(b). For the discontinuous transitions, a solution for
which the crossing points decrease from three (correspond-
ing to contagion decay) to two (corresponding to contagion
outbreak) until only one (contagion prevailing). Furthermore,
Eq. (16) gives the tangent point of the two curves presented
in the second subplot of Fig. 6(c). The crossing point (yellow
solid circles) closest to the top right corner of the plot (i.e.,
θs = 1 and θn = 1) is physically meaningful, because the
dynamics start from the initial conditions θs ≈ 1 and θn ≈ 1.
The movement of the yellow points is caused by the shift of
blue lines, indicating again the role played by the transmission
events due to ordinary contacts in the phase transition.

Figures 7 and 8 provide a comprehensive picture in the
parameter plane of (µ, p) of the spreading dynamics, where
the former is numerically obtained while the latter is theoret-
ical predictions. Note that the numerically identified critical
boundaries and the analytically estimated triple point are in-
cluded. Both figures represent evidence for the coexistence
of continuous and discontinuous phase transitions separated
by the triple point. More specifically, smooth color varia-
tions and dramatic differences in the color indicate continu-
ous and discontinuous types of transition, respectively. There
is an overall good agreement between the simulation results
and the analytic predictions, although there is deviation be-
tween the two types of results in the region of large values of
µ. The discrepancies are somewhat expected, due to the nu-
merical uncertainties in identifying the outbreak phase of the
contagion through a finite number of statistically independent
realizations. In general, the analytical predictions are more re-
liable, as evidenced by the better agreement with the numer-
ical results for the limited parameter setting in which more
extensive stochastic simulations are computationally feasible
(e.g., the results in Figs. 1 and 3). The results in Figs. 7 and 8
indicate that the threshold and transition classes are predomi-
nately determined by the relative abundance of close contacts
with respect to ordinary contacts in the underlying social net-
work. Another feature is that the spreading dynamics in the
presence of reinforcement (T > 1) is completely suppressed
when the value of µ exceeds certain threshold whose value
decreases with T , due to the lack of match between the two
types of social contacts. Note that, in Figs. 7 and 8, the bound-
aries of continuous transitions are longer for higher values of
T , a result that is consistent with those in Fig. 1.

Fig. 9 shows, for ER random networks, the final stationary
distributions of the recovered population for three values of
the average degree 〈k〉 (or equivalently pe). We observe that a
relatively high average degree tends to facilitate the expansion
of the contagion. Especially, a large average degree means
that the adopted individuals will have more chances to trans-
mit the contagion to their connected susceptible neighbors,
resulting in a larger contagion size and a smaller outbreak
threshold. At the same time, for a fixed value of µ, the indi-
viduals will have more close contacts, so that more suscepti-
ble individuals can reach the critical state, leading to relatively
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more massive adoption within a short time and an avalanche-
like outbreak through subsequent transmission. Thus, as the
value of the average degree is increased, more discontinuous
transitions occur at the critical boundaries.

B. Contagion dynamics on empirical networks

We test our spreading model using two empirical networks:
an online contact network (Pretty Good Privacy (PGD) [38])
and the social network Brightkite [39]. Both networks have
a heterogeneous degree distribution with a substantial amount
of clustering, as shown in Fig. 10. In the simulations, the
contagion starts from an adopted cluster of size G(0) = 30.

Study of the empirical networks has led to phenomena that
are not present in ER random networks, indicating the role
of the network structure in the social contagion dynamics.
Representative results are shown in Figs. 11 and 12. Be-
cause of the heterogeneous connections of the individuals in
the network, the phase transition is continuous, regardless of
the value of µ, in agreement with the findings of the previ-
ous works on threshold based dynamics in heterogeneous net-
works [13, 16, 40]. In particular, in such cases, the number
of susceptible individuals’ being able to reach a critical value
within a short time is not sufficient to lead to an avalanche-like
outbreak. Another phenomenon is that, when the fraction of
closed contacts is large and the value of T is relatively small,
the threshold value is close to zero, suggesting that the out-
break of the contagion is largely driven by the hubs in the net-
works. However, the contagion size near the outbreak thresh-
old is finite.

A heuristic mechanism leading to the phenomena in
Figs. 11 and 12 can be described as follows. For a small value
of T , there can be two different cases in terms of two param-
eter regions divided by a numerically estimated threshold ph,
where ph indicates the position at which the quantity ∆(p)
begins to change from being positive to being negative. The
results in Fig. 11 imply the following formula for determining
the value of ∆(p):

∆(p) =
∑
µ

(R(p, µ+ δ)−R(p, µ)); (17)

where ∆(p) > 0 [∆(p) < 0] means that the final contagion
size increases (decreases) gradually with µ. This argument re-
lies on one condition: for a fixed value of p, the final fraction
R(p, µ) of the recovered population should change monoton-
ically with µ, which has been verified numerically.

For p < ph, abundant close contacts in the network can
promote the contagion and lead to an outbreak, in contrast
to ER random networks where this happens only for T = 1.
Because of the random allocation strategy of closed contacts
among all connections, hubs have a natural advantage to pos-
sess a considerable number of close contacts. Evidence for
this is presented in Figs. 13(a), which show the expected num-
bers of the close contacts of nodes in different degree classes
with the probability of an edge to be a close contact being µ.
As a result, the hubs can readily enter the adopted state. For a
large value of µ, there is a higher probability for the contagion

to be successfully transmitted among the hubs through close
contacts, especially when the ordinary contacts have not been
engaged in the transmission process (for small values of p).
Evidence for this is presented in Figs. 13(b-d). The hubs can
then facilitate the transmission, especially for networks with
weak local clustering. Note that the closed contacts capable of
successfully transmitting the contagion tend to locate near the
hubs, especially for the empirical network with a high positive
degree-degree correlation [Fig. 11(a)]. However, this localiza-
tion effect is weakened in the first-order null network model
of PGD, as the hubs have more chances to connect with non-
hub nodes, making a larger adopted population possible, as
shown in Fig. 11(b). Nonetheless, global contagion does not
arise near the outbreak threshold because of the small value of
p - in this case contagion pathways of long distances from the
hubs are less likely.

As the value of p is increased toward ph, more and more
ordinary contacts begin to engage in the transmission pro-
cess. The contagion is again no longer restricted to local re-
gions, and global contagion can occur through the transmis-
sion along the long-range ordinary contacts. By comparing
with the results for ER networks, similar dynamics of the con-
tagion but without discontinuous transitions for large T can be
observed. In the same way, sufficiently many close contacts in
the network can inhibit global contagion. In such cases, in a
network without close contacts, contagion can be maximized
insofar as the value of the transmission rate p is sufficiently
large.

The similar dynamical behaviors in the PGD network
and its first-order network model suggest that the contagion
spreading depends more on the network heterogeneity than
the degree-degree correlation. In fact, the correlation serves
to delay the outbreak of the contagion, as evidenced by the
larger outbreak thresholds in Fig. 11(a) and 12.

Two other phenomena in Figs. 11 and 12 are (1) the thresh-
old ph disappears for large values of T and (2) the parameter
regions of global prevalence tend to shrink somewhat with T .
The reason for the former is that a larger threshold value for
successful adoption makes it harder for not only ordinary but
also hub nodes to adopt the contagion through close contacts.
Especially, hub nodes no longer have the advantage to take
lead in promoting the spreading. Outbreak of the contagion is
thus delayed or even completely suppressed by abundant close
contacts in the network, as for ER networks. Instead, ordinary
contacts play an increasingly pivotal role in dominating the
contagion prevalence.

Surprisingly, the phenomenon that contagion is maximized
when the roles of the two types of ties are comparable ceases
to exist in the two empirical networks. Some indications are
shown in Figs. 14 and 15, where the third columns of the both
figures suggest the absence of diffusion paths of long length
(L > 10) and the dominance of short paths. This is due to the
lack of long-time cooperation between successful reinforced
and ordinary transmission, as shown in the forth columns of
Figs. 14 and 15. In particular, there is still cooperation be-
tween the two types of transmission events, but it is limited
to short diffusion paths (see the third columns of Figs. 14 and
15), regardless of the value of the transmission rate p. As a
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result, an avalanche type of spreading process fails to persist
at large scales. Overall, heterogeneous networks do not pro-
vide the structural condition for cooperation between closed
and ordinary contacts along long paths.

V. DISCUSSION

To summarize, empirical evidence and understanding of so-
cial contagion suggest the indispensable roles played by or-
dinary and close contacts in the spreading dynamics, calling
for a general model to take into account both types of social
contacts. We have accomplished that in this paper. In addi-
tion, we have developed a theoretical approach to analyzing
the spreading dynamics of social contagion on random net-
works. Agent-based simulations and theoretical analyses have
revealed the coexistence of both continuous and discontinuous
phase transitions in ER random networks. Study of two em-
pirical networks with a heterogeneous degree distribution and
a substantial amount of clustering has indicated that only con-
tinuous transitions can arise in such networks, and we have
provided a physical understanding. Our findings are consis-
tent with previous results from threshold models incorporating
some kind of social reinforcement mechanism [13, 16, 40].
The physical origin of the discontinuous transition in a so-
cial system with a large number of close contacts can be at-
tributed to their abundance through a drastic avalanche pro-
cess [13, 34]. A general result is that the value of the outbreak
threshold is mainly determined by the abundance of the close
contacts.

For ER networks, our study has revealed that close social
contacts alone are not capable of triggering a large scale out-
break of contagion. To have a global outbreak, a sufficient
amount of ordinary transmission is needed. We have ob-
tained a physical understanding of this phenomenon through
a detailed statistical analysis of the spreading dynamics in
terms of the frequencies of three different types of trans-
mission modes, the distribution of diffusion paths of various
lengths, and the frequencies of the occurrence of transmis-
sion along the diffusion paths. The analysis has revealed that,
to achieve maximum spreading, a matching condition must
be met: nO(t) ≈ nD(t), i.e., the number of close contacts
available to susceptible individuals in the critical state must
approximately match the number of ordinary contacts. There
exists an optimal fraction of close contacts to maximize the
spreading, which depends on the values of the transmission
rate and adoption threshold. The key to making spreading
prevalent lies in the interplay between ordinary and success-
fully reinforced transmission events associated with long dif-
fusion paths, which cannot occur unless there is a sufficient
amount of ordinary transmission. If ordinary contacts are
scarce, spreading will become stagnant. Ordinary contacts
thus play a crucial role in promoting social contagion when
both types of social contacts are simultaneously present. In
addition, a sufficient number of close contacts can change the
nature of the phase transition from continuous to discontin-

uous, and leads to an increase in the value of the outbreak
threshold.

For heterogeneous networks, a different picture of conta-
gion spreading dynamics arises. While ordinary contacts still
play a dominating role in the global prevalence of the con-
tagion, there is a sensitivity to the threshold required for a
successful adoption along close contacts. In particular, for a
small threshold value, abundant close contacts facilitate the
outbreak due to the availability of the transmission channels
among the hub nodes, regardless of the value of the transmis-
sion rate. Close contacts are capable of promoting spreading
but only on a local scale, especially near the hubs, making
it difficult to achieve global prevalence of the contagion even
though contagion outbreaks can still occur. For a large thresh-
old value, close contacts tend to become an obstacle to trans-
mission: global contagion will be prevented if the network
is rich in close contacts, which is similar to what happens in
ER networks. The lack of avalanche-like spreading, which re-
sults from inadequate number of susceptible individuals in the
critical state, imposes a limit to the cooperation between or-
dinary and successful reinforced transmission induced by two
types of contacts along long paths, leading to the absence of
an optimal intermediate value µ to maximize the contagion
spreading.

We conclude our work by providing two general remarks.
Firstly, numerical computations are inadequate to conclude
the coexistence of continuous and discontinuous transitions in
ER networks. Nonetheless, the issue for ER networks can be
settled analytically through a comprehensive bifurcation anal-
ysis of the system dynamics using theoretical methods such as
the edge-based compartmental approach [33], which we have
carried out. Secondly, the main goal of our present study is to
develop a computational and theoretical paradigm to under-
stand the relative roles played by ordinary and close contacts
in the social contagion. For this reason, we have studied the
process involving a single contagion for both static random
and empirical heterogeneous networks. We hope to be able to
extend our analysis of either coupled spreading scenarios [41]
or contagion dynamics to more diverse complex networks, as
well as to temporal networks [42], multilayer networks [43–
47], and metapopulation systems [48].
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[38] M. Boguñá, R. Pastor-Satorras, A. Dı́az-Guilera, and A. Are-
nas, Phys. Rev. E 70, 056122 (2004).

[39] E. Cho, S. A. Myers, and J. Leskovec, Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discov-
ery and data mining , 1082 (2011).

[40] W. Cai, L. Chen, F. Ghanbarnejad, and P. Grassberger, Nature
physics 11, 936 (2015).

[41] P.-B. Cui, F. Colaiori, C. Castellano, et al., Phys. Rev. E 96,
022301 (2017).
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FIG. 1. (Color online) Numerically obtained and theoretically predicted final fraction of the recovered population for different parameter
values. Simulation results (red circles) and theoretical prediction of Eq. (12) (blue solid lines) for the final recovered population versus
transmission rate p for three different values of T : (a) T = 3, (b) T = 4, and (c) T = 5, where for each value of T , the results for four
different values of µ are presented. Each data point is obtained from a single realization. The black vertical dashed lines indicating the position
of p′ = 0.3 are included in (a) for corresponding the results to the dynamical behaviors of the system in Fig. 2.

FIG. 2. (Color online) Understanding the effects of ordinary contacts on spreading dynamics. Four key statistical characterizing quantities are
shown for p′ = 0.3, T = 3 and q = 1.0: the fraction of recovered population (the first column), the numbers of three types of transmission
events (the second column), the distribution P (L) of diffusion path lengths L (the third column), and the frequency spectrum of the occurrence
of the ordinary transmission events in the various diffusion paths (the fourth column). Three different values of the parameter µ are used: (a)
µ = 0.3, (b) µ = 0.5 and (c) µ = 0.7. The red solid lines in the first column are the analytical predictions, the blue circles represent the
fractions of the recovered populations obtained by averaging Nr independent realizations, and each light gray solid curve in each panel in the
left column corresponds to one independent realization. The position of p′ = 0.3 has also been specified in Fig. 1.
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FIG. 3. (Color online) Existence of an optimal fraction of close transmission events for global spreading. Shown is the final recovered
population as a function of µ for three different values of T for q = 1.0: (a) T = 3, (b) T = 4 and (c) T = 5. For each value of T , simulation
results (red circles) and analytical predictions (blue solid lines) are shown for four different values of p. Two groups of vertical solid lines (µ1,
µ2, µ3) and (µ4, µ5, µ6) are indicated in (a), corresponding to Figs. 4 and 5, respectively.

FIG. 4. (Color online) Illustrations of the role of ordinary contacts in promoting spreading. Shown are the behaviors of four statistical
characterizing quantities for different values of µo: (a) µo > µ1 = 0.18, (b) µo ≈ µ2 = 0.31 and (c) µo < µ3 = 0.34, the positions of which
are also labeled in Fig. 3. Other parameter values are p = 0.15 and q = 1.0.
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FIG. 5. (Color online) Further illustrations of the role of ordinary contacts in promoting spreading. Shown are the behaviors of the four
statistical characterizing quantities for (a) µ4 = 0.15, (b) µ5 = 0.48, and (c) µ6 = 0.53, corresponding to the three points of µ labeled in the
2nd panel of Fig. 3(a). Other parameters are p = 0.2 and q = 1.0.
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FIG. 6. (Color online) Illustrations of graphical solutions of the bifurcation analysis for three cases: (a) continuous (second order) transition
for µ = 0.1; (b) transition crossing the triple point for µC = 0.245; (c) discontinuous (first order) transition for µ = 0.5. Other parameters
are T = 3 and q = 1.0.
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FIG. 7. (Color online) Numerically obtained final stationary distributions of the recovered population. Shown are the distributions versus p
and µ for different values of T and q = 1.0. The large yellow inverted triangle represents the theoretically estimated triple point, while other
markers denote the numerically estimated phase boundaries in terms of the relative variance ν(∞). The white circles (pink inverted triangles)
represent the boundaries across which continuous (discontinuous) transitions occur.

FIG. 8. (Color online) Theoretically predicted final stationary distributions of recovered population. Legends are the same as those in Fig. 7.
There is a good agreement between the numerical results in Fig. 7 and the theoretical predictions here.
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FIG. 9. (Color online) Effect of average degree on the contagion dynamics. Shown are the color coded, numerically calculated (top panels)
and theoretical predicted (bottom panels) final stationary distributions of recovered population for ER random networks in the parameter plane
(p, µ). The values of the average degree tested are 〈k〉 = 6 (left column), 〈k〉 = 7 (middle column) and 〈k〉 = 8 (right column), with the
corresponding values of pe being pe = 0.0006, pe = 0.0007 and pe = 0.0008, respectively. The main feature is that a relatively high average
degree tends to facilitate contagion spreading. Other parameters are the same as those in Fig. 7.
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FIG. 10. (Color online) Degree distributions of the two empirical networks. (a) The network Pretty Good Privacy (PGD). The structural
parameters are N = 10680, 〈k〉 = 4.554, 〈k2〉 = 85.976, maximum degree kmax = 205, degree-degree correlation r = 0.238, and
clustering coefficient c = 0.378. (b) The network Brightkite. The structural parameters are N = 56739, 〈k〉 = 7.506, 〈k2〉 = 480.61,
maximum degree kmax = 1134, degree-degree correlation r = 0.01, and clustering coefficient c = 0.111.
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FIG. 11. (Color online) Contagion dynamics and phase transition on the empirical network PGD (Pretty Good Privacy). (a) Numerically
obtained final stationary distributions of the recovered population. (b) The corresponding result from randomly-reconnected networks with
the degree of each node unchanged (first-order null network model). In detail, a new first-order null network with the same degree sequence
of PGD is built after every 25 independent realizations of the spreading dynamics. The solid white circles indicate the numerically estimated
phase boundaries with respect to the relative variance ν(∞). The dashed lines indicate the position of ph, which are absent for T > 6 in the
top panels and T = 10 in the bottom panels because closed contacts tend to block the contagion when the value of T becomes large.

FIG. 12. (Color online) Contagion dynamics and phase transition on the empirical network Brightkite. Legends are the same as in Fig. 11.
Due to the weak degree correlation (r = 0.01) of this network, testing the first-order null network model is not essential.
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FIG. 13. (Color online) Statistical behaviors of close contacts in the PGD network. Three key statistical characterizing quantities of close
contacts are shown: (a) the expected number of close contacts that each node in different degree class can own for two different values of µ,
(b) the distribution of the edges between two nodes (node 1 and node 2, where k1 and k2 are the degrees of the two end nodes of an edge),
normalized by the total number E of edges in the network, and (c) the distribution of the close contacts between two nodes for µ = 0.1,
normalized by E. (d) The distribution of the close contacts between two nodes for µ = 0.8. Because of the symmetry in the distribution, only
half of the matrix is given in (b-c), where each color point indicates the value of d(k1, k2) or d(k2, k1), and d(k1, k2) is the fraction of edges
with two nodes of degree k1 and k2, respectively. The pink squares in (a) indicate that those nodes of high degree have considerable numbers
of close contacts - a great advantage for transmission. The contagion spreads readily among these hubs due to the sufficient close contacts
among them. The adopted areas are localized for small values of p. Similar phenomena are also found for the first-order null network model
of PGD.
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FIG. 14. (Color online) The roles of two types of contacts in spreading dynamics in the PGD network. Shown are the behaviors of four
statistical characterizing quantities for different values of µ: (a) µ = 0.1, (b) µ2 = 0.4 and (c) µ = 0.8, the positions of which are also labeled
in Fig. 2. Other parameter values are ph > p = 0.16, q = 1.0 and T = 2.
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FIG. 15. (Color online) The roles of two types of contacts on spreading dynamics in the PGD network - additional support. Legends are the
same as in Fig. 14 except for ph < p = 0.9.
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