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Much work has been devoted to studying percolation of networks and interdependent networks under varying
levels of failures. Researchers have considered many different realistic network structures such as scale-free
networks, spatial networks, and more. However, thus far no study has analyzed a system of hierarchical com-
munity structure of many networks. For example, infrastructure across cities are likely distributed with nodes
tightly connected within small neighborhoods, somewhat less connected across the whole city, and with even
less connections between cities. Furthermore, while previous work identified interconnected nodes, those nodes
with links outside their neighborhood, to be more likely to be attacked or to fail, in a hierarchical structure nodes
can be interconnected at different layers (between neighborhoods, between cities, etc.). We consider here the
case where the nodes with interconnections at the highest level of the hierarchy are most likely to fail, followed
by those with interconnections at the next level, etc. This is because nodes at higher levels of the hierarchy have
the longest length links as well as having more flow passing through them. We develop an analytic solution for
percolation of both single and interdependent networks of this structure and verify our theory through simula-
tions. We find that depending on the number of levels in the hierarchy there may be multiple transitions in the
giant component (fraction of connected nodes), as the network separates at the various levels. Our results show
that these multiple jumps are a feature of hierarchical networks and can affect the vulnerability of infrastructure
networks.

I. INTRODUCTION

The robustness of infrastructure systems can be under-
stood through the frameworks of complex networks, per-
colation, and interdependent networks [1–12]. The initial
research on network robustness was later expanded to in-
clude various network structures such as different degree
distributions [13–15], clustering [16–18], spatial embed-
ding [19–21], and quite recently, community structure
[22, 23]. Additional research has considered various
types of attacks on these networks such as degree-based
attacks [24, 25], localized attacks [26, 27], and attacks
based on nodes linking across communities [22, 23, 28].

Despite these advances, there remain network struc-
tures that are likely relevant for robustness that have not
yet been studied. Among these is a hierarchical structure,
which we will study here, where communities connect
loosely with one another to form larger communities,
that then connect to one another, and so on [29–32] (See
Fig. 1). In the context of infrastructure robustness these
hierarchical modules are likely describing real neighbor-
hoods overlapping to form cities, which then overlap to
form states, etc. which are then interconnected among
themselves.

Furthermore, in this model, the nodes at the highest
level of the hierarchy (e.g. between states) are likely
more vulnerable to failure or attack than those at the
next highest level, which are in turn more vulnerable
than those at an even lower level etc. This is because
the nodes at higher levels have longer distance links be-
tween them which are more likely to fail or be attacked
[33] and also have higher betweenness [22] which yields

additional load on them [34, 35]. Moreover, recent work
by da Cunha et al. [28] showed that attacks on these ‘in-
terconnected nodes’ are an optimal form of attack on the
US power grid, an infrastructure system of critical inter-
est.

II. FAILURE AND ATTACK ON COMPLEX
NETWORKS

We will now provide a short review on the analytic
methods for studying the effects of various attacks on
complex networks. In the next sections we will make use
of these methods to find an analytic solution describing
the fractional size of the giant component in our model
under attack. We recall the definitions from Callaway et
al. [25] for the generating function of a variable x

G(x) =

∞∑
k=0

Pi(k)xk, (1)

where k is a number of links and Pi(k) is the likelihood
that a node has exactly k links.

For targeted attack, they also define

F0(x) =

∞∑
k=0

rkPi(k)xk, (2)

where the symbols are as before, except that rk represents
the likelihood that a node with exactly k links fails.

Next, the generating function of the branching pro-



cess, F1(x) is given by

F1(x) = F′0(x)/G′(1) (3)

where the F′0(x) means the derivative of F0(x) with re-
spect to x and likewise for G′(1).

Given the above, the distribution of sizes of clusters of
connected nodes reached by following a randomly cho-
sen edge is given by

H1(x) = 1 − F1(x) + xF1 (H1(x)) . (4)

Similarly the distribution for sizes of clusters from a
randomly chosen node is given by

H0(x) = 1 − F0(1) + xF0 (H1(x)) . (5)

It was noted that above the percolation threshold, this
refers to the sizes of clusters that are not in the giant com-
ponent and thus H0(1) gives the fraction of nodes that are
not in the giant component [25].

The fraction of nodes in the giant component, P∞, can
thus be found by

P∞(x) = 1 − H0(1) = F0(1) − F0(u), (6)

where u is given by

u = 1 − F1(1) + F1(u). (7)

When 1 − p fraction of nodes are removed randomly
from an Erdős-Rényi network (Poission distribution of
links) with average degree < k > per node it is found
that G(x) = e<k>(x−1) [36] and F0(x) = pG(x) where
p is the fraction of surviving nodes. Continuing the
derivation leads to the classical result from Erdős-Rényi,
P∞ = p(1 − e−<k>P∞ ).

For the case of modular networks with Poisson dis-
tributed inter- and intra- connections; where the average
degree of interconnections is kinter, average degree of in-
traconnections is kintra, and r is the fraction of intercon-
nected nodes that survive, the generating functions are as
follows, [22]

G(x) = e(kintra+kinter)(x−1) (8)

F0(x) = ekintra(x−1)−kinter (1 − r) + rG(x) (9)
F1(x) = F′0(x)/G′(1). (10)

Following the above derivation, leads to the following
formula for P∞ in modular networks [22]

P∞ =

e−kinter (1 − r)(1 − e−kintraP∞ ) + r(1 − e−(kintra+kinter)P∞ ) 0 < r < 1
p
m (1 − e−mkintraP∞ ) r = 0,

(11)

where kinter is the average degree of interconnections,
kintra is the average degree of intraconnections, and r is
the fraction of interconnected nodes that remain. Once
r = 0, all interconnected nodes are removed and the
model continues by removing the remaining nodes ran-
domly.

Note that for r = 0, the value of P∞ is divided by
m since at this point the modules are separated and thus
the fraction of nodes in the giant component is scaled
by 1 over the number of modules. We note that the ear-
lier study [22] found that the network may segregate into
separate modules before collapsing, or it may collapse all
together as a single network. It has also been found that if
nodes are targeted entirely randomly (i.e. no preference
for attacking interconnected nodes) then P∞ is the same
as for an Erdős-Rényi network with degree kinter + kintra.
[22]

More details on the above derivations can be found in

[22, 23, 25].

III. MODEL

We now develop and analyze a stochastic block model
[37–40] with overlap among the various blocks (mod-
ules). We first define a vector ~m describing the number
of distinct modules or communities (blocks) at each layer
of the hierarchy. At the first layer we always consider the
entire network as a single community, thus m1 = 1. The
next layer, m2 counts how many modules are at the sec-
ond layer. Next is the total number of modules at the
third layer, followed by the number of modules at the
fourth layer, etc. We also assume for simplicity that all of
the m j modules in layer j are broken down into the same
fixed number of m j+1 modules. For example, for the net-
work shown in Fig. 1, we define ~m = [1, 3, 12, 36], since
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FIG. 1. Model Illustration. For this realization, the model
has 4 hierarchical layers. At the top layer there are 3 modules,
each of which is broken down into 4 modules, each of which is
then broken down into 3 modules, which are not broken down
further. We could describe this configuration of hierarchical
modules by the vector ~m = [1, 3, 12, 36]

the top layer is a connected graph, at the next layer we
have three modules, then a total of 12 modules (i.e. each
of the three is broken down into four smaller modules),
and finally 36, since each of the 12 modules is broken
down into three additional ones.

We next define the vector ~k, which describes the av-
erage degree between nodes connected at each layer of
the network. Thus, if at the highest layer the nodes have
an average of 0.1 links to nodes in other modules, this
will be the first entry, k1 in ~k. If the average degree at
the next layer is 0.3 then that will be the second entry,
k2 etc. We assume that the entries of ~k should be strictly
increasing since we expect there to be more links within
communities at a lower layer than at a higher layer (e.g.,
neighborhoods are more tightly connected than cities).

In our model, we carry out a targeted attack on the
nodes of the network, assuming that nodes that are inter-
connected at the top level are most likely to fail followed
by those connected at the second level, etc. To do so, we
must determine how many nodes are connected at each
level and convert from the survival likelihood of nodes
at a given layer, ri, to the overall survival likelihood, p.
First, we must estimate the fraction of nodes that are con-
nected at level i. We note that the distribution of links at
each layer is Poisson with the likelihood of a node to
have k links being given by P(k) = kk

i e−ki/k! where ki is
the average degree at layer i. We can then find the like-
lihood of not having any links as P(0) = e−ki and thus
the likelihood of having at least one link (being intercon-

nected) is 1−e−ki . We define ri as the survival probability
of interconnected nodes at layer i. For the top layer of in-
terconnections we can find how the 1− p overall fraction
of nodes removed from the network, corresponds to the
1 − r1 fraction of interconnected nodes removed, using
[22],

p = r1(1 − e−k1 ) + e−k1 . (12)

This equation can be understood by recognizing that the
likelihood of a node not having an interlink (i.e. not be
interconnected) at layer 1 is given by e−k1 and therefore
the likelihood of being interconnected is 1 − e−k1 . Since
r1 is the fraction of interconnected nodes that survive, the
overall survival probability is given by multiplying r1 by
the fraction of nodes that are interconnected, and adding
the fraction of nodes that are not interconnected (since
all non-interconnected nodes survive the attack).

After we have removed all interconnected nodes at the
top level, we then begin removing interconnected nodes
at the next level of the hierarchy. In order to convert
from the survival probability of nodes at this next level,
r2, to the overall survival probability p, we must take into
account that some of the nodes removed at the previous
layer were likely interconnected at this layer too, but as
they have already been removed we must remove them
from our calculation.

We do so by first finding the value of p for removing
all interconnected nodes of each respective layer. For the
first layer, this is when r1 = 0 and thus the value of p
at which all interconnected nodes in layer 1 are removed
is pco1 = e−k1 , where we have defined pco1 as the cutoff
value for layer 1. For the next layer the cutoff at which all
interconnected nodes are removed is given by recogniz-
ing that the fraction of interconnected nodes at this next
layer is 1 − e−k2 , but we have already removed 1 − pco1

fraction of nodes. We must recognize that some nodes
are also likely to be interconnected at both layers and we
must make sure not to double count them. We can thus
find, pco2 using the inclusion-exclusion principle as

pco2 = 1 −
(
1 − e−k2 + 1 − e−k1 − (1 − e−k2 )(1 − e−k1 )

)
= e−k2−k1 , (13)

where in the top line (1 − e−k1 ) is the fraction of inter-
connected nodes at layer 1 and (1 − e−k2 ) is the frac-
tion of interconnected nodes at layer 2 and we subtract
(1−e−k2 )(1−e−k1 ), which is the fraction of interconnected
nodes at both layers that were double counted. To get the
cutoff where all interconnected nodes at either layer 1 or
2 are removed, we take one minus the fraction of nodes
that are interconnected at either of our 2 layers. Simpli-
fying terms gives the bottom line of Eq. (13).
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Another more simple way to arrive at Eq. (13) is to
note that we now remove all nodes with an interlink at
either the first layer or the second layer. The total degree
at these layers is just the sum k1 + k2. Given as we can
immediately recognize based on the Poisson distribution
for k1 + k2, that e−(k1+k2) is the fraction of nodes that will
not be connected at either layer, and thus if we remove
all nodes that are interconnected at either of these layers,
we will be left with exactly a fraction e−(k1+k2) of nodes.

We can continue along the above lines to recognize
that as we move further down the layers, we must include
an additional ki for each layer i. Thus, for a given layer i,
the cutoff value of p for which all interconnected nodes
at that layer are removed, is

pcoi = e−
∑i

j=1 k j . (14)

Having solved the case where all nodes of a given layer
are removed, we can now consider the values of p for
which only some fraction, 0 < ri < 1, of nodes at layer i
survive. We can then convert from ri, the survival proba-
bility in layer i (after having removed all nodes in higher
layers), to p using

p = ri(pcoi−1 − pcoi ) + pcoi , (15)

which can be understood by noting that pcoi fraction of
nodes will always survive since they are not intercon-
nected at layer i (or any higher layer) and ri(pcoi−1 − pcoi )
fraction of interconnected nodes at layer i survive.

IV. ANALYTIC THEORY FOR A SINGLE
HIERARCHICAL NETWORK

We will now present a theory for hierarchical net-
works, generalizing the results in Eq. (11).

For the top layer, we can make use of the previous
results on modular networks by setting our average inter-
connected degree to the degree at the layer we are attack-
ing, namely k1. To determine the intra degree, we note
that all connections below the layer we are attacking are
randomly distributed and thus the average intra degree
will be replaced with the sum of the degrees below the
layer we are attacking,

∑l
i=2 ki, where l is the number of

layers. We thus obtain

P∞ = e−k1 (1 − r1)
(
1 − e−(

∑l
i=2 ki)P∞

)
+ r1

(
1 − e−(

∑l
i=1 ki)P∞

)
pco0 < p. (16)

Note that the result in Eq. (16) is only accurate until we
have removed all the nodes that are interconnected at the
top layer, i.e. so long as pco0 < p. Also note that Eq. (16)

FIG. 2. Comparison between simulation results and the-
ory. In both figures we have six layers, where each layer
splits a module into two other modules, thus there are ~m =

[1, 2, 4, 8, 16, 32] modules at each layer, with the average de-
grees between nodes at each layer given by the vector ~k in the
legend. We have different values for the degree at each layer
as given in the legends of (a) and (b). The lines represent the
theory of Eq. (18) and the points are simulations averaged over
10 runs on networks of N = 106 nodes.

is the same as Eq. (11) when r > 0, with kinter = k1 and
kintra =

∑l
i=2 ki.

Once we have removed all interconnected nodes in the
first layer, we then move on to removing nodes that are
interconnected at the second layer. In this case, the av-
erage degree of interconnections is now k2 and the aver-
age degree of intraconnections is

∑l
i=3 ki. Furthermore,

we must recall that the survival probability has already
dropped to pco1 , which is distributed randomly from the
perspective of these lower layers. We also must note that
at this point the network is already split into m2 separate
modules and nodes that are interconnected at layer 2 sur-
vive with a probability of only r2. Accounting for this
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gives

m2P∞ = pco1

[
e−k2 (1 − r2)

(
1 − e−(

∑l
i=3 ki)m2P∞

)
+ r2

(
1 − e−(

∑l
i=2 ki)m2P∞

) ]
, pco2 < p < pco1 . (17)

Note that this equation is only accurate for values of p for
which all interconnected nodes at layer 1 are removed,
but not all interconnected nodes at layer 2 are removed,
i.e., pco2 < p < pco1 .

We can generalize the above results for all values of p
to find

m jP∞ = pco j−1

[
e−k j (1 − r j)

(
1 − e−

(∑l
i= j+1 ki

)
m jP∞

)
+ r j

(
1 − e−

(∑l
i= j ki

)
m jP∞

) ]
, pco j < p < pco j−1 . (18)

To apply Eq. (18) for a given p one must first examine the
pco j values to determine between which two cutoffs p is,
and then convert p to a corresponding r j value. Finally
one plugs r j, pco j−1 and the other parameter values into
Eq. (18).

We compare in Fig 2, the theory of Eq. (18) and simu-
lations of a corresponding network, observing excellent
agreement between them. In the figure we observe mul-
tiple discontinuities in P∞ as a function of p. Such mul-
tiple transitions have previously been observed in a few
different models that considered bootstrap percolation or
percolation on interdependent networks [41–43], how-
ever to the best of our knowledge multiple (more than
2) transitions have not been observed under targeted at-
tack with ordinary percolation as in our model. As all
interconnected nodes in a particular layer are removed,
the system experiences a discontinuous jump. We note
that the number of layers minus one serves as an upper
bound on the number of potential jumps, as there may
not be more jumps than that, however there may be fewer
jumps depending on the parameters. This generalizes the
results of [22] where only for certain sets of parameter
values did the network separate into distinct communi-
ties before collapsing entirely, while for other parame-
ter values there was only a single collapse where all the
communities failed in tandem. In the next section we as-
sess the number of discontinuous jumps for a given set of
parameters. While one could of course examine this by
plotting the results of Eq. (18) and then observing how
many jumps take place, we provide more intuition on the
underlying process by considering the number of jumps
explicitly via analytical considerations.

FIG. 3. (a) The RHS and LHS of Eq. (19) for the network of
Fig. 2a. We observe that for the first l ≤ 5 layers the value
of p for which all interconnected nodes are removed, LHS of
Eq. (19), is greater than the value at which the network intra-
connectivity breaks down (RHS of Eq. (19)). However for the
6th layer this is no longer true and we observe the continuous
percolation transition of a random network. (b) The values of
the ith critical points for both the network described in Fig. 2a
and another network which has a smaller degree at its bottom
layer. We note how changing the degree at the bottom layer
effects the number of jumps since for the network with a lowest
layer average degree of 2, before removing all interconnected
nodes at the 5th layer, the network already breaks apart.

A. Number of Abrupt Jumps

Here we evaluate the expected number of jumps that
will take place using our analytic theory from above. The
key insight is to notice that jumps will occur when all
interconnected nodes at a particular layer are removed,
yet there remain enough total surviving nodes such that
the network at the next lower layer remains connected.
For the limiting case where all nodes are connected at
a particular layer, then the network will collapse before
lower layers are reached since all nodes will already have
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been removed.

This condition can be expressed mathematically by
recognizing that we need the value of pc, the critical
threshold of the remaining intralinks to be lower than the
value of p for which all interconnected nodes at a given
layer i are removed. The classical result of Erdős-Rényi
informs us that there will remain a giant component so
long as p > 1

<k> , where < k > is the average degree,
which for our case is < k >=

∑l
j=i+1 k j or the sum of the

degrees at all lower levels. The point at which all inter-
connected nodes at layer i are removed is given by the
cutoff value defined in Eq. (14). Overall the condition
that there will be a jump once all interconnected nodes at
layer i are removed is

e−
∑i

j=1 k j ≥
1∑l

j=i+1 k j
. (19)

We note that assuming all ki > 0, then e−
∑i

j=1 k j is strictly
decreasing as i increases. Furthermore, the above as-
sumption also implies that 1/

∑l
j=i+1 k j is strictly increas-

ing as i increases (since the denominator must decrease
as there are fewer k j terms). Therefore, once the condi-
tion of Eq. (19) is first violated for a particular layer, we
know that it will continue to break down for lower layers

and thus we can be sure that our number of jumps is the
number of layers for which Eq. (19) is valid.

We plot the two sides of Eq. (19) in Fig. 3a, where for
l ≤ 5 we see that the left-hand-side (LHS) of the equation
is larger than the right-hand-side (RHS). Comparing to
the number of jumps in Fig. 2a we see that the network
indeed experiences 5 abrupt jumps as expected (see inset
for the 5th jump).

B. The p Values of the Jumps

Having predicted above the number of jumps that the
network will undergo, we can now analyze the multiple
values of pc, the critical thresholds at which the transi-
tions occur. We first note that so long as the LHS of
Eq. (19) is greater than the RHS of the same equation,
there will be a transition at the point of the LHS of the
equation. After these i transitions, there will be one final
i + 1st transition which will be continuous as opposed to
abrupt. We can find the point at which this final tran-
sition occurs by generalizing Eq. (21) from [23], which
gave a form for the critical transition point of a modular
network that has experienced both targeted attack of the
type proposed here and also random failures on all nodes.
The formula found there was

r2
c
(
p2

randkintrakintere−kinter
)
+rc

(
prandkinter+prandkintra−prandkintrae−kinter−p2

randkintrakintere−kinter
)
+
(
prandkintrae−kinter−1

)
= 0, (20)

where prand represents the survival probability due to the
random failures, rc represents the critical threshold, and
kintra (kinter) represents the degrees of intra (inter) con-
nected nodes, respectively.

For our case of hierarchical networks, the random fail-
ures are represented by the attacks on nodes that were
interconnected at higher layers. Overall the probability

of surviving the random attacks is pcoi thus prand is re-
placed by pcoi . Furthermore, the inter degree kinter is now
given by ki+1 and the intra degree kintra will be

∑l
j=i+2 k j.

Thus, we can find the point of transition, which we will
call ri+1, by solving Eq. (21), which is a quadratic for-
mula for ri+1,

r2
i+1

p2
coi

 l∑
j=i+2

k j

 ki+1e−ki+1

 + ri+1

pcoi ki+1 + pcoi

 l∑
j=i+2

k j

 − pcoi

 l∑
j=i+2

k j

 e−ki+1 − p2
coi

 l∑
j=i+2

k j

 ki+1e−ki+1


+

pcoi

 l∑
j=i+2

k j

 e−ki+1 − 1

 = 0. (21)

After finding ri+1 we can convert it to a value of p us- ing Eq. (15). We note a slight subtlety in this system,
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in that even for the case where the hierarchical network
is completely isolated at the lowest level we do not pre-
cisely recover the critical threshold of a random network
with k = ki+1. This is since we are targeting only those
nodes which have at least one link. This leads to a slight
correction where we obtain ri+1 = 1/ki+1 (and then con-
vert this to a value for the last pc), rather than obtaining
the usual pc = 1/ki+1. In most cases this correction will
be quite small as for any reasonable value of k at the low-
est level, there will be very few nodes that do not have
even a single link. For example, for the case of the net-
work referred to by the top line of the legend in Fig. 3b,
the transition for the 6th layer takes place at pc ≈ 0.201
as opposed to 1/k6 = 0.2. Nonetheless, it is worth noting
this discrepancy.

V. INTERDEPENDENT NETWORKS

Much recent research has also explored the resilience
of interdependent networks where the nodes of one net-
work depend on nodes in another network [5, 6, 12, 36,
44–49]. One example is that of a communication net-
work that is interdependent with a power grid, yet more
complex interdependencies are also possible [50, 51].
Many of these interdependent networks will likely pos-
sess the hierarchical structure described above. There-
fore we now extend our theory from a single hierarchical
network to the case of networks of interdependent net-
works (NON).

We will assume that each network in the interdepen-
dent system is formed of the same hierarchical structure,
i.e. there are the same number of modules at each level.
Again, this is realistic since the number of cities, neigh-
borhoods, etc. that exist for the power grid are likely the
same as those for a communications network as well as
for other infrastructures. Further, we will assume that
nodes are dependent on other nodes within their same
module at the lowest level. This corresponds to the as-
sumption that nodes are most likely dependent on re-
sources from nodes in their same neighborhood, i.e., a
power station depends on a communication tower in the
same neighborhood and vice versa.

In the case of interdependent networks formed of n
networks with n > 2, the structure of the dependencies
can take various shapes. Among these are both treelike
structures, where networks depend on one another such
that their dependencies form a tree, or looplike struc-
tures where the dependencies form loops. Here we will
consider (i) treelike structures and (ii) a random-regular
(RR) network of networks where each network depends
on exactly z other networks. Furthermore, one can allow
for differing levels of interdependence where only some
fraction q of nodes between two networks are interde-

pendent, whereas 1−q fraction of nodes are autonomous
with no dependency. This could be the case for example
if some communications towers have their own genera-
tors for power supply [52].

For the case of interdependent networks, it was noted
[23] that the framework described above for failure and
attack on complex networks can be extended by noting
that each node now has an additional random probabil-
ity pdep of failure due to the presence of the dependency
links. The precise expression for pdep will depend on the
number of dependent networks, the amount of the depen-
dencies (q), and the structure of the dependencies (tree-
like, looplike, etc.). The Eqs. (6) and (7) can be rewritten
generally for any pdep as [23]

P∞(x) = pdep(F0(1) − F0(u)), (22)

and

1 = pdep
F1(u) − F1(1)

1 − u
. (23)

A. Treelike Network Formed of Hierarchical Networks

Here we introduce the theory for a network of net-
works formed of n interdependent networks such that
they form a tree. We also note that Eqs. (15)-(16) remain
valid as for the single-network case as we still target the
nodes using the same procedure.

We assume that all nodes between pairs of interdepen-
dent networks have dependency links (q = 1). Further,
we assume the no-feedback condition, meaning that if
node a in network n1 depends on node b in network n2,
then node b also depends on node a. We restrict the de-
pendencies to being within the smallest community (i.e.
the lowest layer of the hierarchy) for each set of inter-
dependent networks. Lastly, we will attack the nodes of
only one of the networks and let the attack propagate to
the other networks as well as back to the original one. We
note that the results are not dependent on the structure of
the tree or from which network in the tree the nodes are
originally removed [36].

To include the effects of the interdependencies, we
must add an additional likelihood of failure based on the
interdependence. For a treelike network of n interdepen-
dent networks with the dependencies within the neigh-
borhoods, the likelihood of all of a node’s interdependent

nodes to survive is pdep =

(
1 − e−

(∑l
i= j ki

)
m jP∞

)n
[23, 36].

For a node to survive, it must survive and its dependent
nodes must survive thus pdep is multiplied by our pre-
vious result from Eq. (18). This gives us the following
solution for the treelike NON
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m jP∞ = pco j−1

[
e−k j (1 − r j)

(
1 − e−

(∑l
i= j+1 ki

)
m jP∞

)
+ r j

(
1 − e−

(∑l
i= j ki

)
m jP∞

) ] (
1 − e−

(∑l
i= j ki

)
m jP∞

)n−1
,

pco j < p < pco j−1 . (24)

We note that numerical simulations show excellent
agreement with the theory of Eq. 24 (Fig. 4). We also
note that in the case of interdependent networks, the fi-
nal transition is now also abrupt [5, 6, 36]. The abrupt-
ness of this transition is caused by a long cascade process
that takes place in interdependent networks and which
has been previously found for different models [53].

B. Random Regular Network Formed of Hierarchical
Networks

Lastly, we consider the case of an RR NON where
each network depends on exactly z other networks. We
will assume that for each pair of interdependent networks
only a fraction q of the nodes are interdependent and we
will allow feedback (in contrast to what was done for
treelike NON). However, we will still restrict the depen-
dencies such that they must be within the same commu-
nity at the lowest level of the hierarchy. We will also
carry out the attack on all the networks, as opposed to
attacking only one of them in the treelike case.

The effects of the dependencies now imply that the
likelihood of a node to survive all interdependencies is
pdep =

(
1 − q + qm jP∞

)z
[36, 54]. Again a node must

survive in its own network as well, so combining this
with Eq. (18) yields,

P∞ = pco j−1

[
1

m j
e−k j (1 − r j)

(
1 − e−

(∑n
i= j+1 ki

)
m jP∞

)
+ r j

(
1 − e−

(∑l
i= j ki

)
m jP∞

) ] (
1 − q + qm jP∞

)z
,

pco j < p < pco j−1 . (25)

For the RR NON the last transition will be continuous
(for low values of q) as for an RR NON formed of Erdős-
Rényi networks the transition may be continuous [54].
We observe excellent agreement between the theory of
Eq. (25) and simulations in Fig. 5.

FIG. 4. (a). The case of two interdependent networks with the
values of degree at each layer as given in the legend. Points
are simulations averaged over 10 realizations of networks with
N = 106 nodes and lines are theory fr om Eq. (24). (b). Varying
the number of networks with the degree vector fixed to ~k =

(0.05, 0.1, 6).

VI. REALISTIC EXTENSIONS

Here we will consider two basic extensions to the
framework developed above. One type of extension in-
volves considering degree distributions that are not Pois-
son and uncorrelated at each layer, while a second con-
siders trade-offs between adding links at different layers
of the hierarchy. We will also discuss several other pos-
sible extensions, however leaving them for future work.
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FIG. 5. A random regular network of networks where each
network depends on z other networks such that they form loops.
We vary both (a) q the level of interdependence between the
networks (with z = 1) and (b) z the number of networks each
network depends on (with q = 0.3). Symbols are simulations
averaged over 10 realizations on networks with N = 106 nodes
and lines are theory from Eq. (25).

A. Varying Degree Distributions

The first extension we will consider is a degree dis-
tribution that is not Poisson at each layer of the hierar-
chy. For this purpose we will use a power-law distribu-
tion with the likelihood of a node having k links given
by P(k) ∼ k−λ. This type of degree distribution is com-
mon to many networks such as social networks, biologi-
cal networks, and others [55].

We consider the case where the lowest layer of our hi-
erarchy has a power-law distribution while the links at
the higher layers have a Poisson distribution as in the
above versions of our model. In Fig. 6a we present re-
sults for two different hierarchical networks with differ-
ent degree distributions at higher layers and a scale-free
distribution at the lowest layer. In both cases we still ob-
serve the characteristic multiple jumps as in our earlier

models. In fact, in the case of scale-free networks, since
pc → 0 for an isolated scale-free network with λ < 3,
we expect that the number of jumps will nearly always
approach its upper bound of one less than the number of
layers (l − 1), which will be followed by a final transi-
tion at pc → 0. Relating back to Eq. (19) a scale-free
distribution with λ < 3 would imply that the RHS of the
equation is always near 0 and thus for every layer the
LHS will be greater. Our results in Fig. 6a indeed con-
firm this as we find that for the case shown of l = 4 there
are always three jumps.

Furthermore, if we consider the case where the scale-
free distribution is not at the lowest layer, we expect
that all nodes at the scale-free layer would have to be
removed before the network would segregate and thus
there would be no jumps passed the layer where the
scale-free distribution existed. Alternatively, one could
restrict a priori a specific set of nodes to have interlinks
between them at the given layer according to a scale-
free distribution. In this case once all such nodes were
removed, the network would presumably segregate into
distinct communities so long as the chosen set was not
overly large.

A second extension involving degree distributions
could relate to having the same nodes be interconnected
at each layer. In this sense, one would first choose some
set of nodes to be interconnected at the next to lowest
layer and then choose a subset of those nodes to be in-
terconnected at the above layer, followed by a subset
of those nodes interconnected at the next higher layer,
etc. If all the layers remained Poisson distributed, the
main effect of these correlations between interconnec-
tions would be that the cutoff values of p in Eq. (14)
would change. In this case, rather than having the cut-
off be given by the sum of the degrees at all the layers, it
would be given by pcoi = e−ki , as only nodes that are in-
terconnected at the given layer have been removed since
those with interlinks at higher layers also must have in-
terlinks at the lower layers (note that we assume that the
ki are decreasing as one moves up the layers). The re-
mainder of our original derivation would remain virtually
unchanged. Interlinks between layers could also simply
be correlated rather than the absolute nature suggested
above and then the calculation of the cutoff values would
be more complicated.

B. Trade-offs between links at different layers

Another extension we consider is trade-offs among
adding links at various layers. Ideally to consider such
trade-offs one should specify costs for failures in con-
nectivity at each layer of the hierarchy and also specify
the cost of adding a link at each layer. A framework for
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FIG. 6. (a). We consider two distinct hierarchical networks
(n = 1) with a scale-free (SF) distribution at the lowest layer
of the network. At the higher layers, the degree distribution is
Poisson with the average given by the entries in~k. For the scale-
free distribution we set λ = 2.5, kmin = 2, and kmax = 1000. The
results are averaged over 10 realizations with N = 106 and we
note that the lines here are not theory, but rather only a visual
guide as all results are from simulations. (b) Here we consider
a single network with a hierarchical structure composed of 3
layers, each with a Poisson distribution. However we vary the
degree at each layer according to a fixed equation and fixed
maximum degree. We assume that at the highest layer the de-
gree is given by x, the next layer is given by 2x, and the final
layer is given by 4 − 3x. We then plot the locations of pci vs.
x. We highlight with vertical dashed lines the two critical val-
ues of x where we move from having three transition to two
(x ≈ 0.35) and from having two transitions to a single one
(x ≈ 1.05). All the solid lines are based on the theory from
Eq. (18).

considering costs similar to these can be found in the re-
cent work of [56].

To give an example of a more simple version, we con-
sider a hierarchical network of 3 layers with a fixed total
degree. Furthermore, we place a condition stating that
the number of links at the second layer must be twice

(or more generally any factor of) the number of links at
the first layer. Using Eqs. (19) and (21) we then find the
critical point(s) of transition for the given network. In
Fig. 6b we show how the critical points vary with the
average degree at the first layer (defined as x). We find
that there exist several possible critical values of x where
the system moves from having three transitions to two
and where it moves from having two transitions to a sin-
gle one. These critical values of x represent what could
be considered optimal trade-offs in preserving connectiv-
ity at specific layers. If we consider for example the first
critical point in x, x1, we note that this is the lowest value
of x for which the middle layer does not segregate into
communities and instead its connectivity is preserved so
long as the overall network remains connected. Likewise
the second critical point in x represents the first point
where the network does not separate at the highest layer
and instead the entire hierarchical network collapses all
at once. This simple analysis shows that indeed trade-
offs do exist between adding links at the different layers
and provides some basic intuition into the more general
case where costs are assigned to links at the different lay-
ers.

VII. DISCUSSION

In this work, we have studied the robustness of net-
works and networks of interdependent networks with a
hierarchical structure. This structure is very common
for many infrastructure networks, biological networks
and others. We have found analytical solutions and con-
firmed these solutions through simulations for isolated
hierarchical networks and for two different structures of
interdependent hierarchical networks. The resilience of
the network depends on the number of communities at
each layer of the hierarchy, the degree at each layer of the
hierarchy, the fraction of nodes removed, and also the pa-
rameters governing the interdependence (if present). We
also extended our framework to consider the more real-
istic case of a scale-free distribution and different trade-
offs between adding links at the various layers.

Our results show that hierarchical networks can un-
dergo multiple abrupt transitions depending on the above
parameters and that these transitions represent the sep-
aration of the network at different layers of the hierar-
chy. These results have potential applications in optimiz-
ing the resilience of networks in infrastructure and other
fields.
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ical Review X 3, 041022 (2013).

[10] M. De Domenico, C. Granell, M. A. Porter, and A. Are-
nas, Nature Physics 12, 901 (2016).

[11] S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Ge-
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[31] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature 435,

814 (2005).
[32] Z. Zhuo, S.-M. Cai, M. Tang, and Y.-C. Lai, Chaos: An

Interdisciplinary Journal of Nonlinear Science 28, 043119
(2018).

[33] T. C. McAndrew, C. M. Danforth, and J. P. Bagrow, Phys-
ical Review E 91, 042813 (2015).

[34] J. Zhao, D. Li, H. Sanhedrai, R. Cohen, and S. Havlin,
Nature communications 7, 10094 (2016).

[35] A. E. Motter and Y.-C. Lai, Physical Review E 66, 065102
(2002).

[36] J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, Phys.
Rev. Lett. 107, 195701 (2011).

[37] T. P. Peixoto, Physical Review E 85, 056122 (2012).
[38] T. P. Peixoto, Physical Review X 4, 011047 (2014).
[39] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová,
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