
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Guiding-center motion for electrons in strong laser fields
J. Dubois, S. A. Berman, C. Chandre, and T. Uzer

Phys. Rev. E 98, 052219 — Published 19 November 2018
DOI: 10.1103/PhysRevE.98.052219

http://dx.doi.org/10.1103/PhysRevE.98.052219


Guiding-center motion for electrons in strong laser fields

J. Dubois,1 S. A. Berman,1, 2 C. Chandre,1 and T. Uzer2

1Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
2School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

We consider the dynamics of electrons in combined strong laser and Coulomb fields. Under a
time-scale separation condition, we reduce this dynamics to a guiding-center framework. More
precisely, we derive a hierarchy of models for the guiding-center dynamics based on averaging over
the fast motion of the electron using Lie transforms. The reduced models we obtain describe well
the different ionization channels, in particular, the conditions under which an electron is rescattered
by the ionic core or is directly ionized. The comparison between these models highlights the models
which are best suited for a qualitative and quantitative agreement with the parent dynamics.

I. INTRODUCTION

Electrons in atoms or molecules subjected to laser
fields can tunnel ionize when the laser intensity is strong
enough to compete with the Coulomb attraction [1–4].
After tunneling, the electron can for example ionize di-
rectly, or be rescattered by the ionic core [4–6]. Rescat-
tering occurs when the electron tunnel ionizes, then
comes back to the ionic core region, and is finally ion-
ized after a strong interaction with the ionic core. This
process, also referred to as a recollision, is the keystone
of strong field physics [7]. In contrast, direct ionization
occurs when the electron never comes back to the ionic
core after tunnel ionization. The parameters of the laser
pulse, e.g., its intensity, frequency, polarization, and en-
velope, play a paramount role in the ionization process, as
reflected by the shaping in the momentum distributions
of the ionized electrons measured at the detectors [8–11].
In order to better analyze and interpret what is measured
at the detectors, there is a need to better understand the
motion of the electrons after tunneling [12–17].

To describe the motion of the electron after tunneling,
a convenient approximation is usually performed: Since
the electron is relatively far from the ionic core after tun-
neling and the electric field is strong, the Coulomb inter-
action is neglected. This leads to the so-called strong
field approximation [5] (SFA), which is one of the main
theoretical tools in strong-field atomic physics. The main
advantage of this approximation is that it allows the ex-
plicit computation of the trajectories of the electron since
the equations of motion are linear. However, the SFA of-
ten leads to disagreements or misleading interpretations
when it is confronted with experimental data [10, 18–
20]. For example, in linearly polarized (LP) fields, the
SFA suggests that if the electron does not return to the
ionic core within one laser cycle after tunneling, it never
comes back to the ionic core at all. However, multi-
ple laser cycle recollisions are essential for the quanti-
tative agreement between theories and experiments in
non-sequential double ionization (NSDI) [18, 21–24]. In
circularly polarized (CP) fields, the SFA suggests that
the drift-velocity of the electron pushes it away from the
ionic core, without rescattering. The predicted absence
of recollisions is in contradiction with the knee structure

observed in the double ionization probability curves, a
signature of the recollision process, observed in simu-
lations [25–27] and experiments [20]. In fact, multiple
laser cycle recollisions or recollisions in CP become pos-
sible only when the Coulomb interaction is taken into
account. In addition, Coulomb effects such as Coulomb
focusing [18, 28] and Coulomb asymmetry [19, 29] are
measurable and significant in above-threshold ionization
(ATI) [10, 28, 30]. Therefore, the Coulomb potential can-
not be ignored, even far away from the ionic core.
In the length gauge (see Ref. [31] for a review), the

Hamiltonian of an electron interacting with its parent
ion and a laser field reads

H(r,p, t) =
|p|2
2

+ V (r) + r ·E(t), (1)

where r and p are the position of the electron and its
canonically conjugate momentum, respectively. Atomic
units (a.u.) are used unless stated otherwise. Here, we
have considered a single-active electron atom, where the
effective charge is equal to one due to the shielding ef-
fect by the inner electrons. Furthermore, the timescale
of interest is of the order of femtoseconds. During this
short timescale, the ionic core is too massive to display
relevant variations of its position, and consequently, we
have considered the ionic core to be static. Moreover, the
characteristic distance of the electron in the laser field is
small compared to the wavelength of the laser field, and
consequently, we have neglected the spatial dependence
of the electric field (dipole approximation). The polar-
ization of the electric field is crucial in the analysis of the
variety of nonlinear phenomena [26, 32–40]. The ellipti-
cally polarized electric field is

E(t) = f(t)
E0√
ξ2 + 1

[x̂ cos(ωt+ φ) + ŷξ sin(ωt+ φ)] .

(2)
The laser ellipticity is ξ, where in LP and CP fields, ξ = 0
and ξ = 1, respectively. The laser amplitude in a.u. is
given by E0 ≈ 5.338× 10−9

√
I, with I the laser intensity

in W · cm−2. The laser phase at t = 0 is φ. In this
manuscript, we consider the laser envelope to be f(t) = 1.
Here, we consider a single frequency ω for the laser field.
Figure 1 displays six typical trajectories of Hamilto-

nian (1). We notice that these trajectories display fast
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FIG. 1: Typical electron trajectories for I = 1014 W · cm−2,
d = 2 and ω = 0.05 a.u. in the polarization plane (x, y). The
ellipticities are: (a) ξ = 0, (b–e) ξ = 0.5, (f) ξ = 1. The dark
blue curve (dark grey) is the electron trajectory of Hamilto-
nian (1). The light blue (light grey) and red curves (grey) are
the trajectories of the models G2 and G5, respectively, with
initial conditions far from the ionic core. For each model, the
solid and dashed curves are the guiding-center and the ap-
proximate trajectories, respectively. The lightly shaded circle
is the position of the ionic core at the origin, and the black
circle surrounding the origin is |r| = 15 a.u. All quantities are
in atomic units.

oscillations around a mean trajectory, which we call the
guiding-center trajectory. In this article, we use this clear
separation of scales to derive models for the guiding-
center dynamics.

Specifically, we average Hamiltonian (1) over the fast
motion using Lie transforms in order to simplify the elec-
tron dynamics and clearly distinguish the different ion-
ization channels for the electron. As a consequence, we
derive a hierarchy of averaged models which fully take
into account the Coulomb potential. In these models,
the electron in the combined strong laser and Coulomb
fields follows a guiding center trajectory [30]. Actually,
there are several possible guiding centers, depending on
the order up to which the averaging is performed. Com-
putations are presented for a d-dimensional configura-
tion space, where d = 1 (only for linear polarization) or
d = 2, 3. The objective of this manuscript is to derive

and investigate these reduced models.
In Sec. II, we describe the procedure we use for aver-

aging Hamiltonian (1) over the fast time scale, and we
derive a hierarchy of models for the guiding center dy-
namics. In Sec. III, we first compare these reduced mod-
els with the dynamics associated with Hamiltonian (1).
In particular, we show the relevance of two models in the
hierarchy. Then we analyze the dynamics of the guiding-
center models in phase space, highlighting regular and
chaotic regions and their relation with the trajectories of
Hamiltonian (1).

II. DERIVATION OF THE HIERARCHY OF

MODELS

A. Reminders on canonical Lie transforms

In this section, we recall some basic features on canon-
ical transformations in the framework of canonical Lie
transforms. For more details, we refer to Refs. [41, 42].
We consider a Hamiltonian system with phase-space vari-
ables z, a Hamiltonian H(z) and a Poisson bracket {·, ·}
(whether it is a canonical or non-canonical bracket).
Canonical Lie transforms are near-identity change of co-
ordinates z 7→ z̄(z), generated by a scalar function S(z),
called the generating function, and given by

z̄ = exp (−LS) z, (3)

= z− {S, z}+ 1

2
{S, {S, z}}+ . . . ,

where LS is the Liouville operator defined by LSF =
{S, F}. Canonical Lie transforms have several properties:

(i) F (exp(LS)z) = exp(LS)F (z), which comes from
the Leibniz rule,

(ii) {exp(LS)F, exp(LS)G} = exp(LS){F,G}, which
comes from the Jacobi identity and the antisym-
metry of the Poisson bracket,

for any scalar functions F (z) and G(z). As a consequence
of Property (i) and of the scalar invariance F̄ (z̄) = F (z),
these changes of variables modify any observable F (z),
and in particular the Hamiltonian H(z), into

F̄ (z̄) = exp (LS)F (z̄). (4)

Property (ii) ensures that these changes of coordinates
do not affect the expression of the Poisson bracket, i.e.,
they are canonical transformations. One significant ad-
vantage of these transformations is that they are explicit
functions and they can be easily inverted: z = exp(LS)z̄.
This way, we can recover all the information on the par-
ticle dynamics from the transformed (averaged) system.
These canonical Lie transforms are particularly well

suited for perturbation theory. If the Hamiltonian is of
the form H = H0 + ǫW , where H0 is the Hamiltonian
of the unperturbed system, W is the perturbation and ǫ
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is an ordering (small) parameter, a canonical Lie trans-
form generated by a generating function S(z̄) (of order
ǫ), applied to H is able to remove the unwanted part

of the perturbation, called W̃ , and move its influence to
higher orders in ǫ. More explicitly, at the lowest order,
the expression of the new Hamiltonian expressed in the
new variables z̄ is

H̄ = exp (LS)H (5)

= H0 + ǫW + {S,H0}

+ǫ{S,W}+ 1

2
{S, {S,H0}}+ . . . .

Choosing appropriately the generating function S such

that {S,H0} = −ǫW̃ , unwanted terms in the perturba-
tion W can be pushed from order ǫ to order ǫ2, meaning

that the order ǫ in the Hamiltonian becomes W − W̃ .
For instance, one can suppress fast oscillating terms con-
tained in W . Then, the associated canonical change of
coordinates is determined using Eq. (3).

B. Averaging the electron dynamics

We notice that these transformations are defined for
autonomous systems. Hamiltonian (1) has an explicit
time dependence through the electric field. Therefore,
we first increase phase space to include time t, and con-
sider its canonically conjugate variable k. The extended
Hamiltonian (1) becomes

H(r,p, t, k) = k +
|p|2
2

+ V (r) + r ·E(t). (6)

The extended Poisson bracket is

{F,G} =
∂F

∂r
· ∂G
∂p

− ∂F

∂p
· ∂G
∂r

+
∂F

∂t

∂G

∂k
− ∂F

∂k

∂G

∂t
, (7)

where the operators ∂/∂r = (∂/∂x, ∂/∂y, ∂/∂z) and
∂/∂p = (∂/∂px, ∂/∂py, ∂/∂pz).
The hypothesis we make for the derivation of our hi-

erarchy of reduced models is that the characteristic time
of the ionized electron trajectory is large compared to a
laser cycle T = 2π/ω, i.e., ω 7→ ω/ǫ where ǫ is an ordering
parameter which is explicitly introduced for bookkeeping
purposes. Performing the canonical change of coordi-
nates t̄ = t/ǫ and k̄ = ǫk, and re-scaling the energy,
Hamiltonian (6) becomes

H(0)(r,p, t, k; ǫ) = k + ǫ

[ |p|2
2

+ V (r) + r · E(t)

]
, (8)

where we have removed the bars in the new variables.
We apply canonical Lie transforms as described above in
order to perform the averaging of Hamiltonian (8) over
the fast time scale, by pushing time-dependent terms in
the Hamiltonian to higher order terms in ǫ.

1. Gauge velocity transformation

As an example, we consider the transformation from
the length gauge to the velocity gauge [31] in Hamilto-
nian (8). It is given by the following change of coordi-
nates

r̄ = r,

p̄ = p− ǫA(t),

where A(t) is the vector potential defined by E(t) =
−∂A(t)/∂t. This transformation is a canonical change
of coordinates which can be formulated as a canonical
Lie transform generated by

S(1) = ǫ r ·A(t). (9)

The Hamiltonian in the velocity-gauge coordinates be-
comes

H(1) = exp(LS(1))H(0) (10)

= k̄ + ǫ

[
1

2
(p̄+ ǫA(t))

2
+ V (r̄)

]
,

= k̄ + ǫ

[ |p̄|2
2

+ V (r̄)

]
+ ǫ2p̄ ·A(t) + ǫ3

A2(t)

2
.

We observe that the time-dependence in Hamiltonian (8),
present in E(t), is of order ǫ, while in Hamiltonian (10)
this time-dependence is moved to order ǫ2.

2. Iterative procedure

We iterate the above-procedure to higher order in ǫ.
We assume that after the N -th step of the procedure,
all the time-dependent terms in the present averaged
Hamiltonian are removed up to order ǫN , that is, the
time-dependence of the averaged Hamiltonian is of order
ǫN+1. We assume that the total generating function up
to order ǫN is known. The total generating function at
this step is

S(N)(r,p, t; ǫ) =

N∑

n=1

ǫnSn(r,p, t), (11)

and the corresponding averaged Hamiltonian is denoted

H(N) = exp(LS(N))H(0)

= k +

N∑

n=1

ǫnhn(r,p) + ǫN+1RN+1(r,p, t; ǫ),

where hn(r,p) are the coefficients in the series expan-
sion of the Hamiltonian that no longer depends on time,
while RN+1(r,p, t; ǫ) is the remainder of the Hamilto-
nian which still depends on time. The objective of the
iterative method is to find the modified generating func-
tion S(N+1) [which amounts to finding the extra function
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SN+1 in Eq. (11)] to remove the time-dependence in the
term RN+1 at the lowest order.
The averaged Hamiltonian H(N+1) whose time-

dependence is of order ǫN+2 is

H(N+1) = exp(LS(N+1))H(0),

= exp(ǫN+1LSN+1) exp (LS(N))H(0) +O(ǫN+2),

= exp(ǫN+1LSN+1)H
(N) +O(ǫN+2),

= H(N) + ǫN+1

(
RN+1 +

∂SN+1

∂t

)
+O(ǫN+2).

The time-fluctuating terms in RN+1 are denoted
︷ ︸
RN+1,

and are defined by

︷ ︸
RN+1 = RN+1 −

1

T

∫ T

0

dtRN+1.

In order to eliminate the time-fluctuating terms at order
ǫN+1, the component SN+1 of the generating function
S(N+1) is chosen as

SN+1 = −
∫

dt
︷ ︸
RN+1(r,p, t; 0), (12)

where the primitive is chosen such that the mean value
of SN+1 with respect to t ∈ [0, T ] is zero. At each step
the functions Rn have to be computed up to order M
where M is the last order for which the averaged Hamil-
tonian will be computed analytically. We perform these
computations using a symbolic computation software.

3. Averaged Hamiltonians

We apply the above-described procedure to push the
time-dependence in Hamiltonian (8) to order ǫ8 using
H(7) = exp(LS(7))H(0). Below we provide the explicit
expression for S(6). The higher-order components are
too lengthy to report and their expressions are not par-
ticularly enlightening.

S(6) = ǫ r ·A(t)− ǫ2

ω2
p ·E(t) +

ǫ3

ω2
A(t) ·

(
E(t)

4
+

∂

∂r

)
V − ǫ4

ω4
p · ∂

∂r

(
E(t) · ∂

∂r

)
V

+
ǫ5

ω4

[(
E(t)

4
+

∂V

∂r

)
· ∂

∂r
−
(
p · ∂

∂r

)2
](

A(t) · ∂

∂r

)
V − 5ǫ6

8ω6
p · ∂

∂r

︷ ︸(
E(t) · ∂

∂r

)2

V

− ǫ6

ω6

[(
p · ∂

∂r

)(
∂V

∂r
· ∂

∂r

)
−

(
p · ∂

∂r

)3

+ 2

(
∂V

∂r
· ∂

∂r

)(
p · ∂

∂r

)](
E(t) · ∂

∂r

)
V. (13)

Here, we have used the fact that the electric field is
monochromatic and satisfies ω2E(t) = −∂2E/∂t2. The

averaged Hamiltonian H(7) is

H(7) = k̄ + ǫ

[ |p̄|2
2

+ V (r̄)

]
+ ǫ3Up + ǫ5

Up

ω2(ξ2 + 1)

(
∂2V

∂x2
+ ξ2

∂2V

∂y2

)

+ǫ7
Up

ω4(ξ2 + 1)

[∣∣∣∣
∂

∂r

(
∂V

∂x

)∣∣∣∣
2

+ ξ2
∣∣∣∣
∂

∂r

(
∂V

∂y

)∣∣∣∣
2
]
+O(ǫ8), (14)

where all the derivatives are evaluated at r̄. By truncat-
ing the Hamiltonian at a given order, we notice that the
reduced (time-independent) Hamiltonians up to order ǫ7

are of the form

H(r̄, p̄) =
|p̄|2
2

+ Veff(r̄),

with an effective potential Veff . In particular, this high-
lights a particular property in the reduction process that
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the reduction procedure does not generate p̄-dependent
terms in the Hamiltonian other than the kinetic energy,
up to order ǫ7. At order ǫ8, the term which is gener-
ated in H(8) is linear in the momenta; therefore, it can
easily be eliminated by a translation in p̄ (which is a
canonical transformation). At order ǫ9, the terms which

are generated are quadratic in the momenta p̄, and we
do not consider these terms in what follows. Therefore,
our analysis is valid up to order ǫ8. In such a way, it
is particularly convenient to define effective potentials.
Depending on the order of truncation, we obtain three
reduced Hamiltonians

H2(r̄, p̄) =
|p̄|2
2

+ V (r̄), (15a)

H5(r̄, p̄) =
|p̄|2
2

+ V (r̄) +
Up

ω2(ξ2 + 1)

(
∂2V

∂x2
+ ξ2

∂2V

∂y2

)
, (15b)

H7(r̄, p̄) =
|p̄|2
2

+ V (r̄) +
Up

ω2(ξ2 + 1)

(
∂2V

∂x2
+ ξ2

∂2V

∂y2

)
+

Up

ω4(ξ2 + 1)

[∣∣∣∣
∂

∂r

(
∂V

∂x

)∣∣∣∣
2

+ ξ2
∣∣∣∣
∂

∂r

(
∂V

∂y

)∣∣∣∣
2
]
, (15c)

where we have removed the small parameter ǫ which was
originally introduced for bookkeeping purposes. Each of
these Hamiltonians describes the dynamics of the guiding
center at a different level of approximation. As a result of
averaging, the Hamiltonians (15) are conserved, in con-
trast to Hamiltonian (1). We notice that the quantities

of the effective potentials depend on the main parameters
of the electric field, its amplitude and its ellipticity, with
the exception of H2.
The corresponding change of coordinates which maps

H(0)(r,p, t, k; ǫ) to H(7) is given by Eq. (3) and its series
expansion up to order ǫ6 is given by

r̄ = r− ǫ2

ω2
E(t)− ǫ4

ω4

∂

∂r

(
E(t) · ∂

∂r

)
V − 2ǫ5

ω4

∂

∂r

(
p · ∂

∂r

)(
A(t) · ∂

∂r

)
V − ǫ6

8ω6

∂

∂r

︷ ︸(
E(t) · ∂

∂r

)2

V

− ǫ6

ω6

∂

∂r

[
∂V

∂r
· ∂

∂r
− 3

(
p · ∂

∂r

)2
](

E(t) · ∂

∂r

)
V − 2ǫ6

ω6

(
∂V

∂r
· ∂

∂r

)(
E(t) · ∂

∂r

)
∂V

∂r
+O(ǫ7), (16a)

p̄ = p− ǫA(t)− ǫ3

ω2

∂

∂r

(
A(t) · ∂

∂r

)
V +

ǫ4

ω4

∂

∂r

(
p · ∂

∂r

)(
E(t) · ∂

∂r

)
V

− ǫ5

ω4

∂

∂r

[(
E(t)

4
+

∂V

∂r

)
· ∂

∂r
−
(
p · ∂

∂r

)2
](

A(t) · ∂

∂r

)
V +

ǫ6

8ω6

(
p · ∂

∂r

)︷ ︸(
E(t) · ∂

∂r

)2
∂V

∂r

+
ǫ6

ω6

∂

∂r

[(
p · ∂

∂r

)(
∂V

∂r
· ∂

∂r

)
−
(
p · ∂

∂r

)3

+ 2

(
∂V

∂r
· ∂

∂r

)(
p · ∂

∂r

)](
E(t) · ∂

∂r

)
V +O(ǫ7). (16b)

If one needs to know the averaged Hamiltonian and/or
the system of coordinates at the order ǫN , one needs to
truncate the O(ǫN+1) terms of Eqs. (14) and/or (16),
respectively. The expressions (16) are used below to re-
construct the trajectories of the electrons from the tra-
jectories of the guiding centers.

In summary, the hierarchy of models is composed of
a time-independent Hamiltonian Hm [see Eqs. (15)] and
a transformation from the electron coordinates to the

guiding centers:

Φn : (r,p) 7→ (r̄, p̄), (17)

whose truncated expressions are given by the truncations
of Eqs. (16). The orders m and n refer to the order of the
Hamiltonian and the transformation, respectively, after
truncation of the perturbative expansion. We refer to the
model

Gn = (Hm,Φn),
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Φ2 Φ3 Φ4 Φ5 Φ6 Φ7

H2 G2 G3 G4 ◦ ◦ ◦

H5 ◦ ◦ ◦ G5 G6 ◦

H7 ◦ ◦ ◦ ◦ ◦ G7

TABLE I: The guiding-center models Gn = (Hm,Φn), where
n ≥ m.

as the n-th order guiding-center model, where n ≥ m,
and we show the set of (m,n) in Table I.

4. Links with the Kramers-Henneberger potential

At order ǫ5, our model is linked to the Kramers-
Henneberger (KH) treatment of the motion of a charged
particle in an external time-periodic electric field [43–
45]. In a nutshell, the classical KH theory amounts to
performing a canonical Lie transform generated by

S(2) = ǫ r ·A(t)− ǫ2

ω2
p · E(t),

on Hamiltonian (8), where the first term is used for mov-
ing into the velocity gauge. The resulting Hamiltonian
becomes exactly

HKH = k̄ + ǫ

[ |p̄|2
2

+ V

(
r̄+

ǫ2

ω2
E(t)

)]
+ ǫ3

E2(t)

2ω2
.

The term of order ǫ3 in the Hamiltonian HKH can be
easily removed by performing an additional transforma-
tion. In KH theory, the remaining time-dependence in
the potential is removed by an integral over time of the
effective potential. For instance, if we expand the KH
effective potential up to order ǫ7 and we average over
t ∈ [0, T ], it becomes

VKH = V + ǫ4
Up

ω2(ξ2 + 1)

(
∂2V

∂x2
+ ξ2

∂2V

∂y2

)
+O(ǫ8).

In this framework, the effective potential always only
depends on the position variables (and not on the mo-
menta), and there is no contribution at order ǫ6, contrary
to our derivations. The origin of this discrepancy is that
performing an averaging using an integral over the fast
timescales is only correct to the lowest order (here ǫ4),
but it fails at higher orders. One needs to perform canon-
ical changes of coordinates to properly average the fast
motions. Expressions beyond order ǫ4 and results ob-
tained using these higher orders are therefore incorrect.
We hereby take the opportunity to reiterate the advan-

tage of using canonical Lie transforms in the reduction
procedure: Since these transformations are invertible and
their inverse can be algebraically computed, information
on the original system [as described by Hamiltonian (1)]

can be fully recovered using the dynamics of the reduced
Hamiltonians. The model G5 contains more information
than what is provided by KH theory. In particular, the
KH theory does not provide Φ5, and as a consequence,
we are not able to reconstruct consistently the trajectory
from HKH.

III. ANALYSIS OF THE GUIDING-CENTER

MODELS

In this section, we analyze the different guiding-center
models, composed of a time-independent Hamiltonian
Hm and a canonical transformation Φn. In what follows,
we restrict the analysis to a simplified potential for the
atoms, namely the soft-Coulomb potential [46, 47]:

V (r) = − 1√
|r|2 + 1

. (18)

A. Comparison between Hamiltonian (1) and the

reduced models

Figure 1 shows typical electron trajectories (dark blue
curve) of Hamiltonian (1), the guiding-center trajectories
of G2 (solid light blue curve) and G5 (solid red curve) and
the associated reconstructed trajectories (dashed curves),
for d = 2, I = 1014 W · cm−2, ω = 0.05 a.u. Different el-
lipticities are considered: ξ = 0, ξ = 0.5 and ξ = 1. The
guiding-center trajectories (r̄(t), p̄(t)) are computed by
solving the forward and backward equations of motion of
the corresponding guiding-center Hamiltonians (15) with
initial conditions Φn(r(t0),p(t0)), where t0 is chosen such
that |r(t0)| > 50 a.u. (∼ 2E0/ω

2). We observe that the
light blue and red solid curves guide the oscillating dark
blue curves. Therefore, the electron oscillates around a
guiding center. For instance, in Figs. 1(c)–(d), we see
that the trajectory ionizes if the guiding-center motion is
unbounded, and it returns to the ionic core if the guiding-
center returns to the core. Moreover, we observe a quali-
tative agreement between the electron trajectory and the
reconstructed trajectory using the models G2 and G5. In
addition, we observe an overlap almost everywhere be-
tween the dark blue curve and the red dashed curve, a
signature of a very good quantitative agreement between
the electron trajectory and the reconstructed trajectory
of the model G5. For the G2, the overlap is mainly ob-
served far from the ionic core, i.e., for shorter integration
times (less than 10T ). Below, we provide more thorough
analyses to see if and when this agreement between the
reduced models and the true trajectories holds. We con-
sider the case d = 1 for clarity. In what follows, the
parameters are ξ = 0, I = 1014 W · cm−2, and ω = 0.05.
As a consequence of d = 1, the electron and guiding-

center phase-space coordinates are reduced to (r,p) =
(xx̂, px̂) and (r̄, p̄) = (x̄x̂, p̄x̂), respectively. Looking at
longer trajectories as it is done in Fig. 2, we observe mul-
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FIG. 2: Typical electron trajectory of Hamiltonian (1) for
I = 1014 W · cm−2, d = 1, ξ = 0 and ω = 0.05, and the
guiding-center trajectory of the model G5, for multiple initial
conditions Φ(x(t0), p(t0)) such that |x(t0)| > 50 a.u., with
forward and backward integration of the equations of motion
of H5. The grey areas are where the guiding-center posi-
tion is |x̄| < 35 a.u. Upper panel: Dark blue (dark grey)
and red (grey) curves are the electron and the guiding-center
trajectory, respectively. In the grey regions, the red (grey)
curves would typically look like the red (grey) curve in the
top panel of Fig. 5. Lower panel: The dark blue (dark grey)
curve is the guiding-center energy H5(Φ5(x(t), p(t))). The red
curves (grey) are the guiding-center energy of G5, given by
H5(Φ5(x(t0), p(t0))), respectively. The horizontal black line
is E = 0. Here x and E are in atomic units.

tiple returns of the electron to the ionic core. The up-
per panel of Fig. 2 shows a typical trajectory (dark blue
curve) of Hamiltonian (1), and the guiding-center trajec-
tory for G5 (red curve) for every interval of time when
the electron is far from the ionic core. The guiding-center
trajectory is solution of the forward and backward equa-
tions of motion of Hamiltonian (15b), with initial condi-
tions Φ5(x(t0), p(t0)), such that |x(t0)| > 50 a.u. In the
lower panel of Fig. 2, the dark blue curve is the guiding-
center energy H5(Φ5(x(t), p(t))), i.e., at each time, the
transformation Φ5 is performed on the electron phase-
space coordinates, and its associated energy H5 is com-
puted. The red curves are the guiding-center energy of
Hamiltonian (15b) for initial conditions Φ5(x(t0), p(t0)),
i.e., the energy of the guiding center of G5, which is con-
served. In Fig. 2, we observe that the guiding center
reproduces well the mean trajectory of the electron for
several time intervals when the electron is far from the
ionic core, in a similar way as it was observed in Fig. 1.
As a consequence, the guiding-center energy of the elec-
tron H5(Φ5(x(t), p(t))) is approximately conserved in a
piece-wise manner in time. However, we notice that the
energy strongly varies during close encounters between
the electron and its ionic core. In addition, once the elec-
tron has undergone a close encounter, the guiding-center
energy of the electron jumps to another energy level.

FIG. 3: Most probable distance error δxn [see Eq. (19)] as
a function of time t per laser cycle T (in log-log scale) for
I = 1014 W · cm−2, d = 1, ξ = 0 and ω = 0.05 a.u. The elec-
trons are initialized such that the initial velocity of the guid-
ing center of G2 is zero, and its initial position is normally
distributed, with a mean value 1000 a.u. and a standard de-
viation 5 a.u. The initial laser phase is uniformly distributed
φ ∈ [0, 2π]. The dashed lines are the linear fit curves. Inset:
Mean value of the position of the electron 〈x〉 as a function
of t/T . Here δxn is in atomic units.

These observations on the reconstructed trajectories
and on the guiding-center energy lead us to consider two
different methods for comparing in a more systematic
way Hamiltonian (1) with the n-th order guiding-center
model Gn = (Hm,Φn). They consist of:

(i) Computing trajectories of Hamiltonian
Hm(r̄, p̄) for t ∈ [t0, tf ] with initial condi-
tions Φn(r(t0),p(t0)), and then performing the
inverse change of coordinates Φ−1

n (r̄(t), p̄(t)) to
obtain the reconstructed trajectories.

(ii) Computing guiding-center energies
Hm(Φn(r(t),p(t))) with (r(t),p(t)) the trajectory
of Hamiltonian (1) for t ∈ [t0, tf ].

In what follows, we use these two methods to test the
validity and the benefits of the reduced models. Using
method (i), the reconstructed trajectories of the model
must be close to the true electron trajectory for the mod-
els to be relevant. This method is employed in Fig. 3. Us-
ing method (ii), by definition, the guiding-center energy
of the electron Hm(Φn(r(t),p(t))) must be conserved up
to some order for the reduced models to be relevant. This
method is employed in Figs. 4 and 5. In addition, we use
these tests to compare the reduced models and to pro-
vide some guidelines on which models should be used for
practical purposes.

1. Reconstructed trajectories

Figure 3 shows the most probable distance error δxn(t)
between the reconstructed trajectories of the model Gn

and the electron trajectory, such that

δxn(t) = |Π(Φ−1
n (x̄(t), p̄(t))) − x(t)|, (19)
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where x(t) is the trajectory of Hamiltonian (1), x̄(t) is
the guiding-center trajectory of Hamiltonian Hm with
initial condition Φn(x(0), p(0)), and Π is the projec-
tion from phase-space onto the position component, i.e.,
Π(x, p) = x. The most probable distance error is deter-
mined using the maximum of the kernel density estima-
tion [48] of the distance error as a function of t/T . Specif-
ically, it is determined in two steps for a fixed t/T : First,
we compute the kernel density estimation of our data,
then, we locate its maximum. The equations of motion
for x̄ and p̄ for the models G2 = (H2,Φ2), G3 = (H2,Φ3)
and G4 = (H2,Φ4) are the same, given that the Hamil-
tonian are the same. The differences between these mod-
els come from the change of coordinates, as taken into
account in the determination of the initial conditions of
the guiding-center trajectory and in the reconstruction of
the trajectory from the guiding-center phase-space coor-
dinates. This is also the case when comparing the models
G5 = (H5,Φ5) and G6 = (H5,Φ6).
The distance error between the electron trajectories

and the reconstructed trajectories is increasing for in-
creasing time. Moreover, the distance error is increas-
ing faster for n = {2, 3, 4} than for n = {5, 6, 7}. As
a consequence, at t ≈ 100T , the distance errors δxn for
n = {2, 3, 4} are two orders of magnitude greater than
the ones for n = {5, 6, 7}. More quantitatively, the most
probable distance error δxn scales as

δxn ∝ |t|αn .

We observe that αn ≈ 2.1 for n = {2, 3, 4}, and αn ≈ 1.1
for n = {5, 6, 7}.
Counter-intuitively, we observe no significant quanti-

tative improvements, neither between the models G2, G3

and G4, nor between the models G5, G6 and G7. Hence,
far from the ionic core, the corrective terms in the change
of coordinates Φ3 and Φ4, are negligible (at least for the
chosen parameters), and the models G2, G3 and G4 pro-
vide similar results. In the same way, the corrective terms
in Hamiltonian H7, compared with H5, are negligible, as
well as the corrective terms in the change of coordinates
Φ6 and Φ7.

2. Guiding-center energy

We complement the analysis of the trajectories by look-
ing at a specific property of the reduced models, namely
the conservation of energy. In Fig. 4, an ensemble of tra-
jectories is initiated such that the initial velocity of the
guiding center G5 is zero, and the initial position of the
guiding center G5 is normally distributed with a mean
value 100 a.u. and a standard deviation 5 a.u. The ini-
tial laser phase is uniformly distributed φ ∈ [0, 2π]. The
distribution in the lower panel of Fig. 4 represents the dis-
tribution of the guiding-center energy H5(Φ5(x(t), p(t)))
as a function of t/T . In the upper panel, the dark blue
curve is a typical electron trajectory in the ensemble. The
red curve is the guiding-center energy H5(Φ5(x(t), p(t)))

FIG. 4: Electron trajectory for I = 1014 W · cm−2, d = 1
and ω = 0.05 a.u. The gray areas are where the guiding-
center position is |x̄| < 35 a.u. Upper panel: The dark blue
(dark grey) curve is the electron trajectory of Hamiltonian (1)
as a function of time t per laser cycle T . The solid and
dashed red (grey) curves are the guiding-center and the ap-
proximate trajectory for G5, respectively, with initial condi-
tion t0 = 0. The inset is a zoom of the region around the
grey area. Lower panel: Logarithm of the distribution of the
guiding-center energy H5(Φ5(x(t), p(t))) as a function of t/T .
The guiding-centers are initialized with a normal distribution
with mean value 100 a.u. and standard deviation 5a.u., with
zero-velocity and a uniformly distributed initial laser phase
φ ∈ [0, 2π]. The red (grey) curve is the guiding-center energy
H5(Φ5(x(t), p(t))) of the dark blue (dark grey) curve in the
upper panel. Here x and E are in atomic units.

of the electron trajectory corresponding to the dark blue
curve in the upper panel.

For t < 7T , we observe in the lower panel that the dis-
tribution is peaked around the initial guiding-center en-
ergy of the electron. During this time, the electrons are
far from the ionic core. At t ∼ 8T , the electrons get close
to the ionic core, and the guiding-center energy distribu-
tion starts to spread out. When the electrons are close to
the ionic core, their dynamics is highly nonlinear due to
the competition between the strong laser and Coulomb
fields, and the energy curve of a single trajectory in the
lower panel starts varying significantly. In the meantime,
the inset in the upper panel shows that the approximate
trajectory of the reduced model no longer reproduces the
electron trajectory. For t > 9T , the electron is far from
the ionic core, and the red curve in the lower panel stops
varying. It means that the model G5 is again relevant,
but for a different energy level than the initial energy.
The arrow indicates the jump of the guiding-center en-
ergy after the close encounter with the ionic core. Close
encounters with the ionic core are short time processes,
and therefore cannot be averaged in time. It is expected
that the fast-time average we perform fails to describe
the various energy exchanges happening on these short
time scales.
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FIG. 5: Most probable energy error δen [see Eq. (20)] as a
function of the distance between the electron and the ionic
core |x| (in log-log scale), for I = 1014 W · cm−2, d = 1
and ω = 0.05 a.u. The initial conditions are the same as in
Fig. 3. The dashed lines are the linear approximation for
|x| ∈ [1, 35] a.u. The inset shows a zoom of the curves. Here
|x| is in atomic units.

Figure 5 shows the most probable relative energy error
δen(t) for the models Gn as a function of the distance
between the electron and the ionic core |x(t)|, such that

δen(t) =

∣∣∣∣
Hm(Φn(x(t), p(t))) −Hm(Φn(x(0), p(0)))

Hm(Φn(x(0), p(0)))

∣∣∣∣ ,
(20)

where (x(t), p(t)) are the electron phase-space coordi-
nates at time t. The most probable energy error is the
maximum of the kernel density estimation [48] of the en-
ergy error. It is determined using the same technique
as for computing the most probable distance error (see
Fig. 3). The initial conditions are the same as in Fig. 3,
and the integration is stopped when the electron reaches
x = 1 a.u.
As expected, we observe that the energy error δen

increases when |x| decreases, i.e., as the electron ap-
proaches the ionic core. Far away from the ionic core, we
observe that the most probable energy error δen scales
as

δen ∝ |x|−βn ,

with βn ≈ 3.0 for n = {2, 3, 4}, and βn ≈ 6.5 for n =
{5, 6, 7}. As in Sec. III A 1, for we observe no significant
quantitative improvements, neither between the models
G2, G3 and G4, nor between the models G5, G6 and G7.
A cross-over is observed between all the models when

the electron reaches ∼ 35 a.u. In particular, from Fig. 5,
we observe that G2 = (H2,Φ2) gives the smallest energy
errors among the reduced models close to the ionic core.
The main reason is that H2 and Φ2 do no contain deriva-
tives of the potential. As such, G2 constitutes the most
robust model among the hierarchy. Far from the ionic
core (> 35 a.u.), the higher order models provide a better
quantitative agreement with the electron trajectories as
shown in Figs. 3 and 5. The efficiency of the higher-order
models appears far from the ionic core, around 35 a.u.

FIG. 6: Representation of hn as a function of the distance
between the guiding center and the ionic core |x̄| (in log-log
scale) for I = 1014 W · cm−2, d = 1 and ω = 0.05. The
term hn corresponds to the term of order O(ǫn) in the Hamil-
tonian (14), which are: h1 = V (x̄), h5 = (Up/ω

2)V ′′(x̄),
and h7 = (Up/ω

4)V ′′(x̄)2. The dashed lines are the asymp-
totic behaviors of these terms for soft-Coulomb potential (18),
which are for |x| ≫ 1: |h1| ∝ |x̄|−1, |h5| ∝ |x̄|−3 and
|h7| ∝ |x̄|−6. The vertical line is xc = E0/ω

2. Here hn and
|x̄| are in atomic units.

3. Discussion

The relative failure of the higher order models close to
the ionic core can be understood by looking at the magni-
tude of the corrective terms in the Hamiltonians Hm and
in the changes of coordinates Φn. Figure 6 shows h1 =
V (x̄), h5 = (Up/ω

2)V ′′(x̄) and h7 = (Up/ω
4)V ′′(x̄)2 as a

function of the distance between the guiding center and
the ionic core. The term hn corresponds to the time-
independent term in Hamiltonian (14) of order ǫn. We
observe an overlap between these terms, where h1 ∼ h5

for |x̄| ≈ xc. Far from the ionic core, we approximate
the soft-Coulomb potential by a hard-Coulomb potential
V (x̄) ≈ −1/|x̄| and we compute hn explicitly. We deduce
that h1 ∼ h5 for x̄ ≈ xc with

xc ∼ E0/ω
2,

which is approximately equal to 21 a.u. for I = 1014 W ·
cm−2 and ω = 0.05 a.u. Therefore, for |x̄| ≫ xc, the
terms are ordered such that h1 > h5 > h7. In this
case, the series in the perturbative expansion of Hamil-
tonian (14) and the change of coordinates (16) are likely
converging, and the models Gn for n > 2 are relevant for
the guiding-center dynamics. For |x̄| ≪ xc, the terms are
ordered such that h1 < h5 < h7. In this case, the series
in the perturbative expansion of Hamiltonian (14) and
the change of coordinates (16) are likely diverging, and
the models Gn for n > 2 are no longer relevant for the
dynamics of Hamiltonian (1).
For parameters which push the electron far from the

ionic core, the higher order models become more rele-
vant and precise. For instance, in the Perelomov-Popov-
Terent’ev [49–51] (PPT) theory of ionization, initially
the electron is at a distance |r| ∼ (E0/ω

2)γ from the
ionic core, where we have introduced the Keldysh pa-
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rameter γ = ω
√
2Ip/E0 with Ip the ionization potential.

For small or intermediate Keldysh parameter (i.e., the
tunneling regime), the electron ionizes close to the ionic
core compared to the quiver radius. Here, we expect the
model G2 to be more relevant because of its robustness
close to the ionic core. However, for large Keldysh param-
eter (γ ≫ 1), the electron ionizes far from the ionic core
compared to the quiver radius. In particular, in a recent
experiment [52] in which photoelectron momentum dis-
tributions were measured, the parameters –laser intensity
I0 = 6×1013 W ·cm−2, laser wavelength λ = 400 nm and
atom Ar– correspond to a Keldysh parameter of γ ∼ 3.
Therefore, in the multiphoton regime (γ ≫ 1) and in par-
ticular for the set of parameters used in this experiment,
we expect the higher orders models G5 or G7 to be more
relevant.

B. Guiding-center phase-space dynamics

1. For Hamiltonian H2

The first (non-trivial) element of the hierarchy is G2 =
(H2,Φ2). This model was identified above as the most
robust one in the hierarchy for the analysis of the guiding-
center dynamics, since its guiding-center energy error
is lower than for any other models close to the ionic
core. We notice that this is the only reduced Hamil-
tonian which does not depend on the parameters of the
laser field. The dependence on the laser field is in the
change of variables Φ2. Moreover, if the potential is ro-
tationally invariant, as is the case for atoms, the resulting
Hamiltonian is integrable since the angular momentum
is conserved in addition to the Hamiltonian.
The change of variables is exactly given by

r̄ = r− ǫ2E(t)/ω2,

p̄ = p− ǫA(t).

What is particularly convenient with this guiding-center
model is that the potential is taken into account in the
Hamiltonian and the electric field in the change of vari-
ables.
Ionization occurs if and only if the energy of the guid-

ing center E = H2(r̄(t), p̄(t)) is positive. Otherwise the
motion of the electron is bounded since the guiding cen-
ter moves on a quasi-periodic orbit. The laser parame-
ters have no influence on the motion of the guiding cen-
ters (and this holds up to the fourth-order model). They
only influence how the electron swirls around the quasi-
periodic orbit.
We consider the case when the guiding-center is far

from the ionic core and as a consequence we can approx-
imate V (r̄) ≈ −1/|r̄|. Thus, the typical guiding-center
trajectory is on a Kepler orbit for E < 0, where E is
the energy of the orbit, as it is the case for the guiding-
center trajectories in Figs. 1(a–c) and (f). One of the par-
ticularities of these orbits is that the radial momentum

p̄ · r̄/|r̄| vanishes twice in a revolution cycle: Once when
the guiding-center trajectory is at the perihelion r (mini-
mum distance from the ionic core) and d(p̄·r̄/|r̄|)/dt > 0,
and once when the guiding-center trajectory is at the
aphelion R (maximum distance from the ionic core) and
d(p̄ · r̄/|r̄|)/dt < 0. The aphelion and the perihelion are
such that R + r = 1/|E|, imposing that for a given en-
ergy, the larger the aphelion, the smaller the perihelion,
i.e., the closer the electron gets to the ionic core.

2. For Hamiltonians H5 and H7

When going to higher-order models, the Hamiltonian
H2 gets perturbed by h5 (and h7). As a consequence,
since the perturbation mainly affects the trajectories that
pass close to the ionic core, i.e., r < xc ∼ E0/ω

2, we shall
see that the most perturbed trajectories in the higher-
order models are the ones with a large aphelion 1/|E| −
E0/ω

2 < R < 1/|E|.
The fact that the energy of the guiding centers is

conserved is a property which is preserved by construc-
tion of the reduction procedure: E = H5(r̄(t), p̄(t)) or
E = H7(r̄(t), p̄(t)) is conserved in time. Consequently,
for d = 2, the dimension of phase space is reduced from
5 to 3 + 1. Here 3 + 1 means that phase space is foli-
ated by constant energy surfaces of dimension 3. The
advantage is that one can visualize the dynamics using
Poincaré sections. Figure 7 shows the Poincaré sections
r̄ · p̄ = 0 and d(p̄ · r̄/|r̄|)/dt < 0 for E = −0.01 a.u. and
the soft-Coulomb potential (18), where p̄ · r̄/|r̄| = d|r̄|/dt
is the radial momentum of the electron. This Poincaré
section corresponds to the position of the guiding-center
when it turns back towards the ionic core. The region
close to the ionic core, i.e., around |r̄| ∼ E0/ω

2 (grey ar-
eas), is not relevant since the reduction procedure is only
valid far away from the ionic core.
For linear polarization (ξ = 0), in Figs. 7(b) and (f), we

observe two distinct dynamical behaviors of the guiding-
center trajectories. These figures display a chaotic layer
far from the ionic core around 1/|E| − E0/ω

2 < |r̄| <
1/|E|. This ring corresponds to trajectories with a small
perihelion and a large aphelion, that come close to the
ionic core |r̄| < E0/ω

2. These trajectories are the most
affected by the perturbation h5 in the HamiltonianH5 ac-
cording to our discussion in Sec. III A 3, and typically cor-
respond to the trajectories for which the electron comes
back to the ionic core, as it is depicted in Figs. 1(a),(c)
and (f). The width of this ring is of order E0/ω

2. Sec-
ondly, we observe a regular region for 1/2|E| < |r̄| <
1/|E| − E0/ω

2. This region corresponds to trajectories
with a perihelion greater than E0/ω

2, of the same order
of their aphelion. These are the trajectories least affected
by the perturbations h5 and h7. As a consequence, we
observe orbits that are mostly preserved from the un-
perturbed Hamiltonian H2, and typically correspond to
the trajectories for which the electron stays far from the
ionic core, as it is depicted in Fig. 1(b). Also, we observe
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FIG. 7: Poincaré sections r̄·p̄ = 0 and d(p̄·r̄/|r̄|)/dt < 0 in the polarization plane (x̄, ȳ), for potential (18), I = 1×1014 W.cm−2

and E = −0.01 a.u. The red (grey) thick lines are the boundaries of the Poincaré sections. The grey shaded areas are
|r̄| < E0/ω

2. The Hamiltonians are: (a) H2, (b–e) H5, and (f–i) H7. The ellipiticities are: (b,f) ξ = 0, (c,e,g,i) ξ = 0.5, (d,h)
ξ = 1. The frequencies are ω = 0.05 except for (d,h) ω = 0.025 (larger quiver radius). All axes are the same as for (a) unless
stated otherwise. All quantities are in atomic units.

two elliptic islands for (x̄, ȳ) ∼ (±1/2|E|, 0). These is-
lands correspond to mainly circular guiding-center orbits,
which become stable with the coupling with the electric
field encapsulated in the effective potential of H5 or H7.
Finally, the Poincaré sections for H5 and H7 look simi-
lar. This is consistent with our earlier observation that
h7 does not significantly affect the electron trajectories
for these parameters and far from the ionic core.

For elliptical polarization (ξ = 0.5), in Figs. 7(c)
and (g), the observations are similar to the linear case,
which reinforces the generality of the discussion above.
However, for circular polarization (ξ = 1), in Figs. 7(d)
and (h), we no longer observe chaotic behavior in the
guiding-center dynamics. Indeed, Hamiltonians H5 and
H7 are rotationally invariant, and as a consequence, the
guiding-center angular momentum is conserved. There-
fore, the dimension of phase space is reduced from 3 + 1
to 2 + 2 and the system is integrable. We observe that
the elliptic islands we observed for ξ = 0 and 0.5 around
(x̄, ȳ) ∼ (±1/2|E|, 0) are no longer present in the circu-
lar polarization case, as a consequence of the rotational
invariance.

In the previous sections we have seen that for the pa-
rameters I = 1014 W · cm−2 and ω = 0.05 a.u., the
models H5 and H7 are almost equivalent since h5 is sev-
eral order of magnitude higher than h7 in the region
where the higher order models are relevant, |r̄| > E0/ω

2

(see Fig. 6). This is verified by comparing the Poincaré
sections of Figs. 7(b–d) and Figs. 7(f–h). However, in
Figs. 7 (e)–(i), we observe that when ω = 0.025 a.u.
so that the quiver radius is of the same order as the

distance between the guiding-center and the ionic core
(E0/ω

2 ∼ 85 a.u.), the dynamics between Hamiltonians
H5 and H7 differs significantly. The reduced models are
not relevant in these regions. Hence, the reduced models
G5 and G7 are significantly different when the character-
istic distance between the guiding center and the ionic
core is the same as the quiver radius (at least for this
range of parameters). Similar observations would have
been made for ω = 0.05 a.u. by lowering the guiding-
center energy E.

Conclusions

We have derived a hierarchy of reduced models Gn

for the guiding-centers dynamics of the electron interact-
ing with the combined strong laser and Coulomb fields.
The reduced models Gn are composed of an averaged
Hamiltonian Hm governing the guiding-center dynam-
ics [Eqs. (15)] and a transformation Φn which maps the
electron phase-space coordinates onto the guiding-center
phase-space coordinates [Eqs. (17)]. As a rule of thumb,
these models are relevant when the electron is relatively
far away from the ionic core (typically when its distance
from the core exceeds one quiver radius), which happens
in a piece-wise manner in time. The models do not de-
scribe the short events when the electron recollides with
the ionic core.
We have singled out two models G2 and G5: The first

model provides the leading behavior of the trajectories
and is the most tractable one due to its simplicity. In
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order to improve the quantitative agreement, a higher-
order model such as G5 has to be used.
All these models allow the distinction between direct

ionizations and rescattering with the ionic core. This is
in particular very useful when the photoelectron momen-
tum distributions are analyzed for imaging the target.
In particular, we were able to define an energy of the
electron far away from the core for this time-dependent
system. The rescattering events can be seen as jumps in
energy as a result of the transfer of energy from the ionic
core to the electron.
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[39] J. Daněk, M. Klaiber, K. Z. Hatsagortsyan, C. H. Keitel,
B. Willenberg, J. Maurer, B. W. Mayer, C. R. Phillips,
L. Gallmann, and U. Keller, J. Phys. B: At. Mol. Opt.
Phys. 51, 114001 (2018).

[40] J. Maurer, B. Willenberg, J. Daněk, B. W. Mayer, C. R.
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