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The synchronization of coupled chaotic systems represents a fundamental example of self organization and

collective behavior. This well-studied phenomenon is classically characterized in terms of macroscopic pa-

rameters, such as Lyapunov exponents, that help predict the system’s transitions into globally organized states.

However, the local, microscopic, description of this emergent process continues to elude us. Here we show

that at the microscopic level, synchronization is captured through a gradual process of topological adjustment

in phase space, in which the strange attractors of the two coupled systems continuously converge, taking sim-

ilar form, until complete topological synchronization ensues. We observe the local nucleation of topological

synchronization in specific regions of the system’s attractor, providing early signals of synchrony, that appear

significantly before the onset of complete synchronization. This local synchronization initiates at the regions of

the attractor characterized by lower expansion rates, in which the chaotic trajectories are least sensitive to slight

changes in initial conditions. Our findings offer a fresh and novel description of synchronization in chaotic

systems, exposing its local embryonic stages that are overlooked by the currently established global analysis.

Such local topological synchronization enables the identification of configurations where prediction of the state

of one system is possible from measurements on that of the other, even in the absence of global synchronization.

PACS: 05.45.Xt, 68.18.Jk, 89.75.-k

Synchronization underlies numerous collective phenomena

observed in nature [1], providing a scaffold for emergent be-

haviors, ranging from the acoustic unison of cricket choruses

to the coordinated choreography of starling flocks [2]. Syn-

chronization phenomena have also found applications pertain-

ing to human cognition, providing a theoretical framework to

study insomnia, epilepsy and Parkinson’s disease [3], as well

as perception, memory and consciousness [4–6].

Special attention has been given to the synchronization of

chaotic systems [7], which, due to their high sensitivity to ini-

tial conditions, intrinsically defy synchrony. Therefore, char-

acterizing and understanding the transition from incoherence

to synchrony in such systems is of fundamental importance

[1]. The phenomenon is often observed by tracking the coor-

dinated behavior of two slightly mismatched coupled chaotic

systems, namely two systems featuring a minor shift in one

of their parameters. As the coupling strength increases, a se-

quence of transitions occurs, beginning with no synchroniza-

tion, advancing to phase synchronization [8], lag synchroniza-

tion [9], and eventually, under sufficiently strong coupling,

reaching complete synchronization. These transitions have

been thoroughly characterized by means of global indicators,

i.e. by monitoring sign changes in the Lyapunov spectrum [8]

or identifying crossover points between different scaling laws

[10]. A more detailed view can be attained by focusing on the

properties of unstable periodic orbits embedded in the attrac-

tor [13–16]. Such orbits, constituting long trajectories within

the attractors, provide crucial indicators for different types of
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synchronization, helping charaterize the stability of the syn-

chronization manifold and playing a crucial role also in the

process of desynchronizaiton [15].

Hence, synchronization is characterized at the macroscopic

level through the Lyapunov spectrum and at the meso-scopic

level through the non-localized unstable periodic orbits. We

offer to complement these views by developing a local de-

scription of synchronization as a continuous process of topo-

logical adjustment in phase space between two different

strange attractors. As the coupling strength increases, we

show that the structures of the attractors of the two coupled

systems begin to assimilate, until, at the point where com-

plete synchronization is attained, they reach perfect topologi-

cal matching. In order to demonstrate that, we expose the syn-

chronization focal points, a concept that has been previously

suggested [11], and identify the precise nucleation points in

phase space where synchronization is locally established. Our

analysis allows us to uncover the microscopic mechanisms un-

derlying the synchronization transition and helps us tracks the

gradual microscopic onset of synchronization, preceding the

macroscopic transition to complete synchrony.

We demonstrate our findings on one of the fundamental

examples in the context of synchronization, capturing two

slightly mismatched chaotic Rössler oscillators [12] coupled

in a master-slave configuration. Focusing on this commonly

studied system allows us to put our findings in context, and

directly compare them with the state-of-the-art pertaining to

chaotic synchronization. The equations of motion driving

these oscillators take the form

ẋ1 = f1(x1)

ẋ2 = f2(x2) + k(x1 − x2), (1)
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where x1 ≡ (x1, y1, z1) and x2 ≡ (x2, y2, z2) are the vector

states of the master and slave oscillators respectively, k is the

coupling strength and f1,2(x) = (−y − z, x+ ay, b+ z(x−
c1,2)). Without loss of generality we set the parameters to

a = 0.1 and b = 0.1 identically across the two oscillators, and

express the slight mismatch between the master and the salve

through the parameters c1 = 18.0 vs. c2 = 18.5. The system

(1) describes a unidirectional master (x1) slave (x2) form of

coupling, uniformly applied to all coordinates x, y and z. Un-

der this directional coupling scheme we can track and quan-

tify the process of synchronization in a controlled fashion, as

the slave gradually emulates the behavior of the master, while

the master continues its undisturbed oscillations. The uniform

coupling, under which synchronization is entered, but never

exited, allows another layer of observation simplicity, which

we relax later on, by investigating single variable coupling,

observing a richer set of synchronization transitions.

As the coupling k in (1) is increased, the system (1) un-

dergoes a set of transitions, first from incoherence to phase

synchronization [8], and then from phase to complete syn-

chronization. The first transition is characterized by the phase

order parameter

r = lim
τ→∞

[

1

τ

∫ τ

0

1

2

∣

∣eiθ1 + eiθ2
∣

∣ dt

]

, (2)

where θ1,2 ≡ arctan(
y1,2

x1,2

), which approaches unity if both

oscillators are in phase, i.e. θ1 = θ2. The second transition

occurs when the synchronization error

E = lim
τ→∞

[

1

τ

∫ τ

0

‖x1 − x2‖ dt

]

(3)

vanishes, indicating that x1 and x2 oscillate in perfect unison

[17].

These two transitions are observed in Fig. 1a,b, where we

present the order parameters r andE vs. the coupling k. Phase

synchronization emerges as r → 1 at kPS ∼ 0.1, and com-

plete synchronization follows as E → 0 at kCS ∼ 2.0 (verti-

cal dashed lines). The common approach for observing these

transitions is to track sign changes in the system’s Lyapunov

exponents, as obtained from ensemble averages of the eigen-

values of (1)’s Jacobian matrix

J ≡

















0 −1 −1 0 0 0
1 a 0 0 0 0
z1 0 x1 − c1 0 0 0
k 0 0 −k −1 −1
0 k 0 1 a− k 0
0 0 k z2 0 x2 − c2 − k

















. (4)

Averaging J’s eigenvalues over all phase space configurations

spanned by the chaotic trajectory, one obtains the system’s

six Lyapunov exponents, which help characterize the state

of the system. In the disordered regime (0 ≤ k < kPS)

the Lyapunov spectrum comprises two positive, two vanish-

ing and two negative exponents; under phase synchronization

(kPS ≤ k < kCS) it transitions into two positive, one zero

and three negative exponents; and at k ≥ kCS one of the two

positive exponents also becomes negative, marking the onset

of complete synchronization.

Obtained by ensemble averages, the Lyapunov spectrum is

a global indicator of the state of the system, aggregating over

the behavior of the entire system trajectory in phase space. It

provides, however, little insight into the specific microscopic

states of the system along this trajectory. Hence, to com-

plement this global perspective, we wish to inspect the local

emergence of synchronization by assessing the level of coher-

ence of different points in the two oscillators’ phase space.

To observe this we measure the synchronization points per-

centage (SPP) index [11, 18], which quantifies the fraction of

points in phase space for which there exists a local continuous

surjective function to map the state of the master with that of

the slave. If, within some area in the vicinity of these points

such a continuous mapping exists, one can predict the specific

state of the slave system directly from measuring the master

state, representing a local topological coherence of the master-

slave duo [19]. Thus, the SPP index can monitor the gradual

passage from local to global synchronization in the system.

In order to calculate SPP one has first to identify a proper

domain and a proper co-domain for the statistical search of the

existence of functional dependencies. We start by considering

a set of N = 104 points, spread uniformly in time, in the x1-

subspace of the phase space, and the correspondingN images

in the x2-subspace. Next, we select a specific pair of points,

x
∗

1 in x1 and its image x
∗

2 in x2. We then consider the n = 5
closest points to x

∗

2, i.e. x∗

2’s neighborhood, and identify the

m pre-image points falling within a similar size neighborhood

of x∗

1. Here m ≤ n, as the neighborhood of x∗

2 might also host

images of points not falling within the close neighborhood of

x
∗

1 (Fig. 2). If indeed neighborhoods in x2 tend to correspond

to pre-image neighborhoods in x1, i.e. m tends to be larger

than expected by chance, it is likely that a continuous function

between the attractors is, indeed, at play.

To quantitatively assess our degree of confidence that such

a local continuous function underlies the observed correspon-

dence we estimate the probability for the observed mapping

to emerge at random. The probability of a single point falling

within the neighborhood of x∗

2 at random is n/N , and there-

fore the probability for the m points around x
∗

1 to have, by

pure chance, images inside the neighborhood of x∗

2 is pm =
(n/N)m. We compare this probability to

bp = max
q=1,...,m

[

B(q,m;P )
]

, (5)

where B(q,m;P ) is the binomial distribution, providing the

probability that q ≤ m events out of m attempts are realized

for a process of elementary probability P . Setting P = n/N ,

bp represents the maximum over q of the probability that, out

of a given m points, q will fall into the neighborhood of x∗

2.

Hence, we estimate the level of confidence for the existence

of a continuous mapping from x1 to x2 through the ratio

γ =
pm
bp

, (6)
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which approached zero in the limit where bp ≫ pm, indicating

a strong likelihood for the existence of a local continuous (at

least surjective) function mapping states in the vicinity of x∗

1

into states around x
∗

2 [18]. In our calculations we set a thresh-

old of γ = 0.1 to discern whether or not two local neigh-

borhoods are linked through a functional relationship, namely

a pair (x∗

1,x
∗

2) is rendered synchronized if its neighborhoods

scored γ < 0.1. Denoting the number of synchronized pairs

by n∗, we define the SPP index as the fraction of locally syn-

chronized points in the system n∗/N . In the limit SPP→ 1
there exists a unique, global, continuous function from one

subsystem to the other [18], and hence the slave subsystem is

fully predictable from measurements of the master oscillator.

In Fig. 1c we show the SPP index vs. k, which provides

us with a novel perspective into the microscopic process un-

derlying the synchronization transition. It shows that SPP

gradually increases with k, with a sizable portion of points

in phase space undergoing local synchronization already at

low coupling, much before the emergence of complete global

synchronization. For example, already around k ∼ kPS, sig-

nificantly before the onset of complete synchronization, we

observe SPP ∼ 0.3, indicating that for a significant part of the

slave trajectory, its state already can be predicted from that

of the master’s. This is despite the fact that complete global

synchronization will only be observed around k = kCS ∼ 2.0.

This finding concurs with previous works focusing on bidirec-

tional coupling [11], showing that, even when lacking global

amplitude correlations, phase synchronization implies pre-

dictability of one system’s state from that of the other for a

rather large portion of the phase space. Such predictability,

or mapping, between the instantaneous states of the two cou-

pled systems, is precisely captured by the large SPP index ob-

served as the system enters the phase synchronization regime.

We emphasize, however, that this is not meant to suggest that

SPP is an identifier of phase synchronization - indeed, r (2)

is a suitable global parameter for that cause. Rather, the fact

that already around the phase-synchronization transition SPP

assumes a non-vanishing value, presents its power as a micro-

scopic quantifier preceding complete synchronization, indi-

cating that early traces of local synchronization appear much

before than the full transition to complete synchrony.

The gradual growth of SPP with k can be understood as

a continuous process of Topological Synchronization: orig-

inally, at k = 0, the uncoupled master and slave attractors

are topologically distinct, then, as k is increased, the slave’s

strange attractor gradually assimilates to that of the master.

Indeed, the SPP index captures the extent to which the two

attractors can be mapped to each other, quantifying a level of

topological similarity, which culminates in complete synchro-

nization, where the two attractors become identical. Hence,

complete synchronization, a transition occurring at kCS, be-

gins at significantly lower coupling through a continuous mi-

croscopic process of topological synchronization, in which the

slave and master attractors gradually converge until their tra-

jectories become uniform.

Next, we examine the characteristics of the initial synchro-

nization points, seeking whether they are randomly distributed

within the master attractor, or restricted to specific areas in

phase space. To observe this, in Fig. 3 we plot the master

attractor in the (x1, y1) phase plane, marking the points of

synchronization, i.e. the points where the master state can be

mapped to the slave state, by red dots. These red dots rep-

resent precisely the desired synchronization points, being the

areas in the attractor that contribute to the SPP index. Inter-

estingly, the synchronization points are confined to specific

areas in the attractor, indicating that topological synchroniza-

tion nucleates around preferred regions in the (x1, y1) pro-

jection of the phase space. For example, under low coupling

of k = 0.05, we have SSP = 0.3% (Fig. 3a), an embryonic

stage of topological synchronization. The crucial point in the

current context is, however, that these selected 0.3% synchro-

nization points are distinctively located along specific areas in

the attractor. This pattern continues as k is increased in Fig.

3b-d, and the SPP index rises: indeed, the density of red points

increases accordingly, yet, most importantly, they continue to

cover only specific regions within the (x1, y1) phase plane.

Hence, topological synchronization arises from distinctive at-

tractor focal points.

To gain further insight into the microscopic onset of syn-

chronization we investigate the connection between the syn-

chronization points and the local density of the master at-

tractor. First, we divide the (x1, y1) plane into l × l small

boxes, setting l = 20, and quantify the attractor density in

each box ρ(x, y) (x, y = 1, . . . , l) by measuring the fraction

of the N = 104 recorded x1, y1 points that appear within

each (x, y) box (Fig. 4a). Regions of high density (yellow)

represent areas in the (x1, y1) plane that are frequently vis-

ited by the master oscillator, whereas regions of low density

(blue) are rarely crossed by the oscillator. Denoting the max-

imum density by ρmax, we define the fractional density to be

ρ(x, y)/ρmax, and mark the most (least) dense regions in the

attractor, in which the fractional density exceeds 0.7 (is be-

neath 0.2) by red circles (triangles). To evaluate the level of

local topological synchronization we measure the number of

synchronization points S(x, y) in each box and obtain the lo-

cally normalized SPP via σ(x, y) = S(x, y)/ρ(x, y), captur-

ing the probability of an attractor point in the (x, y) box to

be synchronized. Interestingly, we find that synchronization

tends to avoid the high density regions (red circles), preferen-

tially nucleating around the attractor regions that are scarcely

visited by the master oscillator (red triangles, Fig. 4b-d).

To systematically quantify this preference we show in Fig.

5a the normalized SPP, σ(x, y), vs. the attractor density,

ρ(x, y), for k = 0.08, representing the first stages of topo-

logical synchronization. Indeed, we find that synchronization

appears first only in the limit of small ρ, tending to zero as ρ
is increased. This trend is sustained for larger k values (Fig.

5b-g), with σ gradually advancing from the sparse regions to-

wards the denser ones, until, once k > kCS ∼ 2, we have

σ → 1 for all ρ, capturing complete synchronization (Fig.

5g).

The difficulty in synchronizing chaotic systems is rooted in

their sensitivity to initial conditions, as quantified by the ex-

pansion rate, capturing the divergence of infinitesimally close

trajectories. Therefore, we expect that local synchronization

will appear first in those areas where the slave attractor is char-
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acterized by a low expansion rate. To test this we measured the

maximum eigenvalueΛ of the local Jacobian matrix, Eq. (4) at

all points in the slave attractor and compared their expansion

rate with the normalized SPP, σ. We find, in Fig. 5h-m, that

indeed the majority of synchronization points (large σ) con-

dense around slave attractor regions with low expansion rates

(small Λ). This trend is consistently observed until k ≈ kCS,

where complete synchronization emerges and σ → 1 almost

homogeneously throughout the entire range of Λ values (Fig.

5n).

To further test our microscopic view of synchronization we

consider a different form of master-slave coupling, in which

the master and slave are coupled through a single variable x.

This can be achieved by substituting the coupling term in Eq.

(1) with k(x1−x2), a coupling applied uniquely to the x vari-

able. This seemingly minor change is rather essential, turn-

ing the coupled oscillators into a class III system, in which

synchronization is confined to a finite interval in k [20, 21].

Indeed, now the system features a first transition at k = k1
CS

,

in which it enters complete synchronization, followed by a

second transition at k = k2
CS

> k1
CS

, in which it begins to de-

synchronize (Fig. 6a,b). Hence, synchronization is limited to

the range k1
CS

< k < k2
CS

, allowing us to test our microscopic

framework under a broader setting, which includes also the

transition out of synchronization.

We find, also for this class III system that the SPP in-

dex captures the microscopic emergence of synchronization,

exhibiting non-vanishing levels of local synchronization al-

ready before entering the complete synchronization window

k1
CS

< k < k2
CS

(Fig. 6c). As expected SPP begins to decline

shortly after k > k2
CS

, as synchronization begins to deterio-

rate. Interestingly, we observe that SPP< 1 throughout the

entire range of coupling strengths, indicating that this system

never attains perfect synchronization. Indeed, the inset in Fig.

6b shows that the order parameter E never reaches the E = 0
mark, a slight deviation that has a clear microscopic finger-

print in SPP. As above, we find that synchronization is initi-

ated at low density regions of the attractor (Fig. 7 and Fig. 8a

- g). This preference is sustained both upon entering the syn-

chronized regime and upon exiting it at k > k2
CS

. The picture

is richer with respect to the local expansion rates Λ: the onset

of synchronization is rooted in the low expansion regions of

the slave attractor (Fig. 8h - l), consistent with our observa-

tions in Class II (Fig. 5h - n). However, as the system exits

the synchronization window, under large k, the final traces of

local synchronization are observed at the high expansion re-

gions (Fig. 8m,n).

these correlations between synchronization points and den-

sity/expansion rates, observed in both systems tested, are of

particular relevance, as they provide useful criteria to fore-

see the conditions under which one can predict the state of

one system by measuring that of the other. For instance, con-

sider the phase synchronization regime, in which phases are

coordinated, but the amplitudes of the two chaotic systems re-

main globally uncorrelated. It would seem, due to the lack of

amplitude correlations, that one cannot gain information on,

e.g., x2 from measurements of x1. Our framework and anal-

ysis, however, uncovered that while global synchronization is

lacking, local synchronization points may already be present,

allowing prediction from x1 to x2 in certain areas of the os-

cillators’ trajectory. For example, we have shown that around

the transition to phase synchronization SPP ∼ 30% (Fig. 1c),

indicating that such mapping from x1 to x2 indeed exists in

selected regions of the attractor. Equipped with knowledge

on the density (of the master attractor) or the local expansion

rates (of the slave) one can identify a priori the most likely

regions in the two attractors, where such prediction is poten-

tially possible.

In this paper, we limited explicitly ourselves to the prob-

lem of complete synchronization in order to demonstrate the

continuous microscopic process of topological synchroniza-

tion taking place already in small coupling strengths. Com-

plete synchronization defined here as the state wherein the

two systems evolve quasi-identically, i.e. with negligible syn-

chronization errors (since a formal synchronization manifold

does not exist for non-identical systems). In this microscopic

process the system might be also in lag synchronization be-

fore it will reach complete synchronization. Microscopically,

lag synchronization will just correspond to some small region

where SPP is still consistently smaller than 1, but yet con-

sistently larger than 0. Complementing the well-established

macroscopic and meso-scopic views, we have exposed here

the microscopic onset of synchronization, as a gradual pro-

cess of topological adjustment observed by the two coupled

chaotic systems. This view helped us demonstrate the pres-

ence of synchronization points even in the absence of global

synchronization and show the road to complete synchroniza-

tion as a continuous Topological synchronization between the

two attractors. Following the track of almost all research

into synchronization of chaotic systems, our study focused

on slightly mismatched oscillators coupled via diffusive cou-

pling. Its insights, however, can be readily expanded to other

systems and to different types of coupling functions. How-

ever, while our basic findings, pertaining to the microscopic

topological convergence are likely universal, the specific path

towards synchronization, i.e. nucleating in regions of small Λ
and gradually spreading to areas of large Λ, may depend on

the specific choice of coupling. Therefore, our results prompt

further investigation into different types of coupling functions

and their corresponding unique patterns of local synchroniza-

tion.
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Figures

FIG. 1: (Color online). Microscopic build-up of synchronization.

(a) Phase order parameter r vs. k as obtained from the coupled

Rössler oscillators (1). Phase synchronization (r → 1) occurs for

k > kPS ∼ 0.1 (vertical dashed line). The inset shows the behav-

ior of r in the vicinity of the transition. (b) Synchronization error

E vs. the coupling strength k. Under complete synchronization we

have E → 0, obtained for k ≥ kCS ∼ 2.0 (vertical dashed line,

see also inset). (c) SPP vs. k allows us to observe the microscopic

path to synchronization. As expected, SPP → 1 in complete syn-

chronization (k ≥ kCS), however the local synchronization points

appear much earlier. For instance, SPP ∼ 30% already at k ∼ 0.1,

indicating that local synchronization, at selected focal points of the

coupled strange attractors, is already present.

FIG. 2: Calculating the synchronization points percentage (SPP)

index. (a) Trajectory in the x1 sub-space, capturing the master at-

tractor. (b) Matching trajectory in the x2 sub-space, i.e. the slave

attractor. Each include N = 104 points at fixed time intervals. (c) -

(d) We select two points x∗

1 and its image x
∗

2, together with a small

environment, or neighborhood, within radii ǫ (x∗

1) and δ (x∗

2) for each

point. In (c) we mark the m < n pre-image points surrounding x
∗

1

(black) - in this case only 4 of the five points correspond to x
∗

2’s en-

vironment. (d) n = 5 closest points of x∗

2. Not all pre-image points

are guaranteed to fall within x
∗

1s neighborhood, hence m < n. For

example, see the hollow circle in x
∗

2s environment, whose pre-image

falls outside that of x∗

1. SPP quantifies the level of correspondence

between all such environments to estimate the likelihood of a contin-

uous mapping between the attractors.

FIG. 3: (Color online). Focal points of synchronization. Syn-

chronization points (red) in the (x1, y1) phase plane of the master’s

strange attractor (grey), under increasing values of the coupling k. In

each panel the SPP index (percentage) is also shown.

FIG. 4: (Color online). Synchronization points and attractor den-

sity. (a) The density ρ(x, y) of points in the (x1, y1) projection of

the master attractor. We used a partitioning into 20 × 20 boxes and

measured the density in each box (x, y = 1, . . . , 20). Boxes with

high density (above 70% of max(ρ(x, y))) are marked by red cir-

cles, while boxes with low density (below 20% of max(ρ(x, y))) are

marked by red triangles. (b) - (d) The normalized local SPP σ(x, y)
under increasing values of the coupling strength k. Initial synchro-

nization points are captured by the boxes with increased levels of

σ(x, y) (tending to yellow, common colorbar on the right). These

early traces of synchronization favor the low density regions of the

attractor, as observed by σ(x, y)’s consistent avoidance of the red

circles vs. its tendency towards the red triangles.
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FIG. 5: (Color online). The effect of density ρ and local expan-

sion rate Λ. (a) - (c) Normalized SPP σ vs. the master attractor

density ρ as obtained for k = 0.08, 0.11 and 0.20. Synchroniza-

tion (large σ) begins in small ρ regions of the attractor, gradually

spreading towards large ρ. (d) - (g) For larger values of k, complete

synchronization is gradually reached and eventually σ → 1 through-

out all points of the attractor. (h) - (n) σ vs. Λ, the expansion rate

at the slave image of all synchronization points. Initially, synchro-

nization points show a strong preference for areas characterized by

small Λ. Increasing k the effect is twofold: the peak of the distri-

bution shifts to the right hand side, i.e. larger Λ, and more points

begin to distribute uniformly, capturing the expanding coverage of

the topological synchronization.

FIG. 6: (Color online). Microscopic synchronization in a class

III system. We constructed a Rössler master slave system coupled

only through the x variable and observed the transitions in and out of

synchronization. (a) Phase order parameter r vs. coupling strength

k. Phase synchronization (r → 1) occurs between k > kPS ∼
0.2 and begins to deteriorate at k > k2

CS ∼ 6.5 (vertical dashed

lines). The inset shows the behavior of r in the vicinity of these

transitions. (b) Synchronization error E vs. the coupling strength

k. We obtain a window of approximate complete synchronization,

in which E ≪ 1, between k1
CS ∼ 1.55 and k2

CS ∼ 6.5 (Vertical

dashed lines, see also inset). (c) As in Fig. 1, SPP vs. k allows us to

observe the microscopic path to synchronization. As expected, SPP

grows gradually with k and then declines after the transition to the

desynchronized state at k > k2
CS. Note the SPP never reaches unity,

as, indeed, this system never fully exhibits complete synchronization

(see inset in (b), where it is shown that E never fully vanishes).

FIG. 7: (Color online). Synchronization focal points in a class III

system. Coupled only through the x coordinate, the system under-

goes synchronization in a limited k interval. Here we track the build

up of local synchronization as the system enters and exits this inter-

val. (a) Density ρ(x, y) of points in the (x1, y1) projection of the

master attractor. As in Fig. 4 boxes with high density (above 70%
of max(ρ(x, y))) are marked by red circles; boxes with low den-

sity (below 20% of max(ρ(x, y))) are marked by red triangles. (b)

- (d) The normalized local SPP σ(x, y) under increasing values of

the coupling strength k. Early traces of synchronization (tending to

yellow) favor the low density regions of the attractor, as observed by

σ(x, y)’s consistent avoidance of the red circles and its tendency to-

wards the red triangles. (e) - (f) At k > k2
CS ∼ 6.5 the system exits

the synchronization window. Once again, we find that this process

occurs unevenly throughout the attractor, with regions of low density

(triangles), again, being the last to de-synchronize.

FIG. 8: (Color online). The effect of ρ and Λ in a class III system.

(a) - (c) Normalized SPP σ vs. the master attractor density ρ as ob-

tained for k = 0.2, 0.23 and 0.48. Synchronization (large σ) is ini-

tiated at low density regions of the attractor, gradually spreading to-

wards large ρ. (d) - (e) For larger values of k, complete synchroniza-

tion is gradually reached and σ →∼ 1 throughout all points of the at-

tractor. (f) - (g) This density-synchronization correlation is sustained

as the system exits the synchronization window (k > k2
CS ∼ 6.5),

as the high density regions lose synchronization first. (h) - (l) σ

vs. Λ, the expansion rate at the slave image of all synchronization

points. Synchronization points show a strong preference towards ar-

eas characterized by small Λ. As in class II, increasing k, we find

that the peak of the distribution shifts towards higher Λ, and more

and more points tend to spread out uniformly. (m) - (n) For large

k, de-synchronization begins, but, this time, the final traces of local

synchronization are condensed around the large Λ regions.
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