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Abstract

We report a multiscale investigation of water inside graphene slit-like channels that extends from

the detailed all-atom level (AA) to the cheaper particle-based coarse-grained (CG) level, and to

the continuum-based level. Since water is a highly polar solvent, the detailed description of its

structural and dielectric properties close to the interfaces is of paramount importance in many ap-

plications. For this purpose, we have systematically developed an extended dipole-based CG model

using the relative entropy method that can accurately reproduce the radial distribution function

(RDF), diffusion coefficient, and bulk dielectric permittivity of the underlying AA reference model.

The extended model is simple yet complex enough to shed light on the role of dipolar interactions

in polar liquids such as water. Using the CG potentials developed in this work, we show that the

structure, parallel dielectric permittivity, and polarization profiles can be captured reasonably well

compared to all-atom molecular dynamics (AAMD) simulations. Furthermore, we use the empir-

ical potential-based quasi-continuum (EQT) framework to predict the density and polarization of

water molecules inside nano slit channels of various widths. Our continuum analyses reveal that

the mean-field treatment of dipolar correlations in combination with the use of CG potentials are

sufficient to accurately reproduce the structural variations of water inside the confined graphene

slit channels. Finally, by using coarse-grained molecular dynamics (CGMD) and EQT simulations,

we comment on the applicability of dipolar-based CG models in reproducing the structure of water

near charged interfaces.
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I. INTRODUCTION

Water is one of the most abundant molecules on the Earth. Even though it is a chemically

“simple” molecule, water has posed a great challenge to the scientific community in terms

of describing its behavior at interfaces and in aqueous solutions. Due to its geometry and

distinct charge distribution, water is a highly polar molecule with a relatively high dielectric

constant. The dielectric permittivity is directly related to the ability of the fluid in screening

charges. Thus, the electrostatic interactions of water in the presence of an external field or

with charged objects such as charged colloidal particles, ions, proteins, and lipid membranes

are profoundly affected by its very existence [1, 2]. Thus, an in-depth understanding of

these interactions and accurate representation of water screening effects are essential to many

applications such as water desalination [3, 4], protein folding [5, 6], peptides self-assembly [7],

double-layer capacitance [8], and electrochemical applications of ionic liquids [9].

Due to its computational cost, many theoretical models treat water as a background

solvent with a constant dielectric permittivity [10–13]. Although it is true in the case of bulk

water, near interfaces the dielectric permittivity varies significantly. Therefore, considering

a uniform permittivity may not accurately reflect the underlying physics of charge screening.

In fact, capturing the anisotropic nature of dielectric variations, which are reminiscent of the

well-known spatially varying density oscillations at an interface, is of paramount importance

to many biological and industrial applications [14, 15].

Over the past years, density functional theory (DFT) and high resolution atomistic sim-

ulations such as, molecular dynamics and Monte Carlo simulations have been adopted to

study water for a variety of applications in biology, physics and material science. From these

methods one can obtain molecular insights into the nature of different interactions and in-

terpret the physical phenomena based on the knowledge of statistical mechanics. However,

for many practical systems the number of water molecules is of the order of several thou-

sands to millions [16], making these methods forbiddingly expensive to simulate systems

involving multiple length and time scales ranging from the quantum to atomic to continuum

scales. Thus, developing multiscale methods that are accurate, fast and rooted in statistical

mechanics can be of high value.

In order to reduce the computational cost, CGMD simulations can be used to access

larger length and time scales. The objective of any CG simulation is to lower the resolution
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by representing the system with fewer degrees of freedom, while retaining the necessary

details to capture the quantity of interest. For any polar molecule, the dipole-dipole interac-

tions and fluctuations are mainly responsible for the dielectric response of the fluid. These

interactions are ubiquitous in nature, and they exist in many systems, such as colloids,

ferro and electro-rheological fluids [17]. Moreover, in addition to the spherically symmetric

short-range interactions, dipolar molecules bring in anisotropic forces due to their long-range

dipole-dipole interactions, and thus, can serve as a simple model to understand the structure,

dynamics and thermodynamic properties of polar fluids or dipolar colloidal systems [17, 18].

Recently, there have been efforts to develop CG models that include and optimize

charges/dipole moments to reproduce various properties of the reference system. The rea-

son behind such efforts is two-fold. First, due to the existence of dipole fluctuations, one can

calculate the dielectric constant of the fluid. Since the dielectric pemittivity incorporates

both short- and long-ranged correlations, it can serve as a good test for the accuracy of an

inter-molecular potential [19]. On the other hand, the implicit treatment of electrostatic

interactions for polar molecules, in particular water, fails to capture their dielectric screening

effect [20]. One of the earliest studies is based on the well-known Stockmayer potential [21]

(a single-site interaction with an associated orientation), which models water as a hard

sphere with a point dipole and is referred to as Bratko, Blum, and Luzar (BBL) model [22].

A soft sticky dipole potential is also developed for liquid water, which is the same as the

BBL model, except that the hard-sphere interaction is replaced by the softer Lennard-Jones

potential [16]. More generally, the generalized Stockmayer (GSM) potential is developed for

polar liquids that consists of a spherical Kernel with dipole-dipole interaction [23] and has

been recently applied for water [24]. There are also efforts to match properties of water to

experiments (top-down CG methods). One of the top-down CG approaches that maps water

into a single-site CG bead with an embedded point dipole is the electrostatic based (ELBA)

model. The model was originally developed for a lipid membrane. The parameters are tuned

such that with a loss of local structure, it reproduces the bulk water density, and diffusion

at room temperature in a good agreement with experiments [25, 26]. In a more systematic

way, the force matching technique is used with the Drude-like model, to reproduce the radial

distribution functions (RDFs) and the dielectric permittivity of some amines and alchohols

such as methanol [27]. In this study, we systematically develop an extended dipole-based

model for polar fluids that can accurately predict the radial distribution function (RDF),

3



diffusion coefficient, and the bulk permittivity of the reference all-atom model. We apply

our model to reproduce water RDF, diffusion coefficient, and dielectric permittivity in the

bulk. For this purpose, we model water molecules into extended dipoles, and optimize

the dipole moment within the relative entropy framework. However, as we show later in

Section VI A, the dipole optimization alone does not guarantee that the water dipolar prop-

erties, in particular the dielectric permittivity, are reproduced by the CG model. Thus, we

employ the constrained relative entropy (CRE) method [28] to reproduce the all-atom bulk

permittivity in the CG model.

The remainder of the paper is organized as follows. In Sec. II, we provide details on

the extended dipole-based CG model and apply it to water molecules. In Sec. III A, we

first describe the details of systematic charge optimization within the relative entropy frame

work for dipole-based CG models and then in Sec. III B, we describe the CRE method in

order to reproduce the bulk water permittivity of an all-atom reference model. In Sec. III C,

we discuss how to match diffusion through modifying the inertia features of our model. In

Sec. III D, we discuss systematic coarse-graining in inhomogenous environment by optimizing

the wall-fluid interaction energy. In Sec. IV, we describe the theory of the EQT framework.

In Sec. V, necessary details of the MD, CG, and EQT simulations are provided. In Sec. VI, we

first provide the CG potentials obtained via charge and dielectric permittivity optimization.

We then demonstrate the ability of our CG models in reproducing density and parallel

permittivity profiles of water molecules inside neutral graphene channels of various widths.

In addition, using the EQT framework, we investigate the applicability of the mean field

approximation (MFA) for capturing the dipolar interactions inside the slit-like graphene

channels. Finally, we draw conclusions in Sec. VII.

II. CG EXTENDED DIPOLE MODEL

In this study, we consider a CG model consisting of extended dipolar molecules [29, 30],

in which two opposite charges, ±q, are located at a distance d from each other, thereby

creating a dipole moment of µ = qd. The topology of the extended dipole molecule is shown

in Fig. 1(a). It can be seen that the molecule has an effective diameter of σ and a van der

Waals (vdW) interaction site that is located at the center, d/2 distance away from either of

the charges. Thus, the interaction energy between the extended dipolar molecules consists
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of four Coulombic interactions due to the positive and negative charges, and a vdW pair

potential between the molecules center. Compared to the point dipole spherical models,

the extended dipole model provides a more realistic picture of highly polar fluids [29]. In

addition, it has been shown that for d/σ ≤ 0.25, the extended dipole and point dipole models

are similar. In this study, we assumed that the distance d is fixed, so the CG model is not

polarizable. Although the distance between the charges can be considered as an optimization

parameter, for simplicity we only consider optimizing the charges on the molecule as well

as the vDW interaction. In order to optimize the charges and the vdW interaction, we

follow a systematic bottom-up coarse-graining approach to reproduce the properties of the

underlying all-atom reference model. To demonstrate our model, we coarse-grain the all-

atom SPC/E water into the extended dipolar molecules with d = 0.058 nm, which represents

the distance between the oxygen and the center of the line intersecting the hydrogen atoms

in the SPC/E AA water model.

III. CG OPTIMIZATION

Our objective is to reproduce the RDF, diffusion coefficient, and the dielectric permit-

tivity in the bulk CG system. There are various systematic CG methods such as iterative

Boltzmann inversion (IBI) [31], inverse Monte-Carlo (IMC) [32], and relative entropy (RE)

minimization [33, 34] that can accurately reproduce the AA target RDFs. When RDF is

the only target of interest, the choice of center-of-mass (COM) mapping of atoms/molecules

into spherical beads is a common choice. However, to reproduce the dielectric permittivity,

one needs to take into account the dipolar fluctuations. So for a CG system to be able to

predict the dielectric constant, dipole-dipole interactions have to be explicitly considered in

the model.

In this study, we use the RE framework to systematically optimize the vdW and elec-

trostatic interactions between the extended dipolar molecules to reproduce the RDF and

dielectric constant of the SPC/E water at the temperature of 298 K and density of 1.0

g/cm3.
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A. Charge optimization

Relative entropy quantifies to what extent the configurational probability distributions

vary from one another between the CG and AA model. Therefore, minimizing the relative

entropy with respect to the potential parameters results in the CG energy landscape that

reproduces as best as possible the underlying AA probability distribution function in the

CG degrees of freedom. It has been shown that in the canonical ensemble the RE can be

written as [33],

Srel = β 〈UCG − UAA〉AA − β (FCG − FAA) + 〈Smap〉AA , (1)

where U is the total energy, F is the configurational part of the Helmholtz free energy,

〈. . . 〉 represents the Boltzmann weighted average in the corresponding ensemble, Smap is the

mapping degeneracy in the AA model, and β = 1/kBT with kB as the Boltzmann constant

and T as the temperature. As mentioned earlier, the interaction energy for a system of the

extended dipolar molecules consists of the vdW and Coulombic part. We assume that the

total CG interaction energy is pairwise additive, and we model it as

UCG =
N∑
i=1

N∑
j>i

udd,CG (rij) , (2)

where the summations are over all the distinct dipole molecules, N is the number of dipolar

molecules, rij is the center-to-center distance between i and j dipoles, and udd,CG is the CG

pair potential between two extended dipole molecules, which is defined as,

udd,CG (rij) = uff
vdW,CG (rij) + uff

elec,CG (rij) , (3)

where uff
vdW,CG is the coarse-grained fluid-fluid vdW potential and uff

elec,CG represents the

fluid-fluid electrostatic interaction between two extended dipole molecules. In order to de-

termine the uff
vdW,CG in Eq. 3, we model it by uniform cubic-B splines, due to their flexibility

and robustness. Hence, uff
vdW,CG can be expressed as,

uff
vdW,CG(r) =

[
1 t t2 t3

] 1

6


1 4 1 0

−3 0 3 0

3 −6 3 0

−1 3 −3 1




cj

cj+1

cj+2

cj+3

 , (4)
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where the separation interval from 0 to the cut-off, Rff
cut, is discretized into n− 1 segments,

{r0, r1, r2, ..., rn−1}, of equal size ∆r = Rff
cut/(n− 1) such that ri = i×∆r (i ∈ (0...n− 1)),

{c0, c1, c2, ..., cn+1} are the spline knots, the index j satisfies the condition rj ≤ r < rj+1,

and t =
r−rj
∆r

. According to Fig. 1(a), the electrostatic part of the pair potential in Eq. 3

can be written as,

uff
elec,CG (rij) = Ac

2∑
l=1

2∑
k=1

qilqjk
4πε0 |ril − rjk|

, (5)

where qil and qjk are the point charges of dipole molecules i and j, respectively, qi1 = qj1 = −q

and qi2 = qj2 = +q, in which q is set to the charge of the oxygen atom in the SPC/E water

model, i.e., q = 0.8476, ε0 is the vaccum dielectric permittivity, and ril and rjk are the

positions of qil and qjk, respectively. In Eq. 5, Ac is the charge scalar factor to be optimized

within the relative entropy framework.

Given the definitions of the pair potentials in Eqs. 4 and 5, the optimization parameters

consist of a set of knot values and a scalar charge factor, i.e, λ = {c0, c1, . . . , cn+1, Ac}. Since

all the adjustable parameters are linear coefficients in the potential, there exists a single

global minimum for the relative entropy function [34]. To obtain these parameters, we use

the Newton-Raphson optimization technique. In each iteration the parameters are obtained

from the following relation,

λ(k+1) = λ(k) + ωdλ, (6)

where ω is the relaxation factor and dλ is the change in the parameters at each iteration,

and is given by

dλ = −H−1
Srel
·∇λSrel, (7)

where HSrel
is the Hessian matrix. For more information regarding the expressions in Eq. 7

as well as the implementation, see Ref [35].

Although optimizing the CG pair potential (uff
vdW,CG) indirectly affects the dipolar ori-

entations due to the change in the molecular packing, the electrostatic interaction plays

an influential role on the dipole-dipole distribution, thereby directly affecting the dielectric

permittivity of the fluid. In this study, we optimize the electrostatic interaction through the

scalar charge factor, Ac. To gain more insight into what optimizing the parameter Ac means,

we take a look at the first derivative of the relative entropy. To minimize the RE function,

the optimality condition requires that the first derivative of Srel w.r.t any parameter be zero,
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i.e.,
∂Srel
∂λ

= β

(〈
∂UCG

∂λ

〉
AA

−
〈
∂UCG

∂λ

〉
CG

)
= 0. (8)

Thus, by using Eqs. 2 and 8, and choosing λ to be Ac, we arrive at:〈
N∑

i,j=1,j>i

2∑
l,m=1

qilqjm
4πε0rij

〉
AA

=

〈
N∑

i,j=1,j>i

uff
elec,CG (rij)

Ac

〉
CG

. (9)

The right hand-side of Eq. 9 is equal to the average CG electrostatic potential divided by

the factor Ac. Thus, by optimizing Ac, one can obtain the full average electrostatic potential

(both short and long range) energy in the mapped all-atom ensemble. In other words,〈
Udd

elec,AA

〉
=

1

Ac
〈Uelec,CG〉 , (10)

where Uelec,CG is the total electrostatic potential energy of the CG system and Udd
elec,AA

represents the dipolar part of electrostatic potential in the all-atom reference simulation.

B. Dielectric permittivity optimization

For a homogeneous system (bulk) of polar molecules with periodic boundary conditions,

the bulk dielectric permittivity is related to the fluctuation of the dipole moment and can

be calculated from the following relation [36, 37]:

εr = 1 +
〈M 2〉

3ε0V kBT
, (11)

where εr is the bulk dielectric permittivity, V is the volume of the system, and M is the

total dipole moment of the liquid defined as,

M =
N∑
i=1

µi. (12)

Certainly, scaling the charges through parameter Ac affects the value of the dielectric per-

mittivity. However, for a highly polar molecule such as water, where hydrogen bonding plays

an important role, the RE minimization alone does not guarantee that the bulk dielectric

permittivity is reproduced. Hence, to reproduce εr for water, we enforce it as a constraint

in the RE minimization. For this purpose, we use the constraint relative entropy (CRE)

minimization method proposed in Ref [28]. In general, the CRE has the form,

Screl = Srel + χC (λ) , (13)
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where χ is the Lagrange multiplier, and C (λ) is the imposed constraint. To obtain the

optimal parameters we use Eq. 6 with dλ replaced by dλc, which is given by,

dλc = dλ+H−1
Srel
JT ·

(
J ·H−1

Srel
JT
)−1

(C (λ) + J · dλ) . (14)

where J is the constraint Jacobian matrix . For the detailed derivation of the CRE method,

see the supplementary information of Ref. [28]. In this study, we define C as,

C =
1

2

(
εr,CG − εr,AA

εr,AA

)2

, (15)

and the corresponding Jacobian matrix has only a nonzero value w.r.t the parameter Ac.

Thus, it can be written as,

J =

(
εr,CG − εr,AA

εr,AA

)
dεr,CG

dAc
, (16)

where the first derivative of εr w.r.t. Ac can be written as,

dεr,CG

dAc
=
εr,CG − 1

Ac
. (17)

For details on the derivation of Eq. 17, see Appendix A.

C. Matching diffusion coefficient

In this study, we have also examined the diffusion coefficient of the extended dipole

model. As it’s the case for any CG model, the consequence of removing degrees of freedom

is lower friction which results in faster dynamics for the CG models compared to the all-

atom counterparts. Thus, the diffusion coefficient obtained from the CGMD simulations is

typically an order of magnitude higher than the AAMD simulations [38]. One way to match

the diffusion coefficient is to modify the equations of motion via a thermostat that alters

the viscous frictional forces on the particles [39]. The other way is to modulate the diffusion

coefficient through particles’ inertia features [25]. Since the distance within the extended

dipole molecule is fixed, we optimize the moment of inertia via changing the mass of the

molecule. To match the diffusion coefficient, we used the downhill simplex algorithm with

the following objective (or penalty) function,

y = |Dtgt −DCG|, (18)
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where Dtgt and DCG are the diffusion coefficients of the AA reference and CG simulations,

respectively, which can be calculated from the Einstein relation,

D = lim
t→∞

1

6tN

N∑
i=1

〈[ri(t)− ri(0)]2〉. (19)

D. Wall-fluid potential for confinement

It is known that the bottom-up systematic CG potentials developed for bulk systems may

not be transferable in the presence of an external potential. For instance, it has been shown

that the bulk-based CG potential may not adequately represent the water structure close

to the planar graphene sheets [40]. Recently, there have been efforts to develop systematic

ways of coarse-graining for inhomogenous systems. Mashayak and Aluru [41] employed the

RE method to coarse-grain both fluid-fluid and wall-fluid interactions inside the slit-like

graphene channels. They have shown that by coarse-graining the wall-fluid interaction,

the water density profile can be predicted reasonably well when compared to the reference

AA simulations. Sanyal and Shell [42] have developed a local density-based approach that

modifies the fluid-fluid interactions through a local density potential function. Wagner et

al. [43] proposed an order-parameter dependent potentials, in which they have used the

multiscale coarse-graining (MS-CG) approach [44, 45] where the order parameter can be

local, such as local density at a CG site, or global, such as the distance from a wall. In this

study, we use the approach of Mashayak et al. [41], except that we use the bulk-based CG

pair potential for the fluid-fluid interaction and optimize the wall-fluid interaction within

the RE framework. Thus, compared to Eq. 2 the total potential of a confined CG system

will have an additional contribution from the wall that depends on the separation distance

between the wall and the fluid, and it can be written as,

Uwf
CG =

Nw∑
i=1

Nf∑
j=1

uwf
CG (rij) , (20)

where Nw and Nf are the number of wall atoms and confined fluid atoms, respectively,

and uwf
CG is the CG wall-fluid pair potential that is optimized to account for the missing

structure nearby the wall-fluid interface. Similar to the bulk fluid-fluid potential, uff
vdW,CG,

we use Eq. 4 to model the wall-fluid pair interaction in our simulations. Therefore, for

the confined system of extended dipole molecules we perform an additional optimization to
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determine the CG wall-fluid interaction.

IV. EQT

EQT is an empirical potential-based quasi-continuum theory that seamlessly integrates

the atomistic pair potentials into a continuum frame work such as the Nernst-Planck (NP)

equation. For a slit channel with the z axis as the inhomogenous direction, the 1D steady-

state NP equation can be written as,

d

dz

(
dρ(z)

dz
+
ρ(z)

kBT

dU(z)

dz

)
= 0, (21)

with boundary conditions

ρ(0) = 0, (22a)

ρ(H) = 0, (22b)

1

H

∫ H

0

ρ(z) dz = ρavg, (22c)

where, ρ(z) and U(z) are the density and total potential of the molecule at location z,

respectively, H is the channel width, and ρavg is the average density inside the channel.

In the past few years, EQT has been shown to accurately predict the structure and po-

tential of mean force profiles for confined LJ fluids [46, 47], CO2 [48], water [40, 41] and

electrolytes [30, 49]. It has also been used within the classical density functional theory

(cDFT) to predict various thermodynamic properties of confined LJ fluids and their mix-

tures [50–52]. As shown in [51, 52], upon minimizing the grand potential of a confined

fluid in contact with a bulk reservoir, the equilibrium density profile satisfies the Boltzmann

relation,

ρ(r) = ρb exp

(
− 1

kBT

(
Uwf(r) +

δF ex[ρ(r)]

δρ(r)
− Ub

))
. (23)

where ρb and Ub are the density and potential energy in the bulk, respectively, Uwf is the

total wall-fluid potential, and F ex is the excess part of the intrinsic Helmholtz free energy

that contains all the information about the fluid-fluid interaction. We note that the solution

of Eqs. 21 and 22 is equivalent to Eq. 23, when the reference point is chosen in the bulk.

For a neutral wall, the total wall-fluid potential is written as,
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Uwf(r) =

∫
ρw(r′)uwf(r)dr′, (24)

where r = |r − r′|, ρw is the wall density, and uwf(r) is the effective pair potential between

the wall atom and the fluid molecule. For a simple LJ fluid the wall-fluid pair potential

is taken from the reference all-atom simulations, whereas in a system for which the wall-

fluid interaction is coarse-grained, the wall-fluid potential is taken from the CG system, i.e,

uwf(r) = uwf
CG(r). In this way, we systematically incorporate the information at the finer

level into the continuum representation. The excess free energy functional is split into hard

sphere and dispersion parts as:

F ex[ρ(r)] = F ex
hs [ρ(r)] + F ex

disp[ρ(r)]. (25)

We note that this is similar to what Mashayak et al. have used in the Langevin-Poisson-

EQT method [30]. The first term in Eq. 25 is due to the hard sphere repulsion, which is

calculated in the fundamental measure theory (FMT) using [53–57],

F ex
hs [ρ(r)] = kBT

∫
Φ [nα (r)] dr, (26)

where Φ is the reduced free energy density, and nα are the set of weighted densities that

come in the scalar and the vector forms, and are defined as,

nα (r) =

∫
dr′ρ (r′)ωα (r − r′), (27)

In Eq. 27, ωα are the weight functions that are related to the geometrical measures (center

of mass, surface area, and volume) of a spherical particle of radius Rhs. The detailed

implementation of the above functionals and the weight functions in a slit channel are given

in the appendix of Ref [30].

The second term in Eq. 25 is the excess free energy functional that accounts for the

fluid-fluid dispersion interactions. Using the mean-field approximation (MFA), F ex
disp can be

modeled as,

F ex
disp[ρ(r)] =

∫ ∫
ρ(r)ρ(r′)uff(r)drdr′, (28)

where uff(r) is the effective fluid-fluid potential, and r is bounded between the inner and

outer cutoffs, Rmin and Rcut, respectively. Similar to the treatment of the wall-fluid potential,

the effective fluid-fluid interaction is taken from the CG model, i.e, uff(r) = uff
vdW,CG(r). We
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note that due to the mean-field approximation and absence of an external electric field,

all the dipole orientations are equally likely [58]. Hence, there would be no electrostatic

contribution to the excess free energy functional (Eq. 25).

Once the excess free energy functional is determined, using Eqs. 25, 26, and 28, Eq. 23

can be rewritten as,

ρ(r) = ρb exp

(
− 1

kBT

(
Uwf(r) + Uff

hs(r) + Uff
CG(r)− Ub

))
, (29)

where Uff
hs is obtained by taking functional derivative of F ex

hs (Eq. 26):

Uff
hs(r) = kBT

∫
dr′

∂Φ ({nα})
∂nα

δnα (r′)

δρ (r)
, (30)

and the CG fluid-fluid potential energy is given by

Uff
CG(r) =

∫ r=Rcut

r=Rmin

ρ(r′)uff
vdW,CG(r)dr′. (31)

V. SIMULATION DETAILS

A. MD simulations

In general, for any bottom-up coarse graining method, a set of reference trajectories

are required to obtain the corresponding CG potentials. As mentioned in Section II, we

parametrized the CG potentials to reproduce RDF and dielectric constant of the bulk SPC/E

water. All the simulations were performed in the canonical ensemble (NV T ) using the GRO-

MACS [59] software. Equations of motion are integrated with the leap-frog algorithm with

a time step of 1 fs. During the simulations the temperature is kept constant at 298K using

the Nosé-Hoover thermostat [60] with a 0.2 ps time constant. For the bulk simulations, all

systems were initially equilibrated for 2 ns, following a 10 ns of production run. The SHAKE

algorithm [61] was used to keep water molecules rigid. For the short-ranged interactions,

the cutoff radius was set to 1.2 nm. Both energy and pressure tail corrections [62] have been

applied to the standard 12-6 LJ potential for the bulk MD simulations. The long range elec-

trostatic interactions were calculated using the particle mesh Ewald (PME) summation [63]

with the tinfoil boundary condition (infinite dielectric) and a FFT grid spacing of 0.12 nm.

Periodic boundary conditions were applied in all the directions. In order to obtain enough

statistics to calculate the bulk dielectric permittivity, trajectories of atoms were collected
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every 0.1 ps. For the confined water simulations, our system consists of two parallel graphene

sheets separated at a distance of H in the z direction. The lateral dimensions lie in xy plane

with an area of 3.834× 3.68927 nm2. A periodic boundary condition was applied in all the

directions with an extra vacuum of 30σ (where σ is the diameter of the water oxygen atom,

and is equal to 0.317 nm) in the z direction to avoid slab-slab interactions between periodic

images. The LJ length and energy scale parameters for carbon-water interaction (σcw, εcw)

are 0.32777 nm and 0.38959 kJ/mol, respectively. The cut-off radius for the short-ranged

interactions, was set to 0.9 nm. During the simulation, the graphene sheets were frozen,

i.e., their positions were not updated. In this study, we have considered simulating water

in neutral channels of width 10σ, 7σ, and 4σ. The number of water molecules in these

channels and the interaction parameters are adopted from reference [40]. Additionally, we

have simulated water in a capacitor channel of width 12σ, where a uniform partial charge

was assigned to the wall atoms to achieve the surface charge density of −0.061 C/m2 and

+0.061 C/m2 for the left (z = 0) and right (z = H) walls, respectively. The number of water

molecules inside the channel were tuned such that the water bulk density is recovered in the

middle of the channel. In order to obtain reliable results, especially in calculating the di-

electric permittivity, the equilibrium properties are averaged over a set of 7 MD simulations

of length 8 ns, in which the first 2 nanoseconds were discarded.

B. CG simulations

For all the CGMD simulations, we follow the same procedure as in AAMD simulations

(see Section V A). To obtain the CG potentials and parameters, we used and modified the

VOTCA software [35] to perform RE and CRE minimization. To obtain the CG potentials,

PME is used for long-ranged electrostatic interactions. Nevertheless, we have also examined

using the reaction field to incorporate the water screening effects through a constant dielec-

tric permittivity of 71.89, in accordance with the SPC/E water model dielectric constant.

The cut-off used for the short-ranged Coulomb interactions with reaction field was chosen

based on the correlation length of the dipole-dipole pair correlation function, which is chosen

as 1.2 nm. Beyond this distance the dipole-dipole pair correlation function decays to zero.

Therefore, based on this criterion we treat water as a continuum dielectric media beyond

1.2 nm. Furthermore, to verify 1.2 nm is an appropriate cut-off for the reaction field, we
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performed another simulation with a cut-off of 1.5 nm and found no changes in the results.

Once the optimal CG potentials are obtained, we perform the downhill simplex algorithm

implemented in VOTCA package [35] to reproduce the diffusion coefficient of SPC/E water

at the temperature of 298 K and density of 1.0 g/cm3. We verified that the water structure,

permittivity, and all the correlation functions remained unchanged upon matching diffusion

or using reaction field for electrostatic interactions. Finally with the aid of the softer CG

potentials, we can increase the integration time step to speed up and run longer simulations.

For this purpose, we setup the CGMD simualtion with the time step of 6fs, and we observed

that the results were unchanged. Therefore, on four cores of Intel Xenon CPU ES-1607

3.00GHz processor compared to the AAMD simualtions, the CGqε model is about an order

of magnitude faster. In addition, using the reaction field instead of PME, gives an extra

speed up factor of ∼1.5 in the CGMD simulations. The potential parameters and tables

along with the running files for CGMD simulations are publicly available on GitHub [64].

C. EQT simulations

To obtain density and potential profiles in the EQT simulations, we self-consistently solve

Eqs. 24 and (29)-(31). To obtain the bulk potential in Eq. 29, we use Eqs. 30 and 31 with the

corresponding bulk density. For all the pair interactions the cut-off radius is set to 0.9 nm

consistent with the confined AAMD and CGMD simulations. The Rff
min and the hard sphere

diameter, dhs, are set to 0.26 nm and 0.27 nm, respectively. These values are chosen such that

the density profiles from the EQT simulations compare well with the AAMD simulations.

As mentioned in Section IV all the vdW pair interactions are adopted from the CGMD

simulations. By incorporating the interaction information at a finer level, EQT bridges the

gap between the atomistic and the continuum representations. In EQT, we approximate the

wall by a continuum media with a uniform density. In the case of a graphene interface, the

wall density, ρwall, is set to 38.18 atoms/nm3. Given the set of parameters and potentials,

we start with the bulk density as our initial guess and iteratively solve the aforementioned

equations using the Picard iteration method with a relaxation factor of 0.02.

In order to obtain the density, orientation and polarization profiles for the capacitor

wall, EQT is coupled with the Poisson equation to account for the electrostatic interactions

between the wall and dipoles through the mean field approximation and the Langevin dipole
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(LD) model [30]. Unlike the neutral wall case, oppositely charged walls generate an external

electric field that directly affects the molecule dipole orientation. In this case, in addition

to the vdW interactions, the total potential energy has a non-zero electrostatic part which

can be written as,

Uelec(z) = µ 〈cos θ(z)〉 dφ(z)

dz
, (32)

where φ is the electrostatic potential, cos θ(z) is the average cosine of dipole orientation,

and θ is defined as an angle between the positive z axis and the dipole moment vector. In

Eq. 32, the electrostatic potential can be obtained from the Poisson equation. For the case

of ion-free water confined in a capacitor wall, the Poisson equation reads,

d2φ

dz2
=

1

ε0

dP⊥(z)

dz
, (33)

with the following boundary conditions

dφ

dz

∣∣∣∣
z=0

= −σwall-L

ε0

, (34a)

dφ

dz

∣∣∣∣
z=H

=
σwall-R

ε0

, (34b)

φ (z = H/2) = 0, (34c)

where σwall-L and σwall-R are the surface charge densities of the left (z = 0) and right (z = H)

walls, respectively. Furthermore, in Eq. 33, P⊥(z) is the perpendicular orientation polariza-

tion which can be expressed as,

P⊥(z) = ρ(z)µ 〈cos θ(z)〉 . (35)

In order to avoid the divergence of Picard iteration, we start with the neutral wall solution

(density) and increase the surface charge density in a step by step manner using an increment

of 0.0122 C/m2. In each step, we determine the density profile and use it as an initial guess

for the next surface charge density. We repeated this process until we reach the target

surface charge density of 0.061 C/m2 on the walls. For a detailed derivation and numerical

implementation of the Langevin-Poisson-EQT method, see Ref. [30].
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VI. RESULTS AND DISCUSSION

A. Bulk

As mentioned in Section. II, we adopt two approaches to obtain the fluid-fluid CG poten-

tials for the extended dipole molecules. The potentials obtained via the charge optimization

method are referred to as CGq, and those obtained by the dielectric permittivity optimiza-

tion are denoted by CGqε. Fig. 2 shows the vdW CG potentials and RDF profiles from the

CGq and CGqε method.

As illustrated in Fig. 2(b), both methods are able to match the water RDF from the ref-

erence AA simulations. Since we are using the relative entropy method, which is a structure-

based CG method, it is guaranteed that upon a finely discretized grid space in the pairwise

distances, the CG potential can reproduce the target RDF [33, 34]. It is interesting to

observe that even though our CG model explicitly considers the electrostatic interactions

(through a dipole moment), the CG potentials still exhibit a well-known double-well-type

shape similar to what has been observed for single site spherical water CG models. The

double-well-type shape potential has been shown to be important to represent the tetrahe-

dral packing of water [38]. A simple Stockmayer fluid [21] (point dipole + LJ interaction

site), which does not have a double-well-type shape potential, may not be able to fully rep-

resent the tetrahedral packing of the water molecules [24]. Therefore, it is essential to have

a double-well shape potential between the dipoles in order to reproduce the water structure.

Table. I summarizes the values of Ac, charge, dipole moments and bulk permittivity for

SPC/E, CGq, and CGqε water models. The results show that charge optimization alone

cannot reproduce the dielectric permittivity of the SPC/E water model. Despite taking into

account the dipolar fluctuations in the CG model, relative entropy minimization fails to

reproduce the dielectric permittivity of water. Thus, it is necessary to look at correlation

functions, other than the RDF, to investigate why the CGqε method is capable of reproduc-

ing the dielectric constant of water. Since the dielectric permittivity is directly related to

the electrostatic interactions, we investigate the orientational correlation functions in bulk

water. For a system of water molecules, complete information regarding the correlations

between the molecules (spatially and orientationally) is given by the molecular pair distri-

bution function, g (1, 2) = g (r1, r2,Ω1,Ω2), which depends on the positions (r) and angles
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(Ω = (θ, φ)) of molecules 1 and 2 [65] (see Fig. 1(b)). The orientational part of g(1, 2)

can be expanded into an infinite basis set of angular functions using generalized spherical

harmonics. However, not all terms in the expansion are necessary to obtain insights into the

long-range orientational ordering in water. Since the dipole-dipole interaction is the domi-

nant term in the multipole expansion of the long-ranged part of the molecular pair potential,

we restrict our attention to the minimal basis set for dipolar molecules first introduced by

Wertheim [66]. Thus, g(1, 2) can be approximated by,

g(1, 2) ≈ g(r)S + 3h∆(r)∆(1, 2) +
3

2
hD(r)D(1, 2), (36)

where g(r) is the radial distribution function, h∆(r) is the dipole-dipole pair correlation func-

tion, and hD(r) represents the angular dependence of the dipole-dipole interaction energy.

S, ∆(1, 2), and D(1, 2) are the basis sets and are defined as,

S = 1, (37a)

∆(1, 2) = µ̂1 · µ̂2, (37b)

D(1, 2) = 3 (µ̂1 · r̂12) (µ̂2 · r̂12)− µ̂1 · µ̂2, (37c)

where µ̂ is the unit vector in the direction of µ and r̂12 is the unit vector in the direction

of r12 = r2 − r1. Note that these basis sets are orthogonal but not orthonormal. For more

information regarding these basis sets and their properties see Refs. [65–67].

Using the definition of ∆(1, 2) given by Eq. 37b, we can calculate h∆(r) from MD simu-

lation as,

h∆(r) =
1

Nρb
〈
N∑
i=1

N∑
j 6=i

µ̂i · µ̂jδ (r − rij)〉. (38)

Furthermore, by looking at the definition of the total dipole moment vector (Eq. 12), we

can write,

〈M 2〉 =
N∑
i=1

N∑
j=1

〈µi · µj〉 = N〈µ2〉+ 〈µ2〉
N∑
i=1

N∑
j 6=i

〈µ̂i · µ̂j〉. (39)

Using Eqs. 38 and 39, we arrive at,

〈M 2〉 = N〈µ2〉
(

1 +

∫
ρbh∆(r)dr

)
, (40)

where the term in the parenthesis is the well-known Kirkwood g-factor, Gk, which is obtained

as the asymptotic value of the r-dependent Kirkwood g-factor,

Gk (r) = 1 +

∫ r

0

ρbh∆(r)dr. (41)
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It can be seen that for uncorrelated dipoles, the value of Gk is equal to 1.

Fig. 3(a) shows the comparison of dipole-dipole pair correlation function from AAMD,

CGq, and CGqε. We observe that h∆ is longer-ranged than the radial distribution function

and decays in an oscillatory manner consistent with the recent second-harmonic light scat-

tering experiments [68, 69]. This long-range behavior has also been observed by previous

studies from molecular dynamic simulations [65, 70–73]. From AAMD simulations, we ob-

serve that there is a strong short-ranged correlation between dipoles of water molecules in

the first solvation shell (∼3Å). This is due to the fact that the hydrogen bonding imposes a

strict restriction on the molecular orientations, thus, adjacent water molecules tend to align

via H-bond network [37]. In fact, such a strong positive dipole-dipole correlation can partly

explain the high dielectric permittivity of hydrogen-bonded fluids such as water [37, 74].

It can be seen that the CGqε method captures this feature to a good extent, whereas the

CGq method underestimates the first peak in the dipole-dipole pair correlation function.

Interestingly, as we move away from the first peak, the CGq method closely follows the

AAMD dipole-dipole pair correlation function. This indicates that at longer distances a

dipolar representation of water with the CG potentials obtained from the charge optimiza-

tion is able to reproduce the dipole-dipole pair correlation function. However, according to

the definition of the bulk permittivity, Eq. 11, and Eq. 40, we see that the bulk dielectric

permittivity depends not only on the Gk (integral of h∆) but also on the magnitude of the

dipole moment (µ2). Therefore, solely optimizing the charges does not guarantee that the

water dielectric permittivity is reproduced.

Fig. 4(a) shows the r-dependent Kirkwood factor for CG and AA models. It can be seen

that Gk(r) asymptotically reaches a plateau. We can also observe that the most important

contribution for the SPC/E model comes from the first shell of neighbors, which could

be associated with the short-ranged H-bond network in water [37]. It can be seen that the

CGqε method follows the SPC/E curve reasonably well up to first coordination shell. Indeed

this is not surprising, as the first peak in the dipole-dipole pair correlation function is better

captured by the CGqε method. However, unlike in SPC/E, we observe another jump around

0.6 nm, which causes the curves to deviate from each other. The reason behind this can be

understood by looking at locally varying dielectric permittivity, which represents screening

variations in the neighborhood of an arbitrary molecule. By using Eqs. 11, 40, and 41, we
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arrive at,

εr(r) = 1 +
N 〈µ2〉Gk(r)

3ε0V kBT
. (42)

We note that there exist other ways to calculate the local dielectric constant such as using a

composite r-dependent Kirkwood factor which combines the results of the constant electric

field and constant electric displacement simulations [75].

Fig. 4(b), shows the locally varying dielectric permittivity from AA SPC/E model, CGq

and CGqε methods. We observe that the local screening effects are more prominent in the

SPC/E model, whereas in the CGqε method these effects are underestimated. Thus, the

dipoles are more correlated from the CGqε method compared to the AA SPC/E model (see

Figs. 3(a) and 4(a)). However, by construction, the CGqε is able to converge to the SPC/E

model beyond 2.5 nm, where dipoles are not correlated and the value of the permittivity

reaches its macroscopic value. On the other hand, although CGq method is able to repro-

duce the AAMD dipole-dipole pair correlation function reasonably well (especially at longer

distances) due to its low dipole moment, it drastically underestimates the screening effects;

hence it fails to reproduce the dielectric constant of water.

Another important quantity that can be studied is hD(r), which represents the angular

dependence of the dipole-dipole interaction energy, and can be defined as,

hD(r) =
1

Nρb
〈
N∑
i=1

N∑
j>i

[3 (µ̂i · r̂ij) (µ̂j · r̂ij)− µ̂i · µ̂j] δ (r − rij)〉. (43)

Using Eq. 43 we can write the expression between hD(r) and average electrostatic dipolar

energy as follows,

〈Udd〉 = −4πNρb

∫ ∞
0

µ2hD(r)

r
dr. (44)

Note that in Eq. 44, we use the convention 4πε0 = 1 for simplicity. Fig. 3(b) shows the

comparison of hD(r) from AAMD, CGq, and CGqε. Unlike h∆(r), the correlation function,

hD(r) is almost positive everywhere, suggesting that the preferable alignment of dipoles

is to lower the dipole-dipole interaction energy [65]. Moreover, by examining the inset of

Fig. 3(b), we observe that hD(r) is much longer-ranged than dipole-dipole pair correlation

function, as hD(r) represents the angular dependent part of the dipole-dipole interaction

energy and decays as ∼ r−3 at large distances. However, the results reported from MD

simulations are somewhat inconclusive [71]. Although it seems that the hD correlation

function decays to zero beyond 25Å, recent large scale MD simulations have shown that
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it has a non vanishing tail even at 75Å [70, 76]. However, in order to have a one to one

comparison with the experiment and to precisely determine the range at which hD decays to

zero, it requires a very large simulation box (at least 10 nm) [69], which is computationally

expensive from AAMD simulations. From the CGMD simulations, it can be seen that the

CGq method is able to capture the variation in hD correlation function to a good extent.

This is a promising result which can accelerate the simulations compared to AAMD and

provide insights into long-ranged behavior of dipolar alignment with respect to a vector

along their separation distance, that can be a subject of future studies. Table II summarizes

the total dipole electrostatic energy from AAMD, CGq and CGqε simulations. As mentioned

in Section III A, scaling the CGq electrostatic potential by the factor A−1
c , recovers the all-

atom dipole electrostatic potential. However, Eq. 44 cannot represent the full electrostatic

potential of the system of water molecules, as the higher dipole moment of water plays an

important role in the electrostatic potential of the system.

Finally, as mentioned in Section III C, to match the diffusion coefficient, we optimized

the mass of the molecule via simplex algorithm after obtaining the CG potential parameters

via the CGqε method. Table III summarizes the results for optimal mass and the diffusion

coefficient from the downhill simplex algorithm. We observed that optimizing the mass

did not affect the structure and the dielectric permittivity value obtained from the CGMD

simulations.

B. Confinement

1. Neutral Walls

Fig. 5 shows the pair potential between carbon and water from all-atom and coarse-

grained representation. We observe that upon coarse graining water into extended dipole

molecules, the effective wall-fluid pair potential is no longer of the 12-6 LJ interaction form.

In fact, the CG optimization yields a double-well-type pair potential, suggesting that the

energy and length scales have to be altered in order for the CG model to reproduce water

structure at the interface.

Fig. 6 shows the density profiles of water inside slit-like graphene channel of width 10σ

from both AAMD and CGMD simulations. In this figure, “wflj” refers to the wall-fluid in-
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teraction used to perform the confined AAMD simulations (i.e., standard 12-6 LJ interaction

between carbon and oxygen). We observe that the confined CG system ,in which a water

molecule is coarse-grained into an uncharged spherically symmetric bead (CG-wflj), overes-

timates the first density peak and exhibits a shoulder peak at about 2 molecular diameter

away from the wall compared to the AA SPC/E water model. This clearly shows that the

bulk fluid-fluid potential optimized for the single-site CG water is not transferable to the

non-bulk (inhomogenous) environment [24]. In other words, the molecular packing of the

water molecules close to an interface is quite different than in bulk. Thus, it’s not surprising

that an isotropic single-site CG model of water fails to accurately predict the confined water

density profile [40, 77]. On the other hand, switching from the confined single-site represen-

tation to the extended dipole model (CGqε-wflj), improves the water density distribution

beyond the first valley (0.5 nm away from the wall), making the model more transferable

and shows the role of the anisotropic forces in the fluid-fluid CG potential arising from the

explicit electrostatic interactions. However, the density near by the interface (where the

wall-fluid interaction is dominant) is not well-captured compared to the AA distribution,

which indicates that the LJ wall-fluid interaction is too attractive for the confined CG sys-

tem. This fact is more evident by looking at Fig. 5, where the energy scales associated with

the CG wall-fluid potential are much less than the depth of the carbon-water LJ potential

well. Thus, by optimizing the wall-fluid interaction and using the bulk fluid-fluid CG po-

tential for the extended dipole model (CGqε-wfopt), the water structure can be predicted

reasonably well when compared to the AAMD simulation. From here on, unless otherwise

noted, by CGMD simulation, we refer to the confined extended dipole system with the CG

wall-fluid potential (CGqε-wfopt).

It is well-known that the presence of a solid surface not only gives rise to density variations

in the direction perpendicular to the solid surface, but also affects the molecular packing of

the fluid parallel to the interface. For this purpose, we have divided the density profile into

three regions: I) interfacial region II) intermediate and III) bulk-like region (see Fig. 7(a)). In

each layer we have calculated the water center-of-mass in-plane (lateral) RDF and compared

that to the bulk radial distribution function. The RDFs are calculated in the slabs centered

at the location of the maximum density with a thickness of 1Å to avoid interference of atoms

from the adjacent layers [78]. The in-plane RDF provides information on how molecules

arrange in the plane parallel to the wall (here, x-y plane), hence, it can be used to identify
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ordering and possible phase transition close to an interface [79–81]. A CG model that

can capture structural variations both in the parallel and perpendicular directions to an

interface can be of high value. Figs. 7(b) and (c) show the lateral RDFs for region I and II

from both AAMD and CGMD simulations. Compared to the bulk, the radial distribution

of the contact layer (region I), is more structured and pronounced, showing a higher degree

of ordering in the liquid. It can be seen that the results from the CGMD simulation are in

good agreement with that of AAMD simulations. Moving away from the wall, in region II,

although we observe that the first valley of the lateral RDF in AAMD is shallower than the

bulk RDF, the location of the peaks and valleys follow closely the bulk radial distribution

function. This indicates that the in-plane water structure in region II is similar to that of

bulk with a slightly higher density. In this region the CG potentials result in an RDF very

similar to that of bulk and in good agreement with AAMD simulation results.

To further test the applicability of our CG potentials, we simulated water in narrower

confinements such as 7σ and 4σ channels. Fig. 8(a) shows the comparison of the density

profiles from AAMD, CGMD, and EQT simulations. Since all the channels are in chemical

equilibrium with the same bulk reservoir, the CG potentials are transferable across channels

of different width. It can be seen that the results from CGMD simulations are close to AA

SPC/E water model. Thus, as far as the structural properties are concerned, the physics

near by the wall is captured well upon optimizing the wall-fluid interaction.

Furthermore, from a continuum perspective, the use of CG potentials together with

mean-field approximation (MFA) and FMT functional provides a good description of water

molecular arrangement inside the neutral graphene slit channels. It is important to mention

that for the neutral wall, the EQT formulation does not explicitly take into account the

dipole-dipole interactions, yet we observe that except for a very narrow channel such as 4σ,

where it is likely that the fluid-fluid correlations play an important role, the EQT predictions

are in good agreement with AAMD and CGMD results.

One of the benefits of using the extended dipole CG model is that it retains the dipolar

information necessary for permittivity calculation. This is important, as it can explicitly

account for the water screening effects in confinement. For many confined systems where

properties vary spatially in the confined direction, the dielectric permittivity has a tensorial

form. For a slab geometry, the dielectric constant has two components that vary with the z

direction (inhomogenous axis): parallel (εr,||(z)) and perpendicular (εr,⊥(z)) to the wall. To
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calculate each of the components we use the fluctuation formulas derived by Ballenegger and

Hansen [82]. Fig. 8(b) shows the variation of the normalized parallel permittivity for different

channel widths. The values are normalized by the bulk AA SPC/E dielectric constant value

of 71.89. In the 10σ channel, where both the layered structure and bulk region are well-

formed, the dielectric permittivity is not constant, but it exhibits an oscillatory behavior

in an interfacial region of three to four molecular diameters. For such a channel the water

screening strength parallel to the wall is seen to be ∼5 times higher than that of bulk.

This emphasizes the need of using a realistic CG model that can capture such pronounced

oscillations near an interface. As we move away from the wall, εr,||(z) decays until it reaches

the bulk value at roughly 4 molecular diameters away from the surface. It can be seen

that on average, εr,|| of water is higher than its bulk value, indicating that the in-plane

(xy) screening effects are enhanced by the presence of a planar interface. This is also in

agreement with the results of previous studies for planar interfaces [29, 83]. It can be seen

that except for a very narrow confinement (4σ channel) the extended dipole CG model

does a reasonable job in reproducing the parallel component of water dielectric permittivity

compared to the AAMD simulations. In the 4σ channel, due to the extreme confinement

effect in the z direction, the molecules are closely spaced and packed in the x − y plane,

which results in an enhancement of dipole-dipole correlations parallel to the surface [84].

Under these circumstances, we see that the CG model overestimates the parallel dielectric

constant. This means that the dipoles are more strongly correlated in the CG representation

compared to their AA counterpart. This fact is more evident by looking at the in-plane RDF

of the contact layer (see Fig. 7(b)), where the CG model slightly overestimates the lateral

RDF, which can be magnified in the case of extreme confinement such as in the 4σ channel.

Furthermore, although optimizing the wall-fluid potential improved the CG density profile

significantly, uwf
CG is isotropic and does not directly take into account the orientational degrees

of freedom.

2. Capacitor Walls

In this section, we comment on the applicability of the EQT and the CG model on re-

producing the density, polarization and dipolar angle profiles of water inside a capacitor-like

channel (negative and positive walls). For this purpose, we simulated water in the pres-
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ence of an external electric field generated from the negative and positive partial charges

on the left and right graphene sheets. We calculated the density, dipolar angle, and polar-

ization profiles from both atomistic and continuum simulations. Due to the presence of the

charges on the wall, in addition to the vdW interactions, we have to consider the electro-

static interactions arising from the charge-dipole and dipole-dipole interactions in the EQT

framework. For this purpose, we use the EQT-Langevin-Poisson framework, in which the

effective electrostatic potential is calculated through the Poisson equation, and the water

permittivity and polarization variations are modeled using the LD approximation. Fig. 9(a)

shows the result for water density profile in the charged 12σ channel from AAMD, CGMD

and EQT simulations. We observe that the AA water density profile is asymmetric with

respect to the middle of the channel, and exhibits more pronounced peaks next to the pos-

itively charged interface. At the positively charged wall, due to the favorable electrostatic

interactions between the wall and water, more oxygen atoms are attracted to the surface

creating a region of high density at the interface. This causes the water dipole moments to

point away from the wall, making more hydrogens available to form H-bonds with the neigh-

boring water molecules, and resulting in an increase in water density in the preceding layer.

As we move towards the middle of the channel the layering is suppressed and the bulk-like

region is recovered in the central region of the channel. From the CGMD simulations, the

extended dipole model is able to predict the density of water molecules. However, it fails

to quantitatively capture the density close to the negatively and positively charged walls.

This is expected as, unlike the SPC/E AA water, the extended dipole model is incapable

of forming H-bonds, and the CG wall-fluid interaction has been optimized for the neutral

walls, which may not be transferable to the charged walls. The former is a limitation of

the model, while the latter is the result of the well-known transferability problem of the

bottom-up coarse-graining approaches. Nevertheless, the CG model is able to predict the

perpendicular polarization (P⊥(z)) profile in a reasonable agreement with the AAMD sim-

ulation (see Fig. 9(b)). This indicates that to a good extent the perpendicular permittivity

variations are being captured, as the P⊥(z) is proportional to the weak electric field in the

cavity by εr,⊥, according to the linear response theory [29].

The EQT results for density match with the CGMD simulation, which indicates that the

hard sphere approximation and the mean field treatment of the electrostatic interactions

together with the use of CG potentials, are capable of capturing the structural variations of
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the dipolar molecules inside the charged confinement. However, by looking at Fig. 10 (b),

we observe that the EQT-Langevin-Poisson approach cannot capture the variations in the

P⊥(z). Upon a closer inspection, we see that the bulk polarization value is underestimated

even though the same dipole moment as CGMD simulations is used. To understand this

better we examine the average cosine of dipole orientation profile since it directly affects

the polarization (see Eq. 35). Fig. 10 (a) shows the average orientation profiles from both

EQT and CGMD simulations. EQT predicts a higher alignment of dipoles at the charged

walls compared to the CGMD simulations, resulting in an over-screening of the external

electric field that leads to a lower (in magnitude) dipole orientation in the middle of the

channel. Nevertheless, EQT is able to qualitatively capture the oscillations in the average

orientation profile with an offset in the location of the peaks and valleys. This is important

in computing the perpendicular polarization. Since these structural variations occur over

few nanometers in the vicinity of the interface, even a few Angstroms offset in the dipole

orientation can drastically affect the polarization profile.

Fig. 11 shows the permittivity predicted by the EQT-Langevin-Poisson approach with

two different dipole moments. It can be seen that when the CGMD dipole moment of 1.903

D is used, the bulk permittivity is not recovered. Thus, the dipole moment is optimized

such that the bulk permittivity is recovered. With a dipole moment of 4.539 D, the polar-

ization of water molecules in the bulk matches that of CGMD simulation (see Fig. 10 (d)).

However, the variations are still missing. This can be attributed to two factors: The over-

simplifications made in the LD approximation, and the definition of the permittivity used

in the theory. In LD approximation, the molecules are treated as non-interacting dipoles,

thus the dipole correlations are completely neglected, whereas in the CGMD simulations

the dipoles are interacting due to the electrostatic interactions. Furthermore, in the Poisson

equation, the dielectric permittivity has been modeled via one of the following approaches:

using a bulk-based relation that is applicable only in the bulk or weakly inhomogenous

systems, e.g. Clausius-Mossotti (CM) expression [85], phenomenological formulas that ex-

press permittivity in terms of the local density variations [85, 86], or a uniform distribution

approximation throughout the inhomogenous system. As mentioned in Section VI B 1, for

a confined system, however, the dielectric permittivity has a tensorial form. Unlike the

parallel permittivity that varies smoothly and locally follows the density oscillations, the

perpendicular component exhibits a non-local behavior [8] with an average value as small
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as ∼2 compared to the bulk [87], suggesting that using bulk-based relations or local density

approximations may not be an accurate way of modeling the permittivity in the Poisson

equation.

VII. CONCLUSIONS

In this work, we developed an extended CG dipole model for water that reproduces

RDF, diffusion coefficient, and dielectric constant at room thermodynamic conditions. We

showed that by merely minimizing the RE, one cannot reproduce the dielectric permittivity

of bulk water. Thus, we employed the CRE method to optimize the charges and the pair

potential such that the dielectric permittivity in the CG system matches that of the SPC/E

AA reference simulations. We calculated the dipolar correlations in the bulk system from

both CGMD and AAMD simulations. We found that the CGq method is able to capture

the AAMD dipole-dipole pair correlation function. However, due to its lower screening and

dipole moment, it fails to reproduce the AA SPC/E water dielectric permittivity. On the

other hand, the CGqε method results in dipole moment and CG potential that reproduced

water dielectric permittivity, although the local screening effects are slightly underestimated

compared to that of AA SPC/E model. Furthermore, we matched the diffusion coefficient by

systematically optimizing the mass of the molecule via simplex algorithm. To test our model,

we demonstrated it by simulating water in slit-like graphene nano channels of various widths.

We observed that without any modification to the wall-fluid interactions, the density profiles

were in a good agreement with the AAMD simulations, emphasizing the role of anisotropic

forces arising from the inclusion of the electrostatic interactions in the CG model. In order to

obtain a quantitative agreement, we coarse-grained the wall-water interaction. Our results,

revealed that the nature of the CG wall-water interaction is no longer of the 12-6 LJ potential

form, but a double-well type potential with a lower attractive potential well. We showed

that the agreement in density profiles from AAMD, CGMD and EQT is good. We further

calculated properties such as in-plane RDFs, and parallel dielectric permittivity, and showed

that the CG model is capable of reproducing these quantities in a good agreement with the

AAMD simulations. Finally, to test the applicability of our model in screening the charges

perpendicular to an interface, we simulated water in a capacitor wall and calculated the

density, dipolar angle, and polarization profiles. Ignoring the dipole-dipole interactions (LD
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approximation) and improper modeling of the perpendicular permittivity in the Poisson

equation, fails to capture the variations in the polarization profile, thereby providing an

inaccurate picture of charge screening in confinement. However, due to the presence of

dipoles and systematic parameterization, our CG model captures the polarization profile

observed in AAMD simulations, suggesting that the water screening effects perpendicular

to the wall have been captured to a good extent. We note that the method developed in

this paper is not limited to water and can be used to coarse grain other polar molecules.
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Appendix A: Derivative of dielectric permittivity w.r.t Ac

For a bulk system with periodic boundary condition, the dielectric permittivity can be

calculated as,

εr = 1 +
〈M 2〉

3ε0V kBT
, (A1)

where the total dipole moment squared can be expressed in terms of the Kirkwood correlation

factor, Gk:

〈M 2〉 = Nµ2Gk. (A2)

In the CG model, we scale the all-atom charges via a factor Ac. Thus, using Eq. A2, the

total dipole moment square for the CG system can be written as,

〈M 2〉 = NAcq
2Gk. (A3)

Hence, the derivative of the dielectric permittivity w.r.t. Ac can be written as,

εr
Ac

=
Nq2Gk

3ε0V kBT
. (A4)

Using Eqs. A1, A3, and A4, we arrive at

dεr,CG
dAc

=
εr,CG − 1

Ac
. (A5)
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TABLE I. Charge, dipole moment and dielectric permittivity values for SPC/E, CGq, and CGqε

water models.

Model Ac q (e) µ (D) εr

CGq 0.3544 0.5046 1.399 21.45

CGqε 0.6555 0.6862 1.903 72.92

SPC/E 1.0 0.8476 2.350 71.89
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TABLE II. Electrostatic potential energy for SPC/E, CGq, and CGqε water models.

Model U elec (kJ/mol) Ac

SPC/E -121459.02 1.0

CGq -18848.88 0.3544

CGqε -42971.05 0.6555

SPC/E(dipole-dipole) -53175.6 1.0
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TABLE III. Mass and the diffusion coefficient values for the CGqε and SPC/E water models.

Model m (amu) D(10−5 cm2/s)

SPC/E 18.0154 2.5875 ± 0.1045

CGqε 18.0154 10.2096 ± 0.0052

CGqε 141.00 2.5606 ± 0.0298
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FIG. 1. (a) Topology of the extended dipole water molecule. (b) Coordinate system: dipoles

are denoted by their dipole vector µ and their corresponding angles, (θ, φ). r12 is the separation

distance vector between dipoles µ1 and µ2.
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FIG. 2. (a) Dipole-dipole CG potentials obtained by CGq and CGqε methods. (b) Comparison of

the center-of-mass radial distribution functions from AAMD and CGMD simulations.
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FIG. 3. Orientational correlation functions from AAMD and CGMD simulations: (a) dipole-dipole

pair correlation function (b) angular dependent part of the dipole-dipole interaction energy.
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FIG. 4. (a) r-dependent Kirkwood factor. (b) The r-dependent local dielectric constant obtained

from Eq. 42.

41



0.2 0.4 0.6 0.8 1.0
-0.50

-0.25

0.00

0.25

0.50

u(
r)

 (k
J.m

ol
-1

)

r (nm)

 Carbon-Water (LJ)
 Carbon-Water (CG)

FIG. 5. Carbon-water pair potentials used in AAMD and CGMD simulations. The red color

(dashed line) represents the 12-6 LJ potential between carbon and oxygen. The black color (solid

line) is the coarse-grained carbon-water interaction obtained by relative entropy minimization.
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FIG. 6. Comparison of the water density profiles from CGMD and AAMD simulations inside a

10σ channel with different fluid-fluid and wall-fluid pair potentials.
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FIG. 7. (a) Snapshot of water confined in a 10σ graphene channel. We define three different

regions: an interfacial region (I), an intermediate region (II), and a central region (III), where the

in-plane RDF does not show any significant deviation from the bulk RDF. Hydrogen atoms are

depicted as white and oxygen atoms are colored as red, green, and blue in regions I, II, and III,

respectively. The in-plane RDFs from AAMD and CGMD simulations correspond to regions I (b)

and II (c). The dashed line in the figure represents the in-plane RDF far from the surfaces (bulk).
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FIG. 8. Water density distributions (a) and parallel permittivity profiles (b) inside graphene slit-

like channels of various widths. In the figure, circles, solid line, and dashed line represent AAMD,

CGMD, and EQT results, respectively.
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FIG. 9. Comparison of water density profile in a capacitor channel of width 12σ.

46



-1.0

-0.8

-0.6

-0.4

-0.2

0.0
co

s(
)

(a)  CGMD
 EQT ( = 1.903D)

P
(z

) (
D

.n
m

-3
)

(b)

-6 -4 -2 0 2 4 6

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

co
s(

)

z ( )

(c)

-6 -4 -2 0 2 4 6

 CGMD
 EQT( = 4.539D)

P
(z

) (
D

.n
m

-3
)

z ( )

(d)

FIG. 10. Water dipolar orientation and polarization profiles from CGMD and EQT simulations

inside a capacitor channel of width 12σ.
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FIG. 11. Dielectric permittivity profiles of water from the Langevin dipole model inside a capacitor

channel of width 12σ with different dipole moments.
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