
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Examples of renormalization group transformations for
image sets

Samuel Foreman, Joel Giedt, Yannick Meurice, and Judah Unmuth-Yockey
Phys. Rev. E 98, 052129 — Published 26 November 2018

DOI: 10.1103/PhysRevE.98.052129

http://dx.doi.org/10.1103/PhysRevE.98.052129

Examples of renormalization group transformations for image sets

Samuel Foreman∗

Department of Physics and Astronomy, The University of Iowa, Iowa City IA 52242 and
Computational Sciences Division, Argonne National Laboratory, Argonne, IL 60439 USA

Joel Giedt†

Department of Physics, Applied Physics and Astronomy,
Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180 USA

Yannick Meurice‡

Department of Physics and Astronomy, 514 Van Allen Hall, The University of Iowa, Iowa City IA 52242

Judah Unmuth-Yockey§

Department of Physics, Syracuse University, Syracuse, NY 13244 USA
(Dated: October 26, 2018)

Using the example of configurations generated with the worm algorithm for the two-dimensional
Ising model, we propose renormalization group (RG) transformations, inspired by the tensor RG,
that can be applied to sets of images. We relate criticality to the logarithmic divergence of the largest
principal component. We discuss the changes in link occupation under the RG transformation,
suggest ways to obtain data collapse, and compare with the two state tensor RG approximation
near the fixed point.

Keywords: Machine learning, Ising model, principal component analysis, worm algorithm, renormalization
group

I. INTRODUCTION

Machine learning (ML) is a general framework for rec-
ognizing patterns in data without detailed human elab-
oration of the rules for doing so. As an example, a very
general function, with many parameters (for example,
thousands or millions) can be optimized on a training
set, where the desired output is known. The problem
is typically nonconvex and plagued by over-fitting prob-
lems, and so advanced methods are necessary in order to
get reliable answers. One tool that has been exploited is
principal component analysis (PCA), which reduces the
dimensionality of the data to the most important “direc-
tions.” Immediately the practitioner of renormalization
group (RG) methods recognizes an analogy, since the RG
techniques are also supposed to identify the most impor-
tant directions in an enlarged space of Hamiltonians. One
of the motivations of the present research is to make this
analogy more concrete.

A number of papers [1–3] attempt to draw a connec-
tion between deep learning and the RG as it appears in
physics. However, the analogies between RG flow and
depth in a neural network would be strengthened if one
could determine conditions under which fixed points can
be identified. It would be helpful to show more explic-
itly how passing from one level to another in a neural

∗ samuel-foreman@uiowa.edu
† giedtj@rpi.edu
‡ yannick-meurice@uiowa.edu
§ jfunmuth@syr.edu

network genuinely translates to a renormalization group
transformation. There have been steps in the direction
of making a full connection. For instance in [2], the prin-
ciple of causal influence is emphasized. That is, when
descending in depth, only neighboring nodes should in-
fluence the outcome of a lower level node. We have also
implemented this in a simple training scheme in earlier
work [4]. It can be called “cheap learning” because far
fewer variational parameters are involved, due to the con-
straints of locality. In [3] it is emphasized that deep
neural networks outperform shallower networks for rea-
sons which may ultimately be understood in terms of the
power of the renormalization group. Other topics related
to machine learning, such as principal component anal-
ysis [5] have been previously interpreted in terms of the
renormalization group (in this case momentum shells).
Machine learning has also been used to identify phase
transitions in numerical simulations [6–9].

RG transformations are usually defined in a space of
couplings/Hamiltonians, but typically, it is not possible
to write down Hamiltonians directly associated with im-
ages sets. In this article we propose RG transformations
that can be applied to a specific set of images but which
could be generalized for other image sets, and can also
be understood analytically without any graphical repre-
sentation. We use the well-studied example of the two-
dimensional Ising model on a square lattice. The spin
configurations generated with importance sampling pro-
vide images with black and white pixels. They have fea-
tures that can be used to attempt to recognize the tem-
perature used to generate them. However, constructing
blocked Hamiltonians in configuration space is a difficult
task which involves approximations that are difficult to

mailto:samuel-foreman@uiowa.edu
mailto:giedtj@rpi.edu
mailto:yannick-meurice@uiowa.edu
mailto:jfunmuth@syr.edu

2

improve. In other words, it is very difficult to explicitly
construct the exact RG transformation mapping the orig-
inal couplings among the Ising spins into coarse grained
ones.

A better control on the RG transformation can be
achieved by using the tensor renormalization group
(TRG) method [10–16]. The starting point for this re-
formulation is the character expansion of the Boltzmann
weights which is also used in the duality transformation
[17]. This leads to an exact expression of the partition
function as a sum over closed paths which can be gener-
ated with importance sampling using the worm algorithm
[18] and then pixelated. These samples will be our sets
of images indexed by the temperature used to generate
them. The procedure is reviewed in Sec. II.

The goal of a RG analysis is to study systems with
large correlation lengths in lattice spacing units and iter-
atively replace them by coarser ones with a larger effec-
tive lattice spacing. This process is useful if we can tune
a parameter such as the temperature towards its critical
value. Typical image sets such as the MNIST data can
be thought as “far from criticality” and the use of RG
methods for such a data set may be of limited interest
[4]. Criticality may sometimes refer to the choice of pa-
rameters used in data analysis [19]. It seems crucial to
introduce a systematic way to deal with the concept of
criticality in ML.

The PCA is a standard method to analyze sets of im-
ages. In configuration space, the PCA analysis is identi-
cal to the study of the spin-spin correlation matrix. In
particular, the largest eigenvalue λmax is directly con-
nected to the magnetic susceptibility which diverges at
criticality [7]. In the loop representation (worms), we
will show that λmax diverges logarithmically at critical-
ity with a constant of proportionality which can be esti-
mated quite precisely (3/π). This is explained in Sec. III.
More generally, it seems reasonable to identify the criti-
cality with the divergence of λmax .

The advantage of rewriting the high-temperature ex-
pansion in terms of tensors is that it allows a very simple
blocking (coarse-graining) procedure where a group of
sites is replaced by a single site. In the TRG approach
the blocking procedure is local. This leads to simple and
exact coarse-graining formulas because we can separate
the links into two categories: those links that are inside
the blocks and integrated over, and those outside the
blocks which are kept fixed and communicate between
the blocks [13]. The main goal of this article is to relate
blocking procedures that can be applied to sets of pixe-
lated images, to approximate TRG transformations. A
short summary of the TRG procedure is given in Sec. IV.

Having defined criticality, the next step is to define
a RG transformation for sets of “legal” loop configura-
tions, also called “worm configurations” later, sampled
at various temperatures. In Sec. V, we propose a family
of transformations which replaces two parallel links in a
block by a single link carrying a specific value x. We call
this procedure 1+1→ x hereafter. In the case 1+1→ 0,

the blocked images follow the same rules (for legal con-
figurations) as the original ones. There is a clear analogy
with the 2-state approximation of the TRG method. In
the 2-state TRG approximation, the average fraction of
occupied links shows a characteristic crossing at a criti-
cal point and a collapse when the distance to the critical
point is appropriately rescaled at each iteration. The
average fraction of occupied links in the blocked worm
configurations (with 1 + 1 → 0) shows a somewhat sim-
ilar behavior in the low temperature phase. However,
on the high-temperature side, we observe a “merging”
rather than a crossing. In Sec. VI, we provide explana-
tions for the similarities and differences between the two
procedures.

In Sec. VII we discuss an approximate 2-state TRG
method to calculate the average number of bonds through
several iterations. The worm configurations can be di-
rectly connected to spin configurations using duality [17]:
they are the boundary of the positive spin islands. This
suggests that the methods discussed here could be ap-
plied to generic images. Boundaries of generic grayscale
pictures can be defined by converting the picture to black
and white pixels. A grayscale picture with gray values
between 0 and 1 can be converted into an Ising spin con-
figuration, by introducing a “graycut” below which the
value is converted to 0 (spin down) and above which the
value is converted to 1 (spin up). It is then possible to
construct the boundaries of the spin up domains. This
is illustrated in Fig. 1. Possible applications are briefly
discussed in the Conclusions and illustrated with the CI-
FAR database in Appendix B.

II. FROM LOOPS TO IMAGES

In the following we consider the two-dimensional Ising
model with spins σi = ±1 on a square lattice. The par-
tition function reads

Z =
∑
{σi}

eβ
∑

〈i,j〉 σiσj , (1)

where 〈i, j〉 denotes nearest neighbor sites on the square
lattice. In some occasions we will use the notation T =
1/β for the temperature. The partition function can be
rewritten by using the character expansion [17]

exp(βσ) = cosh(β) + σ sinh(β), (2)

and integrating over the spins. Factoring out the cosh(β),
each link can carry a weight 1 when unoccupied or
t ≡ tanh(β) when occupied. The integration over the
spins guarantees that an even number of occupied links
is coming out of each site [17]. The set of occupied
links then form a “legal graph” with Nb occupied links.
The partition function can then be written as sum over
such legal graphs. If N (Nb) denotes the number of legal
graphs with Nb links we can write:

Z = 2V (cosh(β))2V
∑
Nb

tNbN (Nb). (3)

3

FIG. 1. (a) Picture of an eye with 4096 pixels; (b) black and
white version with a graycut at 0.72; (c) boundaries of the
black domains.

Using the fact that tanh(β) = exp(−2β̃), with β̃ the
inverse dual temperature, Eq. (3) has the same form as
a spectral decomposition using a density of states and
a Boltzmann weight (with 2Nb playing the role of the
energy). Details of this reformulation can be found in
Appendix A 1.

As shown in Appendix A 2, we can use derivatives of
the logarithm of the partition function to relate 〈Nb〉 to
the average energy, and the bond number fluctuations,

〈∆2
Nb
〉 ≡ 〈(Nb − 〈Nb〉)2〉, (4)

to the specific heat per site. From the logarithmic singu-
larity of the specific heat we find that

〈∆2
Nb
〉/V = − 2

π
ln(|T − Tc|) + regular. (5)

In the following we use interchangeably the “bond” ter-
minology, for instance in Nb as in [18] and the link termi-
nology more common in the lattice gauge theory context.
In all our numerical simulations we use periodic bound-
ary conditions which guarantees translation invariance.

We will show in Sec. IV that the new form of the parti-
tion function in Eq. (3) can also be written in an equiva-
lent way as a sum of products of tensors with four indices
contracted along the links of the lattice.

The contributions to Eq. (3) can be sampled using a
worm algorithm [18] outlined in Appendix A 3. Using this
algorithm, we generated multiple configurations at each
temperature (Nconfigs ≈ 10, 000) which are then used
for averaging. For example, we can calculate the average
number of occupied bonds at a particular temperature
by averaging over all configurations.

Using a legal graph (worm configuration), we can con-
struct an image by introducing a lattice of 2L×2L pixels
with a size of one half lattice spacing. One quarter of
these pixels are attached to the sites, one quarter to the
horizontal links and one quarter to the vertical links. The
remaining quarter are in the middle of the plaquettes and
always white. In this representation, each site, link, and
plaquette are designated an individual pixel, where oc-
cupied links and their respective endpoints are colored
black. An example of this representation is shown in
Fig. 2. We can then flatten each of these images into a
vector v ∈ R4V , with vi ∈ {0, 1}. This allows us to write
the number of occupied bonds, in a single configuration,
Nb as ∑

j=bonds

vj = Nb (6)

III. PCA AND CRITICALITY

Having now sets of images for a range of temperatures,
we can apply PCA [20]. PCA isolates the “most relevant”
directions in the dataset. PCA is simply the computa-
tion of the eigenvalues λα and eigenvectors uα of the

4

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

(a) 0 5 10 15 20 25 30
0

5

10

15

20

25

30

(b)

FIG. 2. (a) Legal worm configuration on an L×L lattice with periodic boundary conditions and; (b) its equivalent representation
as a 2L× 2L black and white pixel image.

covariance matrix for a dataset with N configurations
corresponding to a given temperature {vn}Nn=1:

Sij =
1

N

N∑
n=1

(vni − v̄i)(vnj − v̄j). (7)

In this equation, each sample vj is a vector in R4V , la-
beled by the indices i, j = 1, . . . , 4V . The PCA extracts
solutions to

Suα = λαuα (8)

and orders them, in descending magnitude of λα, which
are all non-negative. The usefulness of PCA is that one
can approximate the data (see for instance the discussion
in [20]) by the first M principal components.

Illustrations of the PCA for the MNIST data can be
found in Sec. 4 of Ref. [4], where we show the eigenvectors
corresponding to the largest eigenvalues and the approxi-
mation of the data by subspaces of the largest eigenvalues
of dimensions 10, 20 etc.

It should be noted that the PCA is an analysis that
can be performed for each temperature separately and
not obviously connected to the closeness to criticality.
However, we were able to find a relation between the
largest PCA eigenvalue denoted λmax and the logarith-
mic divergence of the specific heat, namely

λmax '
3

2

〈
∆2
Nb

〉
/V ' − 3

π
ln(|T − Tc|). (9)

This property was found by an approximate reasoning
shown in Appendix A 2 and relies on two assumptions.

The first one is that the eigenvector associated with λmax
is proportional to 〈v〉 which is invariant under transla-
tion by two pixels in either direction. The second as-
sumption is that in good approximation we can neglect
the contributions from sites that are visited twice (four
occupied links coming out of one site). Numerically, only
4% of sites are visited twice near the critical temperature
which justifies the second assumption. Figure 3 provides
an independent confirmation of the approximate validity
of Eq. (9).

1.0 1.5 2.0 2.5 3.0 3.5 4.0
T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

3 2
2 N

b
/V

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
ax

3
2

2
Nb

/V
max

2.2 2.25 2.3 2.35 2.4
2.0

2.5

3.0

3.5

4.0

FIG. 3. λmax and 3
2

〈
∆2

Nb

〉
/V (per unit volume) vs. T , illus-

trating the relation between the eigenvalue corresponding to
the first principal component and the logarithmic divergence
of the specific heat. The inset shows a qualitative agreement
near the critical temperature.

5

IV. TRG COARSE-GRAINING

So far we have sampled the legal graphs of the high
temperature expansion of the Ising model using the worm
algorithm. An alternative approach is to use a tractable
real-space renormalization group method known as the
TRG [12–16].

In order to understand what we want to accomplish
by blocking the loop configuration, it is useful to first
understand the evolution of a tensor element using the
TRG method.

The tensor formulation used here connects easily with
the worm formulation used in this paper. After the char-
acter expansion has been carried out, one is left with
new integer variables on the links of the lattice with con-
straints on the sites which guarantee the sum of the link
variables associated with that site is even. Therefore we
build a tensor using this constraint and the surrounding
link weights. The tensor has the form

T
(i)
xx′yy′(β) = [tanh(β)]

(nx+nx′+ny+ny′)/2

× δnx+nx′+ny+ny′ ,0 mod 2. (10)

Here the notation being used is that this tensor is located
at the ith site of the lattice, nµ̂ is the integer variable, tak-
ing value 0 or 1, on an adjacent link, and the Kronecker
delta, δi,j is understood to be satisfied if the sum is even.
By contracting these tensors together in the pattern of
the lattice one recreates the closed-loop paths generated
by the high-temperature expansion and exactly match
those paths which are sampled by the worm algorithm.

Using these tensors one can write a partition function
for the Ising model that is exactly equal to the original
partition function,

Z = 2V (cosh(β))2V Tr
∏
i

T
(i)
xx′yy′ (11)

where Tr means contractions (sums over 0 and 1) over
the links.

The most important aspect of this reformulation is that
it can be coarse-grained efficiently. The process is il-
lustrated in Fig. 4 where four fundamental tensors have
been contracted to form a new “blocked” tensor. This
new tensor has a squared number of degrees of freedom
for each new effective index. The partition function can
be written exactly as

Z = 2V (cosh(β))2V Tr
∏
2i

T
′(2i)
XX′Y Y ′ ,

where 2i denotes the sites of the coarser lattice with twice
the lattice spacing of the original lattice. In practice, this
exact procedure cannot be repeated indefinitely and trun-
cations are necessary. This can be accomplished by pro-
jecting the product states into a smaller number of states
that optimizes the closeness to the exact answer. A two-
state projection is discussed in [13] and will be followed
hereafter. Note that in this procedure, T0000 is factored

FIG. 4. Illustration of the tensor blocking discussed in the
text. Each dot is a tensor at a lattice site with four lines
coming out, each representing a tensor index. Lines connect-
ing dots represent tensor contractions.

out and the final expression for the other blocked tensors
are given in these units. For definiteness we consider
T1100 which in the microscopic formulation is the weight
associated with a horizontal line in a loop configuration.
By looking at the fixed point equation [13] , one can see
that there is a high temperature fixed point where all
the tensor elements except for T0000 are zero and a low
temperature fixed point where all the tensor elements are
one. In between these two limits, there is a non-trivial
fixed point illustrated by the crossing of iterated values
of T1100 in Fig. 5. Note that because of the two-state ap-
proximation, the critical temperature Tc is slightly higher
than the exact one [13]. To be completely specific, the

exact Tc for the original model is 2/ ln(1 +
√

2) = 2.269..
while for the two state projection with the second projec-
tion procedure of Ref. [13], it is 1/0.3948678 = 2.53249...

It is easy to relate the properties of the iterated curves
near the non-trivial fixed point using the linear RG ap-
proximation. Below we just state the results, for de-
tails and references see [13]. With the blocking proce-
dure used, the scale factor is b = 2. The eigenvalue in
the relevant direction is λ = b1/ν = 2 since ν = 1. In
Fig. 5(a), one can see that the height

δT1100 ≡ T1100 − T ∗1100 (12)

(where T ∗1100 is the value at the fixed point), nearly dou-
bles each time the blocking procedure is performed, mak-
ing the slope twice as large each time. A nice data col-
lapse can be reached by offsetting this effect by rescaling
the horizontal axis each iteration by λ=2 as shown in
Fig. 5(b). In numerical calculations, we start with a fi-
nite L (64 in Fig. 5) and then after ` iterations, we are
left with an effective size Leff = L/b`.

The remainder of the paper will be dedicated towards
obtaining data collapse for 〈Nb〉 calculated with succes-
sive blockings.

6

0.75 0.50 0.25 0.00 0.25 0.50 0.75
T 2.532

0.0

0.2

0.4

0.6

0.8

1.0
T 1

10
0

(a)

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

0.4 0.2 0.0 0.2 0.4
(T 2.532) / Leff

0.0

0.2

0.4

0.6

0.8

1.0

T 1
10

0

(b)

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

FIG. 5. (a) T1100 vs. T − T (2s)
c for six successive iterations of the blocking transformation, beginning with an initial lattice

L = 64; (b) T1100 vs. (T − T (2s)
c)/Leff illustrating the data collapse, where T

(2s)
c is the critical temperature of the two state

projection, beginning at iteration 0 on an L = 64 lattice.

V. IMAGE COARSE-GRAINING

In an attempt to explicitly connect the ideas from RG
theory to similar concepts in machine learning, we will
implement a coarse-graining procedure directly on the
images but in a way inspired by the TRG construction of
Sec. IV. The construction relies on visual intuition and
will be reanalyzed in the TRG context in Sec. VII.

As in the TRG coarse-graining procedure, the image
is first divided up into blocks of 2× 2 squares, as shown
in Fig. 6. Each of these 2× 2 squares are then replaced,

FIG. 6. Illustration of an elementary block in the image con-
sisting of four sites, four internal bonds (red), eight external
bonds (green), and four blocked external bonds (blue).

or “blocked”, by a single site with bonds determined by
the number of occupied external bonds in the original
square. In doing so, we reduce the size of each linear
dimension by a factor of two, resulting in a new blocked
configuration whose volume is one-quarter the original.
In particular, if a given block has exactly one external
bond in a given direction, the blocked site retains this
bond in the blocked configuration. This seems to be a

natural choice. However, if a given block has exactly two
external bonds in a given direction, we can consider sev-
eral options. The simplest option is to neglect the dou-
ble bond entirely, and we denote this blocking scheme by
“1 + 1 → 0”. This approach respects the selection rule
(conservation modulo 2) and has the advantage of main-
taining the closed-path restriction. In other words with
the 1+1→ 0 option, the blocked image corresponds to a
legal graph and the procedure can be iterated without in-
troducing new parameters. This procedure is illustrated
for a specific configuration on a 16×16 lattice in Fig. 7.

Alternatively, we can include this double bond in the
blocked configuration, and give it some weight m between
0 and 2. The examples of m = 1 and 2 are denoted
“1+1→ 1”, and “1+1→ 2” respectively and are shown
in Fig. 16. This blocking procedure introduces new el-
ements and iterations require more involved procedures.
This is not discussed hereafter.

VI. PARTIAL DATA COLLAPSE FOR
BLOCKED IMAGES

In this section, we study the properties of 〈Nb〉 ob-
tained for successive blockings with the 1 + 1 → 0 rule
starting with configurations on a 64× 64 lattice. A first
observation is that the 1 + 1→ 0 blocking preserves the
location of the peak of the fluctuations 〈∆2

Nb
〉. In ad-

dition it is possible to stabilize this quantity for a few
iterations by dividing by Veff ln(Leff). This is illustrated
in Fig. 8. However, a very different scaling appears for
the last two iterations which may be due to the very
short effective sizes (4 and 2). This indicates the last two
iterations are very different from the previous ones.

We now consider 〈Nb〉 for successive iterations. The
results are shown in Fig. 9. We see that in the low tem-

7

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

(a) 0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

(b) 0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

(c)

FIG. 7. (a) Illustration of the 1 + 1 → 0 blocking procedure discussed in the text: original configuration; (b) introduction of
the blocks and replacement of single or double bounds according to the 1 + 1 → 0 rule; (c) construction of the corresponding
blocked image.

1.0 0.5 0.0 0.5 1.0
T 2.269

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2 N
b

/V
ef

fln
(L

ef
f)

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

-0.4 -0.2 0.0 0.2 0.4
0.2

0.4

0.6

0.8

FIG. 8. Fluctuations in the average number of bonds 〈∆2
Nb
〉

vs. temperature T under iterated blocking steps beginning
with an initial lattice size of L = 64. The results are scaled
by 1/Veff log(Leff) in order to demonstrate the data collapse
near the critical temperature. This collapse is especially ap-
parent in the inset, which shows the results under the first
three blocking steps, with Leff = 64, 32, 16, and 8.

perature side, the curves sharpen in a way similar to
T1100 in Fig. 5. However on the high temperature side,
we observe a merging rather than a crossing. This can be
explained as follows. In the high T regime occasionally
a single loop, the size of a plaquette, forms. This is due
to other configurations being highly suppressed. With
the 1 + 1 → 0 rule, one out of four possible plaquettes
becomes a larger plaquette which exactly compensates
the change in Veff which is also reduced by a factor of
four. There are four kinds of plaquettes (see Fig. 7):
those inside the blocks (they disappear after blocking),
those between two neighboring blocks in the vertical or
horizontal direction (these are double links between the
blocks and so they disappear with the 1 + 1 → 0 rule),

and finally those which share a corner with four blocks
(they generate a larger plaquette). This last type can be
seen at coordinate (4, 12) in Fig. 7.

We now attempt to obtain data collapse for 〈Nb〉/Veff
by performing a rescaling of the temperature axis with
respect to the critical value as in Fig. 5. After this rescal-
ing by a factor 2 at each iteration, we observe a reason-
able collapse on the low-temperature side. On the high
temperature side, since the unrescaled curves merge, the
rescaling splits them and there is no collapse on that side.
This is illustrated in Fig. 9.

VII. TRG CALCULATION OF 〈Nb〉

Using the tensor method we were able to calculate 〈Nb〉
to compare with the worm algorithm. Consider the equa-
tion for 〈Nb〉 with Nb =

∑
l nl the sum over bond num-

bers at every link:

〈Nb〉 =
1

Z

∑
{n}

(∑
l

nl

)(∏
l

tanhnl(β)

)
(13)

×

(∏
i

δ
(i)
nx+nx′+ny+ny′ ,0 mod 2

)
.

This expression can be seen as 〈Nb〉 =
∑
l〈nl〉, and

because of translation and 90◦ rotational invariance, all
〈nl〉 are equal. Thus, it is enough to calculate 〈nl〉 for
one particular link (just call it 〈n〉) and multiply it by
2V : 〈Nb〉 = 2V 〈n〉.

To calculate 〈n〉, it amounts to associating an n with
one particular link on the lattice. This alters two tensors
on the lattice such that the two tensors which contain
that link as indices are now defined as

T̃ (1)
nxnx′nyny′

=
√
nxTnxnx′nyny′ (β), (14)

T̃ (2)
nxnx′nyny′

=
√
nx′Tnxnx′nyny′ (β), (15)

8

1.0 0.5 0.0 0.5 1.0
T 2.269

0.0

0.2

0.4

0.6

0.8

1.0
N

b
/V

ef
f

(a)

Expansion
Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
(T 2.269) / Leff

0.0

0.2

0.4

0.6

0.8

1.0

N
b

/V
ef

f

(b)

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

-0.15 -0.1 -0.05 0.0 0.05 0.1
0.0

0.5

1.0

FIG. 9. (a) Average number of bonds 〈Nb〉 vs. temperature T under iterated blocking steps beginning with an initial lattice
size of L = 64. The dashed black line illustrates the high temperature expansion, showing that the dominant configurations are
those consisting of small, isolated plaquettes. (b) Average number of bonds 〈Nb〉 vs. the rescaled temperature (T −2.269)/Leff

under successive blocking steps. Iteration 0 represents the original lattice before blocking, with Leff = 64.

where x and x′ were chosen without loss of generality.
It could just as well have been chosen as y and y′. One
can see that when these two tensors are contracted along
their shared link, the product picks up a factor of n for
that link, which when combined with the other tensors
in the lattice, and divided by Z, yields 〈n〉.

Knowing the above, one is free to block and construct
the partition function, Z, and 〈n〉. This can be done
by blocking symmetrically in both directions, or by con-
structing a transfer matrix by contracting only along a
time-slice (i.e. a snapshot of the system at fixed t). This
is shown in Fig. 10. In practice contracting to build a
transfer matrix is optimum since one direction of the lat-
tice is never renormalized and allows the easy calculation
of 〈n〉. What was just described is a method to calculate

n
(1)
t n

(2)
t n

(3)
t n

(4)
t

n
(1)
t′ n

(2)
t′ n

(3)
t′ n

(4)
t′

FIG. 10. A pictorial representation of the transfer matrix
made by contracting a fundamental tensor along a single time-
slice.

〈n〉 for the original, fine lattice. However, one can also
calculate the same quantity for a coarse lattice. The ac-
tual blocking method is essentially identical, with a small
difference. Instead of contracting the fundamental tensor
to the desired lattice size, one contracts a blocked tensor
to the desired lattice size.

For example, if one wanted to calculate 〈Nb〉 for a
32× 32 lattice, one could contract the fundamental ten-
sor along a time slice with itself five times. This would

give a 232 × 232 transfer matrix which could be used to
build the whole partition function. Now, under a single
coarse-graining step the 32×32 lattice becomes a 16×16
lattice of blocks. Therefore, to build this, one could con-
tract four fundamental tensors in a block and consider
this a new, effective fundamental tensor. This is shown
in Fig. 4. Then one repeats the same steps to construct
the transfer matrix, however only contracting four times
with itself to create a matrix representing 16 lattice sites
of the blocked tensor.

To actually calculate 〈n〉 by building the transfer ma-
trix, one can take the final tensor, prior to contracting
the dangling spatial indices, and multiply by

√
n against

the indices nx and nx′ . This is shown for the unblocked
case in Fig. 11, however the procedure is identical for
the blocked case once the blocked tensor has been con-
structed. This is also the point where one can choose

√
nx

√
nx′

FIG. 11. By multiplying the remaining free spatial indices
by
√
n and contracting for periodic boundary conditions in

space we form an “impure” transfer matrix. Combining the
resultant matrix with the original transfer matrix allows one
to calculate 〈n〉.

the level of approximation one will use in the blocking.
For instance one could choose that the state |1 1〉 → |0〉

9

and assign n = 0 to that state. Alternatively one could
preserve Nb and let |1 1〉 → |2〉 and assign n = 2 to that
state. This procedure was found to agree with the results
obtained by changing the pixels of the worm configura-
tions.

Once the original transfer matrix has been constructed,
as well as the matrix with the insertion of n along a single
link, one can combine these to find 〈n〉. This is done by
simple matrix multiplication:

〈n〉 =
1

Z
Tr [T · · ·T′ · · ·T︸ ︷︷ ︸

Nτ

], (16)

with

Z = Tr [TNτ]. (17)

Here T represents the transfer matrix built by contracting
tensors along a time slice, and T′ represents the single
(“impure”) transfer matrix at a time-slice with a single
bond multiplied by n. Since the lattice has Euclidean
temporal extent, L = Nτ , there are that many matrices
multiplied in each case. The values of 〈Nb〉/Veff obtained
with this procedure are shown in Fig. 12. The rescaling
by 2 at each iteration provides a good data collapse on
both sides of the transition.

VIII. CONCLUSIONS

In summary, we have motivated, constructed and ap-
plied a RG transformation to sets of worm configurations
at various temperature. This transformation is approx-
imate and the coarse-grained configurations are them-
selves worm configurations. This allows multiple iter-
ations. We monitored the bond density at successive
iterations and compared them with a two-state TRG
approximation. We found clear similarities in the low-
temperature side, where data collapse is observed for
both procedures when the distance to the critical point
is rescaled at each iteration. In the high-temperature
phase, only the TRG approximation shows good data
collapse.

Can the procedure developed here be applied to the
boundary of arbitrary sets of images as illustrated in the
introduction? The gray cutoff could be used as a tunable
parameter. However, in the limiting cases of a zero (one)
gray cutoff we have uniform black (white) images which
are both similar to the high-temperature phase, and we
do not expect a phase transition. Applications to the
CIFAR dataset are discussed in Appendix B and confirm
this point of view.

RG methods have been considered for assisting in im-
age recognition [21–23]. By mapping from fine to coarse
in several ways, such as the 1+1→ 0 and 1+1→ 1 in our
approach, one begins to see how the inverse process might
go in replacing a degraded image with a higher resolu-
tion reconstruction. The physics of defining RG transfor-
mations and quantifying scheme dependence then guides

such reconstructions using physical principles, which are
expected to be embedded into real world image charac-
teristics due to principles of universality.

It should be noted that the TRG procedure is often
considered as a “local update“ of the tensor. A more
sophisticated approach consists of using the standard re-
cursion to provide an environment for subsequent up-
dates [12, 24]. An environment tensor E is propagated
backward from the coarse to the fine scale. An improved
version of the initial iteration can then be performed in
an environment. This forward-backward procedure can
be repeeated and is very reminiscent of the procedure
proposed by Hinton and Salakhutdinov [25] in the con-
text of image recognition.

A better understanding of RG concepts in machine
learning could enhance physics discovery, especially in
the context of simulation and modeling of physical sys-
tems at a fundamental level [26]. The general idea is to
render computational tools “smart,” i.e., that they would
learn features and patterns without the intervention of a
human “assistant,” and would, in the best possible sce-
nario, guide the direction of further simulations. This
could accelerate and deepen the process of understanding
and characterizing the complex systems that are deemed
important in pure and applied physics.

ACKNOWLEDGEMENTS

This research was supported in part by the Depart-
ment of Energy, Office of Science, Office of High Energy
Physics, Grant No. DE-SC0013496 (JG) DE-SC0010113
(YM) and DE-SC0009998 (JUY) and Office of Work-
force Development for Teachers and Scientists, Office of
Science Graduate Student Research (SCGSR) program.
The SCGSR program is administered by the Oak Ridge
Institute for Science and Education (ORISE) for the
DOE. ORISE is managed by ORAU under contract num-
ber DESC0014664 (SF).

10

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
T 2.46

0.0

0.2

0.4

0.6

0.8

1.0

N
b

/V
ef

f

(a)

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
(T 2.46) / Leff

0.0

0.2

0.4

0.6

0.8

1.0

N
b

/V
ef

f

(b)

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

-0.15 -0.1 -0.05 0.0 0.05 0.1
0.0

0.5

1.0

FIG. 12. (a) 〈Nb〉 vs (T − 2.46) under successive blocking steps calculated using 2-state HOTRG. (b) 〈Nb〉 vs (T − 2.46)/Leff

under successive blocking steps calculated using 2-state HOTRG. Note that the value of 2.46 was deteremined qualitatively by
choosing the value which gave the best resulting data collapse.

11

[1] S.-H. Li and L. Wang, 1802.02840.
[2] C. Bény, arXiv:1301.3124.
[3] P. Mehta and D. J. Schwab, arXiv:1410.3831.
[4] S. Foreman, J. Giedt, Y. Meurice, and J. Unmuth-

Yockey, Proceedings, 35th International Symposium on
Lattice Field Theory (Lattice 2017): Granada, Spain,
June 18-24, 2017, EPJ Web Conf. 175, 11025 (2018),
arXiv:1710.02079 [hep-lat].

[5] S. Bradde and W. Bialek, Journal of Statistical Physics
167, 462, arXiv:1610.09733.

[6] J. Carrasquilla and R. G. Melko, Nature Physics 13, 431
(2017), arXiv:1605.01735 [cond-mat.str-el].

[7] L. Wang, Phys. Rev. B 94, 195105 (2016).
[8] W. Hu, R. R. P. Singh, and R. T. Scalettar, Phys. Rev.

E 95, 062122 (2017), arXiv:1704.00080 [cond-mat.stat-
mech].

[9] S. J. Wetzel, Phys. Rev. E 96, 022140 (2017),
arXiv:1703.02435 [cond-mat.stat-mech].

[10] M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601
(2007).

[11] Z.-C. Gu, M. Levin, B. Swingle, and X.-G. Wen, Phys.
Rev. B 79, 085118 (2009).

[12] Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang,
and T. Xiang, Phys. Rev. B 86, 045139 (2012).

[13] Y. Meurice, Phys. Rev. B87, 064422 (2013),
arXiv:1211.3675 [hep-lat].

[14] Y. Liu, Y. Meurice, M. P. Qin, J. Unmuth-Yockey, T. Xi-
ang, Z. Y. Xie, J. F. Yu, and H. Zou, Phys. Rev. D88,
056005 (2013), arXiv:1307.6543 [hep-lat].

[15] A. Denbleyker, Y. Liu, Y. Meurice, M. P. Qin, T. Xiang,
Z. Y. Xie, J. F. Yu, and H. Zou, Phys. Rev. D89, 016008
(2014), arXiv:1309.6623 [hep-lat].

[16] J. F. Yu, Z. Y. Xie, Y. Meurice, Y. Liu, A. Denbleyker,
H. Zou, M. P. Qin, and J. Chen, Phys. Rev. E89, 013308
(2014), arXiv:1309.4963 [cond-mat.stat-mech].

[17] R. Savit, Rev. Mod. Phys. 52, 453 (1980).
[18] N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 87,

160601 (2001).
[19] T. A. Enßlin and M. Frommert, Phys. Rev. D 83, 105014

(2011).
[20] C. M. Bishop, Pattern recognition and machine learning

(Springer, New York, 2006).
[21] B. Gidas, IEEE Transactions on Pattern Analysis and

Machine Intelligence 11, 164 (1989).
[22] K. Tanaka, Journal of Physics A: Mathematical and Gen-

eral 35, R81 (2002).
[23] T. Horiguchi, Y. Honda, and M. Miya, Physics Letters

A 227, 319 (1997).
[24] Z. Y. Xie, H. C. Jiang, Q. N. Chen, Z. Y. Weng, and

T. Xiang, Phys. Rev. Lett. 103, 160601 (2009).
[25] G. E. Hinton and R. R. Salakhut-

dinov, Science 313, 504 (2006),
http://science.sciencemag.org/content/313/5786/504.full.pdf.

[26] P. E. Shanahan, D. Trewartha, and W. Detmold, Phys.
Rev. D97, 094506 (2018), arXiv:1801.05784 [hep-lat].

[27] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86
(1987).

[28] B. Kaufman, Phys. Rev. 76, 1232 (1949).
[29] A. Krizhevsky and G. Hinton, Master’s thesis, Depart-

ment of Computer Science, University of Toronto (2009).

http://arxiv.org/abs/1802.02840
http://arxiv.org/abs/1301.3124
http://arxiv.org/abs/1410.3831
http://dx.doi.org/10.1051/epjconf/201817511025
http://arxiv.org/abs/1710.02079
http://dx.doi.org/10.1007/s10955-017-1770-6
http://dx.doi.org/10.1007/s10955-017-1770-6
http://arxiv.org/abs/1610.09733
http://dx.doi.org/10.1038/nphys4035
http://dx.doi.org/10.1038/nphys4035
http://arxiv.org/abs/1605.01735
http://dx.doi.org/10.1103/PhysRevB.94.195105
http://dx.doi.org/10.1103/PhysRevE.95.062122
http://dx.doi.org/10.1103/PhysRevE.95.062122
http://arxiv.org/abs/1704.00080
http://arxiv.org/abs/1704.00080
http://dx.doi.org/10.1103/PhysRevE.96.022140
http://arxiv.org/abs/1703.02435
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/ 10.1103/PhysRevB.79.085118
http://dx.doi.org/ 10.1103/PhysRevB.79.085118
http://dx.doi.org/10.1103/PhysRevB.86.045139
http://dx.doi.org/10.1103/PhysRevB.87.064422
http://arxiv.org/abs/1211.3675
http://dx.doi.org/10.1103/PhysRevD.88.056005
http://dx.doi.org/10.1103/PhysRevD.88.056005
http://arxiv.org/abs/1307.6543
http://dx.doi.org/10.1103/PhysRevD.89.016008
http://dx.doi.org/10.1103/PhysRevD.89.016008
http://arxiv.org/abs/1309.6623
http://dx.doi.org/10.1103/PhysRevE.89.013308
http://dx.doi.org/10.1103/PhysRevE.89.013308
http://arxiv.org/abs/1309.4963
http://dx.doi.org/10.1103/RevModPhys.52.453
http://dx.doi.org/10.1103/PhysRevLett.87.160601
http://dx.doi.org/10.1103/PhysRevLett.87.160601
http://dx.doi.org/10.1103/PhysRevD.83.105014
http://dx.doi.org/10.1103/PhysRevD.83.105014
http://dx.doi.org/10.1109/34.16712
http://dx.doi.org/10.1109/34.16712
http://stacks.iop.org/0305-4470/35/i=37/a=201
http://stacks.iop.org/0305-4470/35/i=37/a=201
http://dx.doi.org/10.1016/S0375-9601(97)00080-7
http://dx.doi.org/10.1016/S0375-9601(97)00080-7
http://dx.doi.org/ 10.1103/PhysRevLett.103.160601
http://dx.doi.org/10.1126/science.1127647
http://arxiv.org/abs/http://science.sciencemag.org/content/313/5786/504.full.pdf
http://dx.doi.org/10.1103/PhysRevD.97.094506
http://dx.doi.org/10.1103/PhysRevD.97.094506
http://arxiv.org/abs/1801.05784
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRev.76.1232

12

Appendix A: Technical results

1. Loop representation

We can rewrite the Ising partition function in terms
of bonds between neighboring sites 〈i, j〉. The allowed
bond configurations are concisely described by concepts
in graph theory, because they form edges (bonds) be-
tween neighboring vertices (sites). Making use of well-
known identities allows for the partition function to be
written in the following high-temperature expansion:

Z = 2|V | cosh|E| β
∑

Γ∈C(G)

tanh|Γ| β (A1)

= 2|V | cosh|E| β
∑
|Γ|

tanh|Γ| β n(|Γ|) (A2)

The notation is as follows. We have a graph G = (V,E)
that describes our lattice, where V are the vertices and
E are the edges, which are the bonds between neighbor-
ing sites. If we restrict ourselves to subgraphs with only
occupied bonds allowed by the Ising model, then the de-
gree of each vertex is even. This is the number of bonds
emanating from a particular vertex. The set of edges of
such a subgraph is described as being “Eulerian.” The
space of all such sets of edges is known as the cycle space
C(G). The notation |V |, |E|, |Γ| denotes the number of
elements in each set (cardinality). In the second line,
n(|Γ|) counts the multiplicity of subgraphs of cardinality
|Γ|, and is zero when |Γ| does not correspond to a “legal”
subgraph.

We now specialize the presentation to the case of the
two-dimensional Ising model on a square lattice with pe-
riodic boundary conditions. In this case |V | is V = L2,
the volume that we express in lattice units, and |E| = 2V .
We introduce the notation t ≡ tanh(β) and we call Nb
the number of bonds in a graph (values taken by |Γ|).
With these notations we recover Eq. 3.

It is this bond formulation that is the basis of both
random cluster algorithms [27] and worm algorithms [18].
In this paper we utilize the latter. Both of these classes
of algorithms have the benefit of significantly avoiding
critical slowing down. This is essential near the critical
temperature Tc.

2. Heat capacity

One striking feature of the second order transition for
the two-dimensional Ising model is the logarithmic diver-
gence of the specific heat density at the critical temper-
ature Tc. In this section, we review the way the specific
heat can be calculated with the worm algorithm and we
check our answer with the exact finite volume expres-
sions [28].

Using the standard thermodynamical formula for the

average energy

〈E〉 = − ∂

∂β
lnZ, (A3)

with the expression Eq. (3) of Z, we get

〈E〉 = − tanh(β)

(
2V +

〈Nb〉
sinh2(β)

)
, (A4)

where we define

〈f(Nb)〉 ≡
∑
Nb

f(Nb)t
Nbn(Nb)/

∑
Nb

tNbn(Nb). (A5)

We can then use

CV =
∂〈E〉
∂T

, (A6)

to write

CV
V

= β2

[
2

cosh2(β)
− 4 cosh(2β)

sinh(2β)

〈Nb〉
V

(A7)

+

(
2

sinh(2β)

)2 〈(Nb − 〈Nb〉)2〉
V

]
. (A8)

Since 〈Nb〉V ≤ 2 (in two dimensions), the only possi-
bly divergent part is the variance of Nb per unit vol-
ume 〈∆2

Nb
〉 defined in Eq. (4). The singularity near Tc is

known from Onsager’s solution:

CV
V

= − 2

π

(
ln(1 +

√
2)
)2

ln (|T − Tc|) + regular. (A9)

This implies Eq. (5).

3. Monte Carlo implementation

We can proceed to sample the closed path configura-
tion space using the worm algorithm [18]. A single Monte
Carlo step is outlined below.

1. Randomly select a starting point on the lattice
(i0, j0).

2. Propose a move to a neighboring site (i′, j′), se-
lected at random.

3. If no link is present between these two sites, a
bond is created with acceptance probability P =
min{1, tanhβ}. If the bond is accepted, we update
the bond number for the present worm, nb = nb+1.

4. If a link already exists between the two sites, it is
removed with probability P = 1.

5. If (i′, j′) = (i0, j0), i.e. we have a closed path, go
to (1.). Otherwise, (i′, j′) 6= (i0, j0), go to (2.)

13

The number of necessary Monte Carlo steps required to
achieve sufficient statistics varies with the lattice size,
thermalization time, and temperature. After each step,
we calculate the energy in terms of the average number of
active bonds Nb, and consider the system to be thermal-
ized when fluctuations between subsequent values of the
energy are less than 1×10−3. We then save the resulting
configuration, along with the final values for all physical
quantities of interest. This process is then repeated many
times over a range of different temperatures to generate
sufficient statistics for physical observables. All error-
bars are calculated using the block jackknife resampling
technique.

4. Tests

The above formulas have been used to calculate CV .
Precise checks were performed by comparing with the
exact results obtained from Ref. [28]. The agreement
can be seen in Fig. 13. Results for other lattice sizes that
we have simulated are similar.

0.0

0.5

1.0

1.5

2.0

C V
/V

2/dof = 1.00405 Theory
Simulation
Theory Simulation

1.0 1.5 2.0 2.5 3.0 3.5
T

0.1
0.0

FIG. 13. Comparison of the worm Monte Carlo computation
of the specific heat Cv versus temperature and the exact re-
sults using the formula in [28], for an L = 32 lattice. Note
that χ2/dof represents the reduced chi-squared statistic. It
can be seen that the agreement is excellent, except for a slight
deviation at the critical temperature, where Monte Carlo al-
gorithms tend to face difficulties with critical slowing down.
This is mostly addressed with the worm algorithm, in terms of
having a dynamical scaling exponent that is zero rather than
two, but there is (as can be seen), still a residual suppression
of fluctuations in the immediate vicinity of Tc.

5. Conjecture about λmax

Using the Monte Carlo algorithm outlined above, we
can calculate the average number of occupied bonds at
a particular temperature by averaging over all configura-

tions

〈Nb〉 ≡
1

Nconfigs

Nconfigs∑
n=1

N
(n)
b (A10)

=

〈 ∑
j=bonds

vj

〉
(A11)

= 2V 〈vb〉. (A12)

From this, we have that

〈vb〉 =
〈Nb〉
2V

, (A13)

where we have defined 〈vb〉 to be the average occupation

of bonds, N
(n)
b to be the number of occupied bonds in the

n-th configuration, and we have used Eq.(6) in the second
line. If we consider graphs with no self-intersections,

∑
j=bonds

vj =
∑

j=sites

vj . (A14)

For small β (high T) this can be a good approximation,

〈 ∑
j=bonds

vj

〉
'

〈 ∑
j=sites

vj

〉
=⇒ (A15)

〈vb〉 '
1

2
〈vs〉 (A16)

This agrees with our intuition, that the average image
〈v〉 should resemble a “tablecloth”, where the site pixels
are twice as dark as the link pixels. This can be seen
clearly in Fig. 14.

For a general graph, a link is shared by two sites (its
endpoints), whereas a site can be shared either by 0, 2,
or 4 bonds. If the site is shared by two bonds, it is only
visited once, denoted sites(1), and if it is shared by four
bonds, it is visited twice, denoted sites(2). This allows
us to break up the sum over bonds into two terms

∑
j=bonds

vj =
2

2

∑
j=sites(1)

vj +
4

2

∑
j=sites(2)

vj (A17)

14

0 5 10 15 20 25 30
0

5

10

15

20

25

30

FIG. 14. Average image 〈v〉 calculated for the L = 16 lattice
at T = 2.0, illustrating the tablecloth-like appearance.

Rearranging and taking averages gives

〈 ∑
j=sites(1)

vj +
∑

j=sites(2)

vj

〉
(A18)

=

〈 ∑
j=bonds

vj −
∑

j=sites(2)

vj

〉
(A19)

=

〈 ∑
j=sites

vj

〉
(A20)

= V 〈vs〉 (A21)

=

〈 ∑
j=bonds

vj

〉
−

〈 ∑
j=sites(2)

vj

〉
(A22)

= 2V 〈vb〉 − 〈Nsites(2)〉 =⇒ (A23)

〈Nsites(2)〉
V

= 2〈vb〉 − 〈vs〉. (A24)

We can rewrite the last equation using (A12)

〈vs〉 =
〈Nb〉
V
− 〈Nsites(2)〉

V
. (A25)

This suggests that a departure from a perfect tablecloth
(〈vs〉 = 2〈vb〉) contains information. Another useful con-

struct is the covariance matrix,

Cij =
〈

(vi − 〈v〉i) (vj − 〈v〉j)T
〉

(A26)

=
1

Nconfigs

Nconfigs∑
n=1

(
v

(n)
i − 〈v〉i

)(
v

(n)
j − 〈v〉j

)T
,

(A27)

where we have defined v
(n)
k to be the grayscale value of

the k-th pixel in the n-th sample configuration, and 〈v〉k
is the average grayscale value of the k-th pixel over the
set of configurations.

At some fixed temperature, the covariance matrix,

C ∈ RNconfigs×4L2

, where Nconfigs is the number of sam-
ple configurations (images), with each configuration flat-
tened into a vector of length 4L2. We can then perform
a singular value decomposition (SVD) on the covariance
matrix,

C = WΛWT (A28)

where W is a 4L2 × 4L2 matrix whose columns (wk) are
the eigenvectors of C, and Λ is the diagonal matrix of
the absolute value of the eigenvalues λ(k) of C, arranged
in decreasing order. Without loss of generality, we can
assume that the eigenvectors wk are real and normalized
such that wT

kwk = 1. Thus, we can write

Cwk = λ(k)wk (A29)

wT
k Cwk = λ(k) (A30)

For our purposes, we are interested in the first principal
component, with eigenvalue λ(1) ≡ λ1 and corresponding
eigenvector w1.

We conjectured that the first principal component, w1

of the covariance matrix C is directly proportional to the
average worm configuration (image) 〈v〉, i.e.

w1 ∝ 〈v〉. (A31)

From our results in II, we can write

〈v〉2 = 〈v〉T 〈v〉 (A32)

= 2V 〈vb〉2 + V 〈vs〉2. (A33)

This suggests that

w1 =
〈v〉√

(2〈vb〉2 + 〈vs〉2)V
. (A34)

15

Moreover, we can write

∑
i

(
v

(n)
i − 〈v〉i

)
〈v〉i (A35)

=

{
〈vb〉

∑
j=bonds

v
(n)
j + 〈vs〉

∑
j=sites

v
(n)
j (A36)

−
(

2V 〈vb〉2 + V 〈vs〉2
)}

(A37)

=

{
〈vb〉N (n)

b + 〈vs〉N (n)
s (A38)

− V
(

2〈vb〉2 + 〈vs〉2
)}

(A39)

=

{
〈vb〉

(
N

(n)
b − 〈Nb〉

)
(A40)

+ 〈vs〉
(
N (n)
s − 〈Ns〉

)}
(A41)

≡ 〈vb〉∆(n)
Nb

+ 〈vs〉∆(n)
Ns
. (A42)

From this, we can extract a relationship between the
eigenvalue corresponding to the first principal compo-

nent, λ(1) and the fluctuations ∆Nb and ∆Ns ,

wT
1 Cw1 = λ(1)

=
1

Nconfigs

Nconfigs∑
n=1

(〈vb〉2
(

∆
(n)
Nb

)2

+ 2〈vb〉〈vs〉∆(n)
Nb

∆
(n)
Ns

+ 〈vs〉2
(

∆
(n)
Ns

)2

)

1(
2〈vb〉2 + 〈vs〉2

)
Now, if we consider the high temperature approx-

imation where sites only have single visits (no self-
intersections), 〈vs〉 ' 2〈vb〉, 〈Ns〉 ' 〈Nb〉, and ∆Nb '
∆Ns , we have that 2〈vb〉2 + 〈vs〉2 ' 6〈vb〉2 and

λ1 '
〈vb〉2

Nconfigs

9

6〈vb〉2
Nconfigs∑
n=1

(
∆

(n)
Nb

)2

(A43)

=
3

2

1

Nconfigs

Nconfigs∑
n=1

(
∆

(n)
Nb

)2

(A44)

=
3

2

〈
∆2
Nb

〉
. (A45)

A justification for making this approximation can be
seen in Fig. 15.

6. Illustration of alternate blockings

Appendix B: Possible applications: From Images to
Loops

Having better understood how these RG transforma-
tions can be used to describe the 2D Ising model near crit-
icality, we began to look for possible applications to real-
world datasets. For our analysis, we used the CIFAR-10
[29] image set consisting of 60, 000 32 × 32 color images
in 10 classes. First, each of the images were converted to
a grayscale with pixel values in the range [0, 1]. Next, a
grayscale cutoff value was chosen so that all pixels with
values below the cutoff would become black, and pixels
above the cutoff would become white, resulting in im-
ages consisting entirely of black and white pixels. Fi-
nally, each of these images were converted to ‘worm-like’
images by drawing the boundaries separating black and
white collections of pixels. An example of these prepro-

cessing steps are illustrated in Fig. 17. This process was
carried out on a mini-batch consisting of 500 randomly
selected images from the CIFAR-10 image set. For each
image in our mini-batch, we calculated 〈Nb〉 and 〈∆2

Nb
〉

over a range of grayscale cutoff values in [0, 1] in steps of
0.02. Each of these images were then iteratively blocked
using the (1 + 1 → 0) blocking procedure described in
Sec. IV, calculating 〈Nb〉 and 〈∆2

Nb
〉 for each successive

blocking step, as shown in Fig. 18. Immediately we see
that there is no identifiable low temperature phase, and
that for cutoff values near both 0 and 1, we obtain images
which are mostly empty, similar to the high temperature
configurations obtained from the worm algorithm. This
suggests that there is no such notion of criticality (as
characterized by the abrupt transition from a low to high
temperature phase) like we found for the two-dimensional
Ising model.

16

1.0 1.5 2.0 2.5 3.0 3.5
T

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
N

si
te

s(2
)

/
N

b

FIG. 15. Ratio of the number of twice visited sites 〈Nsites(2)〉
to the average number of bonds 〈Nb〉 versus temperature, for
the L = 32 lattice. This clearly justifies our approximation
〈vs〉 ' 2〈vb〉, where we ignore the contribution from twice
visited sites.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

(a)

(a)1 + 1 = m

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

(b)
(b)1 + 1 → 1

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

(c)
(c)1 + 1 → 2

FIG. 16. Example of the different coarse-graining (“blocking”) procedures applied to a sample worm configuration generated
at T = 2.0. Note that in (16(a)) m ∈ {1, 2}, and double bonds are represented by blue lines. (16(b)), (16(c)), illustrate the
results of applying different weights to the so-called “double bonds” in the images representing a blocked configuration. Note
that in (16(b)) 1 + 1→ 1, double bonds are given the same weight as single bonds, and in (16(c)) 1 + 1→ 2, double bonds are
given twice the weight as single bonds, appearing twice as dark.

17

0 5 10 15 20 25 30

0

5

10

15

20

25

30
(a) 0 5 10 15 20 25 30

0

5

10

15

20

25

30
(b)

0 10 20 30 40 50 60

0

10

20

30

40

50

60
(c) 0 10 20 30 40 50 60

0

10

20

30

40

50

60
(d) 0 10 20 30 40 50 60

0

10

20

30

40

50

60
(e)

FIG. 17. Example of preprocessing steps for converting CIFAR-10 images to ‘worm-like’ images, illustrating the resulting
image for different values of the grayscale cuttoff. (a) Original image from CIFAR-10 dataset. (b) Image converted to grayscale.
(c) Resulting image from cutoff values of 0.25, (d) 0.5, and (e) 0.75.

0.0 0.2 0.4 0.6 0.8
cutoff

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
b

/V
ef

f

(a)

Iteration 0
Iteration 1
Iteration 2

0.0 0.2 0.4 0.6 0.8
cutoff

0.0

0.2

0.4

0.6

0.8

1.0

2 N
b

/V
ef

f

(b)

Iteration 0
Iteration 1
Iteration 2

FIG. 18. 〈Nb〉 and 〈∆2
Nb
〉 vs. grayscale cutoff value for 500 randomly chosen images from the CIFAR-10 dataset.

	Examples of renormalization group transformations for image sets
	Abstract
	Introduction
	From loops to images
	PCA and criticality
	TRG coarse-graining
	Image coarse-graining
	Partial data collapse for blocked images
	TRG calculation of <Nb>
	Conclusions
	Acknowledgements
	References
	Technical results
	Loop representation
	Heat capacity
	Monte Carlo implementation
	Tests
	Conjecture about Î»max
	Illustration of alternate blockings

	Possible applications: From Images to Loops

