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We consider the construction of a generalized Gibbs ensemble composed of complete bases of
conserved charges in the repulsive Lieb-Liniger model. We will show that it is possible to construct
these bases with varying locality as well as demonstrating that such constructions are always possible
provided one has in hand at least one complete basis set of charges. This procedure enables the
construction of bases of charges that possess well defined, finite expectation values given an arbitrary
initial state. We demonstrate the use of these charges in the context of two different quantum
quenches: a quench where the strength of the interactions in a one-dimensional gas is switched
suddenly from zero to some finite value and the release of a one dimensional cold atomic gas from
a confining parabolic trap. While we focus on the Lieb-Liniger model in this paper, the principle
of the construction of these charges applies to all integrable models, both in continuum and lattice
form.

I. INTRODUCTION

It is widely accepted that if one pumps energy into a
closed quantum system that relaxation to a steady state
is governed by the presence of all of the conserved quan-
tities in the system, provided the system is in the ther-
modynamic limit [1, 2]. If the conserved quantities or

charges are labelled {Q̂i}Ki=1, where K may be either
finite or infinite, then the steady state reached by the
system should be governed by a density matrix, ρ̂

ρ̂GGE =
1

Z
e−

∑K
i=1

βiQ̂i . (1)

Here βi are the (generalized) temperatures associated

with each charge Q̂i. In this general way of describing
relaxation in a closed quantum system, two cases are usu-
ally separated out: i) one where there is only an intensive
number of conserved quantities, perhaps only the Hamil-
tonian of the system itself (see [3–6] for generic results,
[7–9] for finite, and [10, 11] for infinite 1D lattices); and
ii) one where there are an infinite set of conserved quan-
tities that govern relaxation in the long time limit (see
e.g. [12–28] for spin chains, [29–31] for bosons on lattices,
[32–42] for Bose gases, and [43–46] for field theories). In
the first case the system is said to relax to a standard
Gibbsian ensemble governed by a single effective tem-
perature while in the second case the system is said to
be integrable and relaxation is instead to a generalized

Gibbsian ensemble (GGE.)
In the past few years a complementary view of relax-

ation in a closed integrable quantum system has arisen
[28, 39, 47–56] in response to difficulties in defining ρ̂GGE

in certain instances. Rather than thinking of the long
time behavior of the system being governed by a den-
sity matrix involving the system’s conserved quantities,
i.e. Eqn. 1, the notion of a ‘representative state’ is em-
ployed. Whereas the density matrix of Eqn. 1 is associ-
ated with a canonical ensemble, a representative state is
invoked by combining a (generalized) microcanonical en-
semble with the (generalized) eigenstate thermalization

hypothesis [3–6, 37, 57]. For a generalized microcanoni-
cal ensemble, the density matrix reads

ρ̂mc,{Qi} =
∑

|s〉,〈s|Q̂i|s〉∈{Qi−ǫ,Qi+ǫ}

|s〉〈s| (2)

Here the density matrix is a sum of projection operators
over all states |s〉 whose quantum numbers 〈s|Q̂i|s〉 fall in
a narrow range about the values Qi. What the general-
ized eigenstate thermalization hypothesis (gETH) argues
is that the states |s〉 are all equally good for determin-
ing the long time properties of a system. Specifically, for
any reasonable observable O, the gETH states that for
any state |s〉 involved in the sum of states composing the
microcanonical ensemble we have

〈s|O|s〉 ≡ Tr ρ̂mc,{Qi} (3)

Thus the gETH reduces the problem of finding the long-
time limit of an observable to computing a single expec-
tation value.
Even with this view, there remains the problem of de-

termining a representative state |s〉. However here we
have a number of options. Most generally, we have the
quench action [47, 48]. The quench action defines a gen-
eralized action whose saddle point defines the representa-
tive state |s〉. Finding the representative state using the
quench action has now been demonstrated in a number of
instances: i) quenches in the transverse field Ising model
[47], ii) quenches in the Lieb-Liniger model [49, 54],
iii) the Neel-to-XXZ [50, 51, 58] and Majumdar-Ghosh
(dimer)-to-XXZ [28, 52] quenches in the XXZ Heisen-
berg spin chain, iv) quenches in the Hubbard model [53],
v) quenches in spin-1 chains [55, 59], and vi) quenches in
relativistic field theories [56]. Separate from the quench
action for determining the representative state, we have,
in the particular case of the XXZ model (and similar in-
tegrable lattice models), the ability to relate the expec-
tation values of a certain class of charges to the densities
of excitations that characterize the representative state
[21, 60].
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One virtue that the quench action has is that it leads
to physical results: the representative state, |s〉, that is
determined as the saddle point of the quench action has
well-defined expectation values on local observables. This
need not be the case for a generalized Gibbs density ma-
trix. In particular, it need not be the case that the states
|s〉 have a finite expectation on the conserved quantities
themselves, it may be that we have

〈s|Q̂i|s〉 = ∞, (4)

leading to difficulties in sensibly defining ρ̂GGE.
How this can happen is readily seen. Typically if a sys-

tem possesses an infinite set of conserved quantities be-
yond the Hamiltonian itself, these additional conserved
charges are often constructed by looking for, roughly
speaking, higher moments of the Hamiltonian or energy-
momentum tensor. And then, while the energy density,
Es, of a state |s〉 may be finite, higher moments of the
energy may diverge. For example if a state has degrees
of freedom each with energy E and distributed according
to ρs(E), the energy of the state can be written as

Es =

ˆ

dE Eρs(E). (5)

And while the above integral may be convergent, the in-
tegral

En
s =

ˆ

dE Enρs(E) (6)

determining a higher (n-th) moment of the energy may
not be. In this sense the quench action and its attendant
representative states have a certain practical advantage
over the GGE density matrix – it does not require that
the conserved quantities have well defined expectation
values. It was this advantage that allowed the interaction
quench in the Lieb-Liniger model to be fully described
[49].
As we have said, the origin of this problem lies in the

nature of the typical construction of the infinite hierarchy
of conserved quantities in an integrable model – namely
as higher moments of the energy density. We show here
that in fact that one is never limited to this particu-
lar hierarchy and that in fact it is possible to construct
conserved quantities which have generically finite expec-
tation values. We show that if there exists one complete
basis of conserved charges (in a sense to be described),
we can construct arbitrary bases of charges. We can al-
ways design these bases so that they are quasi-local, i.e.
a quasi-local charge is a charge defined as an integral over
space,

Q̂ =

ˆ

dx q̂(x), (7)

where q̂(x) is an operator whose support is found primar-
ily about the spatial position x. We thus show that it is
always possible to have a well-defined a GGE for a given
quench.

This builds on prior work on quasi-local charges in
the quantum Ising field theory. In Refs. [46, 61] it was
shown that one can construct explicit quasi-local charges
in the quantum Ising field theory. The construction of
the charges was possible because the underlying descrip-
tion of the model is that of free fermions. Here we show
that this construction can be generalized to arbitrary in-
teracting theories.

We will demonstrate this construction in the context
of the Lieb-Liniger model [62, 63]. This model offers sev-
eral advantages here. It is generically interacting and
so demonstrates the possibility of construction of alter-
native hierarchies of conserved quantities in interacting
theories. However it is also relatively simple, for example,
in its repulsive regime it does not possess string solutions
of its attendant Bethe Ansatz equations. Moreover it has
a limit where it maps onto free fermions – which we will
exploit at times.

The Lieb-Liniger model is also a worthy point of focus
as it can readily be realized in cold atomic gases [64–68].
In the paper we plan to study two types of quenches for
Lieb-Liniger: a quench where the gas is released from a
trapping potential and a quench where the interaction
strength of the gas is suddenly changed. Experimentally
both quenches can be realized. The release of the gas
from a confining parabolic trap is already part of the
standard experimental protocol involving these gases as
it is how the momentum distribution function of the gas
is accessed. Furthermore the interaction parameters of
the experimental realizations of the Lieb-Liniger model
are highly tunable [65, 66], thus offering the possibility
of realizing Lieb-Liniger interaction quenches.

While our focus here will be on quasi-local charges
in continuum theories, it would be remiss not to men-
tion that there has been considerable recent interest in
quasi-local charges in lattice models [21, 69–72]. Such
quasi-local charges, constructed in the framework of the
algebraic Bethe ansatz [69], have been shown to be a nec-
essary ingredient for GGEs describing the Néel quench in
the XXZ Heisenberg model [21].

The paper is organized as follows. In Section 2 we
provide an overview of the integrable structure of the
Lieb-Liniger model. In Section 3 we demonstrate how
construction of arbitrary bases of conserved quantities is
possible. In Section 4 we construct explicit operatorial
expressions for large but finite c for the charges and show
under what conditions the charges are quasi-local. In
Section 5 we apply these ideas to the interaction quench
in the Lieb-Liniger model where the ultra-local charges
fail to provide a sensible GGE, while in Section 6 trap-
release quench is studied where GGEs based on both the
ultra-local and the quasi-local charges can be sensibly
defined. Finally in Section 7 we wrap up with a discussion
in the context of recent proposals for other alternatives
to using ultra-local charges.
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II. LIEB-LINIGER MODEL

In this section we provide an overview of the integrable
structure of the Lieb-Liniger model. The Lieb-Liniger
model describes a system of N identical bosons on a one-
dimensional ring of circumference L, interacting through
a contact potential [62, 63],

H = −
N
∑

i=1

∂2

∂x2
i

+ 2c
∑

i<j

δ(xi − xj), (8)

or in the second quantized form,

H =

ˆ L

0

dx
(

−Φ†(x)∂2
xΦ(x) + cΦ†(x)Φ†(x)Φ(x)Φ(x)

)

,

(9)
where we set ~ = 2m = 1 and c is the interaction
strength. We will work in the repulsive regime, c > 0.
The exact eigenstates of (8) are described by the Bethe

Ansatz wave function [73],

ξ(x1, . . . , xN ; I1, . . . , IN ) =

F{Ij}

∑

P





∏

j>k

(

1− ic sgn(xj − xk)

λPj
− λPk

)



 ei
∑

n
xnλPn ,

(10)

where F{Ij} =
∏

N
j>k=1

(λj−λk)

N !
∏

N
j>k=1

((λj−λk)2+c2)
, P is a list of all

permutation of the indices and the quasi-momenta, λn,
are determined by the Bethe equations [62, 63] in terms
of a set of N distinct integers (half-odd integers) {Ij} for
N odd (even),

λj =
2πIj
L

− 1

L

∑

k

θ(λj − λk), j = 1, 2 . . . , N (11)

and where the scattering phase θ(λ) equals

θ(λ) = 2 tan−1

(

λ

c

)

.

When the thermodynamic limit (TDL) is approached,
L,N → ∞, and the particle density n = N/L remains
finite, the occupied quasimomenta or roots become con-
tinuous in λ and it is useful to introduce a density func-
tion,

ρp(λj) =
1

L(λj+1 − λj)
. (12)

In the TDL, the Bethe equations combine into

ρh(λ) + ρp(λ) =
1

2π
+

ˆ

dλ′

2π
K(λ− λ′)ρp(λ

′), (13)

where we introduced the density of empty quasi momen-
tum modes ρh and the kernel

K(λ) ≡ θ′(λ) =
2c

λ2 + c2
.

In the framework of the quench action, ρp is a key
quantity. A given representative state, |s〉, is described
by specifying the distribution ρp,s(λ) of particles in the
state.
In the TDL the expression above for the rapidity (Eqn.

11) can be rewritten as

λj =
2πIj
L

+

ˆ ∞

−∞

dλ′F (λ′, λj)n(λ
′). (14)

Here n(λ) is a function bounded by 0 and 1 and is given in
terms of ρp/h(λ), the density of states for particles/holes
at λ via

n(λ) =
ρp(λ)

ρp(λ) + ρh(λ)
. (15)

The expression in the continuum limit for λj furthermore
involves the shift function F (λ, λ′):

F (λ, λ′) = θ(λ− λ′)

+

ˆ ∞

−∞

dλ′′n(λ′′)K(λ− λ′′)F (λ′′, λ′),(16)

which measures how much the presence of a sea of parti-
cles alters the scattering phase between two excitations
with rapidities λ and λ′.
The occupation function n(λ) defines an energy ǫ(λ)

via the relation

n(λ) =
1

1 + eǫ(λ)
, ǫ(λ) = log

ρh(λ)

ρp(λ)
. (17)

ǫ(λ) can be interpreted as a generalized energy contri-
bution measuring the cost of creating an excitation at λ
around a particular state of the system. It can be shown
to satisfy the equation

ǫ(λ) = ǫ0(λ)−
ˆ

dλ′

2π
K(λ− λ′) log(1 + e−ǫ(λ′)). (18)

ǫ0(λ), the source term of the above integral equation,
can be thought of as the “bare” energy of an excitation,
what the excitation energy would be if there were no
other excitations in the system. It is the key quantity
for determining how different possible sets of conserved
charges describe a particular quench as we discuss in the
next section.

III. BUILDING THE GGE WITH DIFFERENT

BASES OF CHARGES

As our starting point for this construction, we suppose
that the quench in which we are interested has a known
ǫ0(λ) as defined above. Knowing ǫ0(λ) is equivalent to
knowing ρp(λ) for the quench as we can use Eqns. 18
and 13 to go between these two quantities. ρp(λ) for a
quench can be determined in one of two ways. It can
be determined by using the quench action to arrive at a
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representative state characterized by a given ρp(λ) or it
may be determined by employing the numerical method,
NRG+ABACUS, developed to study quantum quenches
[35, 74], to extract the ρp(λ) associated with a quantum
quench.
To see why ǫ0(λ) is the key quantity for describing the

GGE, let us consider the action of the ensemble (1) on a
Bethe state:

ρ̂GGE |ρp〉 =
1

Z
e−Lf [ρp]|ρp〉, (19)

where f [ρp] is the generalized free energy density. The
key point is that f [ρp] is given in terms of ǫ0(λ):

f [ρp] =

ˆ

dλǫ0(λ)ρp(λ), (20)

and at the same time is a linear functional of the root
density, ρp(λ).

A requirement that we will place on our charges, {Q̂n},
is that they involve the root density in the same, linear
way,

Q̂n|ρp〉 = L

ˆ

dλqn(λ)ρp(λ)|ρp〉, (21)

where qn(λ) is a function that describes the action of the
charge on the Bethe state. Comparing Eqn. 21 with
Eqn. 20, we see that finding a set {Q̂n} comes down to
expanding the coefficient function ǫ0(λ) on a set of basis
functions, {qn(λ)}, i.e.

ǫ0(λ) =
∑

n

βnqn(λ). (22)

The coefficients of expansion then become the set of gen-
eralized inverse temperatures of the GGE. The so-called
ultra-local charges, the charges that caused difficulties in
trying to construct a GGE for the interaction quench in
the Lieb-Liniger model [41, 47, 49], are given by

qn(λ) = λn. (23)

Even though the ultra-local charges are not well-defined
for the interaction quench, their existence is important
for being able to define alternate GGEs. As the polyno-
mials provide a complete basis of functions, their exis-
tence tells us that we can construct other complete bases
of charges (or at least sets of charges whose associated
qn(λ) are locally real analytic in λ).
From this point of view, finding a set of charges and

the associated generalized temperatures is a problem in
the domain of approximation theory. All we need to do
is to settle on a linear space that includes ǫ0(λ) and use
a complete set of functions in this space to expand it. If
ǫ0(λ) is not a square integrable function (as is the case
for the interaction quench), i.e.

ˆ ∞

−∞

dλ(ǫ0(λ))
2 = ∞, (24)

we might want to consider expansion bases that belong
to the weighted L2 space, L2(R, ω(λ)dλ), with an ap-
propriate weight function ω(λ). So, for example, if we
suppose our charges to be orthonormal, we would have

ˆ

dλ qn(λ)qm(λ)ω(λ) = δnm, (25)

with the corresponding generalized temperatures being

βn =

ˆ

dλ ǫ0(λ)qn(λ)ω(λ). (26)

We now discuss some possible choices of {qn}.
We first consider the following set of functions:

q0(λ) =
1

2π
, qn≥1(λ) =

(−1)n

π
cos(2n arctanλ),

(27)
They form an orthonormal set with the weight functions
ω(λ) = 2

1+λ2 . We will see that these functions are well

suited to describing a quench characterized by an ǫ0(λ)
with a slight, logarithmic divergence as in the interaction
quench. In particular for this quench, the expectations
values of the charges on the initial state are finite, i.e.

ˆ

dλqn(λ)ρp(λ) < ∞, (28)

and they are even, smooth, and all their derivatives go
to zero as |λ| → ∞. As we will see, this means that they
correspond to quasi-local charges, at least for large c.
We also consider using the Chebyshev polynomials:

qn(λ) = cnTn(2/π arctanλ), (29)

c0 =
1√
π
, cn>0 =

√

2

π
, (30)

with the Chebyshev polynomials Tn(x) defined on −1 ≤
x ≤ 1 by

Tn(x) = cos(n arccosx). (31)

The associated weight function is ω(λ) =
1

(1+λ2)
√

(π/2)2−(arctanλ)2
. These charges have the

same advantages as the ones defined by (27).
To demonstrate why we want to consider bases with

non-trivial weight functions, let us also consider a usual
set of orthonormal functions on −∞ < λ < ∞, the Her-
mite functions, defined as

q0(λ) = −(π)−1/4e−x2/2, (32)

qn(λ) = (−1)n(2nn!
√
π)−1/2ex

2/2 dn

dxn
e−x2

, n > 0. (33)

The attendant weight function is ω(λ) = 1. We will see
that these charges have well-defined expectation values
on the initial state for the interaction quench and that
they also correspond to quasi-local operators. However,
they have exponentially decaying tails and therefore are
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unable easily to reproduce the λ → ∞ behavior of ǫ0 for
the interaction quench. Since this divergence has to do
with the suppression of high energy modes in the repre-
sentative state, we expect these charges to be suboptimal
for this case.

IV. OPERATORIAL EXPRESSIONS AND

QUASI-LOCALITY OF THE CHARGES

In the previous section we articulated a method for
choosing different sets of conserved charges. However we
do not yet know the operatorial form of these charges. It
is the aim of this section to provide it.

On the basis of this construction, we will discuss the
quasi-locality of the charges. By quasi-locality we mean
that the charge Q̂ can be expressed as integral over an
x-dependent operator Q̂den(x) via

Q̂ =

ˆ ∞

−∞

dx Q̂den(x), (34)

where Q̂den(x) is a quasi-local operator, i.e. an opera-
tor composed of products of operators, also x-dependent,
whose support is primarily confined to the region about
x. We will follow Ref. [75] when we allow Q̂(x) to depend
on operators defined at points far from x provided that
this dependence is exponentially small.

The importance of discussing quasi-locality of the
charges lays in that it controls, in part, their ability to de-
scribe the long time equilibration of the system. Strictly
speaking, when one speaks of equilibration in a closed
quantum system, one is concerned about equilibration in
a small part of the system, which we can call A, with the
rest of the system, termed B. The system can be said to
come to equilibrium if after we trace out B, the resulting
reduced density matrix, ρ̂A, equals the GGE density ma-
trix for subsystem A. However to meaningfully be able
to talk about the GGE for subsystem A with the same
set of charges we associate to the system as a whole, we
need the charges forming the GGE to be integrals over
operators, Q̂(x), whose support is localized in space.

To this end, we will show in this section that the
Fourier transform of the charge’s action on a state, i.e.
q(λ), is indicative of how localized its associated charge
is. In particular we will show that if q̃(x) has support that

is primarily about 0, we can conclude Q̂ is quasi-local. As
per Ref. [75], we will permit the possibility that q̃(x) de-
cays exponentially as x → ∞, and not insist on the more
strict condition that its support around x = 0 is com-
pact. The condition that q̃(x) is exponentially decaying
is ensured by q(λ) being even or odd, being smooth, and
that all the derivatives go to zero as λ → ∞ (this can be
relaxed to q(n>N)(λ → ∞) → 0 with some finite N by
allowing distributions), see e.g. [76].

A. c = ∞ case

Let us begin with our demonstration that we can con-
struct charges that are quasi-local in the c = ∞ limit. In
this limit the dynamics of the gas become considerably
simpler as the interaction kernel K(λ) goes to zero, see
for example Eqns. 13 and 18. In this limit, the quasi-
momenta go to

λj =
2πIj
L

, (35)

and the Bethe equation reduces to

ρp(λ) + ρh(λ) =
1

2π
. (36)

The correspondence between the hard-core bosons and
free fermions can be made explicit on the level of opera-
tors by a Jordan-Wigner transformation

Φ(x) = exp

{

−iπ

ˆ x

0

Ψ†(z)Ψ(z)dz

}

Ψ(x). (37)

Here the hard-core bosonic field Φ(x) satisfies

[Φ(x)†,Φ(y)] = 0, x 6= y,

and

Φ(x)Φ(x) = 0,

while the free fermionic field, Ψ(x), satisfies
{Ψ(x)†,Ψ(y)} = δ(x − y).
With these definitions in hand, we now explicitly write

Q̂ in terms of the bosonic fields. In terms of the fermionic
fields, Q̂ is given by

Q̂ =
∑

λ

q(λ)Ψ†
λΨλ, (38)

acting on a Bethe state as

Q̂|λ1 . . . λN 〉 =
N
∑

i=1

q(λi)|λ1 . . . λN 〉, (39)

that is,

Ψ†
λΨλ|λ1 . . . λN 〉 =

N
∑

i=1

δλ,λi
|λ1 . . . λN 〉, (40)

where in order to avoid unusual normalization factors
appearing throughout we choose to remain at finite but
large volume L. The momentum space operators are de-
fined by

Ψλ =
1√
L

ˆ L

0

dxeiλxΨ(x), Ψ(x) =
1√
L

∑

λ

e−iλxΨλ.

(41)
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Using Eqn. 37 we have

Q̂ =

ˆ L

0

dx

ˆ L

0

dyq̃(x− y)Φ†(x)

× exp

{

−iπ

ˆ x

y

Φ†(z)Φ(z)dz

}

Φ(y), (42)

where q̃(x) goes to the Fourier transform of q(λ) when
L → ∞,

q̃(x) =

ˆ

dλ

2π
e−iλxq(λ). (43)

We can see that the decay in the magnitude of q̃(x) away
from 0 determines the operatorial spread of the charge
density (the integrand above). As we have discussed
above, if q̃(x) is exponentially decaying as x → ∞, we

call Q̂ a quasi-local operator.
For the system of charges defined by qm(λ) =

cos(2m arctan(λ)) this exponential decay is present. It
can be inferred from the pole structure of the functions
cos(2m arctanλ): they have two m-th order poles at
λ = ±i. Actually, because of this simplicity, the Fourier
transform can be performed analytically, the first few be-
ing

q̃0(x) = δ(x); (44)

q̃1(x) = e−|x| − δ(x); (45)

q̃2(x) = (2|x| − 2)e−|x| + δ(x); (46)

q̃3(x) = (2x2 − 6|x|+ 3)e−|x| − δ(x); (47)

q̃4(x) = (4/3|x|3 − 8x2 + 12|x| − 4)e−|x| + δ(x). (48)

For a point of comparison, we consider the ultra-local
charges, qn(λ) = λn, and write down their expressions in
terms of bosonic fields. We have

Q̂n = in
ˆ

dxdyδ(n)(x − y)Ψ†(x)Ψ(y) (49)

= (−i)n
ˆ

dxΨ†(x)∂n
xΨ(x) (50)

= in
ˆ

dxdyδ(n)(x − y)Φ†(x)

× exp

{

−iπ

ˆ x

y

Φ†(z)Φ(z)dz

}

Φ(y) (51)

= (−i)n
ˆ

dxΦ†(x)∂n
xΦ(x). (52)

All the other terms coming from derivatives of the ex-
ponential factor disappear because of the hardcore con-
straint at c = ∞, i.e. Φ2(x) = 0. The remaining term
trivially agrees with the results of Refs. [77, 78].

B. Operator form of the quasi-local charges at 1/c

Having considered the operatorial form of the general-
ized charges and their quasi-locality at c = ∞, we now

turn to the case of large but finite c. To construct such
a charge we begin by fixing a q(λ) that defines a charge

Q̂ via

Q̂|λ1 . . . λN 〉 =
∑

i

q(λi)|λ1 . . . λN 〉. (53)

We then suppose that a 1/c expansion exists for this Q̂
charge,

Q̂ = Q̂0 +
1

c
Q̂1 +O(1/c2), (54)

where Q̂0 is an operator that takes the form

Q̂0 =
∑

λ

q0(λ)Ψ
†
λΨλ, (55)

i.e. for c = ∞, Q̂0 = Q̂ is conserved and has action

Q̂0|λ1 . . . λN 〉 =
∑

i

q0(λi)|λ1 . . . λN 〉c=∞, (56)

with |λ1 . . . λN 〉c=∞ a c = ∞ Bethe state. Our goal then
in this section is determine q0(λ) in terms of q(λ) and to

write Q̂1 in terms of fermionic operators.
The basic strategy to do this is to insist that [H, Q̂] = 0

is satisfied. To this end we employ the fermionic repre-
sentation of the Lieb-Liniger Hamiltonian. This has the
form

HLieb-Liniger = H0[Ψ] +
2

c
H1[Ψ], (57)

with H0 and H1 [79–81],

H0 = −
ˆ L

0

dxΨ†(x)∂2
xΨ(x), (58)

H1 = −
ˆ L

0

dx

ˆ L

0

dyδ(2)(x − y)Ψ†(x)Ψ†(y)Ψ(y)Ψ(x).

(59)

(for H1 this expression only holds to order 1/c [82, 83]).
In terms of the momentum space operators, the Hamil-
tonian reads

H0 =
∑

λ

λ2Ψ†
λΨλ, (60)

H1 =
1

2L

∑

λ1,λ2,λ3

(λ1 − λ2)(λ1 + λ2 − 2λ3) (61)

×Ψ†
λ1
Ψ†

λ2
Ψλ3

Ψλ1+λ2−λ3
. (62)

The equality [H, Q̂] = 0 then requires

[H0, Q̂1] = [Q̂0, H1]. (63)

We immediately see here that Q1 is indeterminate up to
an additive c = ∞ charge term, i.e. we can equally well
redefine Q̂1 → Q̂1+δQ̂1 provided [δQ̂1, H0] = 0. For now
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we will work with a minimal choice Q̂1min, where no such
charge is added and later we will discuss what happens
if such a term is added to Q̂1min. This minimal solution
must be in the form of a four-fermion operator like H1,

Q̂1min =
1

2L

∑

λ1,λ2,λ3

Cλ1λ2λ3
Ψ†

λ1
Ψ†

λ2
Ψλ3

Ψλ1+λ2−λ3
,

(64)

where we used that the total momentum,
∑

λ λΨ
†
λΨλ, is

conserved at c < ∞ as well (up to 1/c2 corrections). By
straightforward calculation we find

Cλ1λ2λ3
=

(λ1 − λ2)(λ1 + λ2 − 2λ3)

λ2
1 + λ2

2 − λ2
3 − (λ1 + λ2 − λ3)2

× [q0(λ1) + q0(λ2)− q0(λ3)− q0(λ1 + λ2 − λ3)] , (65)

for distinct λ1, λ2, λ3. For when some or all rapidities
coincide, Cλ1,λ2,λ3

is indeterminate since in the commu-

tator (63) the corresponding terms in Q1 are conserved
individually in the c = ∞ theory,

[

∑

kl

CκλλΨ
†
κΨ

†
λΨλΨκ, H0

]

= 0. (66)

We are now in a position to connect q0(λ) to q(λ). This

connection will depend on the particular choice of Q̂1, but
we will see that the final operatorial form is independent
of this choice. Let us look at the expectation value of the
charge using its 1/c expansion relative to some eigenstate
|ρp〉 (whose associated distribution of rapidities is ρp(λ)).
We write this eigenstate in terms of a 1/c expansion:

|ρp〉 = |ρ0p〉+
1

c
|1〉+ · · · . (67)

To first order in 1/c we then have for the expectation

value of Q̂

〈ρp|Q̂|ρp〉 =
〈ρ0p|Q̂0|ρ0p〉+ 1

c (〈1|Q̂0|ρ0p〉+ 〈ρ0p|Q̂0|1〉+ 〈ρ0p|Q̂1|ρ0p〉)
〈ρ0p|ρ0p〉+ 1

c (〈ρ0p|1〉+ 〈1|ρ0p〉)
. (68)

The state |ρp〉 can be characterized by assigning to it a
set quantum numbers {Ij}. For ease we will assume that
the total momentum of |ρp〉 is zero, i.e.

∑

j Ij = 0. These
quantum numbers then determine the state’s rapidities
{λj} via

λj =
2πIj
L

− 2

L

∑

k

arctan

(

λj − λk

c

)

. (69)

The state ρ0p’s rapidities are then found by taking the
c → ∞ limit of this:

λj =
2πIj
L

. (70)

Taking the continuum limit of these equations then leads
to a relationship between ρ0p and ρp:

ρ0p(λ) = (1− 2n/c)ρp((1− 2n/c)λ). (71)

The first order correction to |ρp〉 can be expressed as
a sum of two-particle-hole excitations,

|1〉 =
∑

p1p2h1h2,{(p1,p2) 6=(h1,h2)

Dp1,p2,h1,h2
δp1+p2,h1+h2

Ψ†
p1
Ψ†

p2
Ψh1

Ψh2
|ρ0p〉. (72)

Because Q̂0 is diagonal, the off-diagonal matrix elements
〈ρ0p|Q̂0|1〉 in Eqn. 68 vanish. At this point we are then

left with (assuming |ρ0p〉 has unit normalization):

〈Q̂〉 = 〈ρ0p|Q̂0|ρ0p〉+
1

c
〈ρ0p|Q̂1|ρ0p〉. (73)

The minimal Q̂1 gives the following for the 1/c matrix
element,
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〈ρ0p|Q̂1min|ρ0p〉 =
1

2L

∑

λ1,λ2,λ3

Cλ1λ2λ3
〈ρ0p|Ψ†

λ1
Ψ†

λ2
Ψλ3

Ψλ1+λ2−λ3
|ρ0p〉 (74)

=
1

2L

∑

λ1,λ2,λ3

Cλ1λ2λ3
〈ρ0p|Ψ†

λ1
Ψ†

λ2
Ψλ3

Ψλ1+λ2−λ3
|ρ0p〉(δλ2λ3

− δλ1λ3
) (75)

=
1

L

∑

λi,λj

Cλiλjλj
= L

ˆ

dκdλCκλλρ0p(κ)ρ0p(λ), (76)

where we have used the antisymmetry of Cλ1λ2λ3
in its

first two arguments. Now the coefficients Cκλλ appearing
in the above where the last two rapidities coincide are
not fixed in Eqn. 65. If we however require that the
charges act on the Bethe states as in Eqn. 53, we can fix
this ambiguity. Expressing Eqn. 73 in terms of the root
densities, ρp(λ) and ρ0p(λ), gives

ˆ

dλq(λ)ρp(λ) =

ˆ

dλq0(λ)ρ0p(λ)

+
1

c

ˆ

dκdλCκλλρ0p(κ)ρ0p(λ) (77)

=

ˆ

dλq0((1 + 2n/c)λ)ρp(λ)

+
1

c

ˆ

dκdλCκλλρp(κ)ρp(λ) +O(1/c2),

(78)

leading to

q(λ) = q0((1 + 2n/c)λ) +
1

c

ˆ

dκCκλλρp(κ). (79)

We however do not want the form of q(λ) to depend

on the state to which Q̂ is applied. This is not allowed
by the desired action on Bethe states (53), therefore the
previously arbitrary Cκλλ has to be chosen to be zero.

The above argument does not forbid adding a c = ∞
charge to Q̂1min of the two-fermion form,

Q̂1 = Q̂1min +
∑

λ

w(λ)Ψ†
λΨλ. (80)

This modifies the equation for q0(λ),

q(λ) = q0((1 + 2n/c)λ) +
1

c
w(λ), (81)

which upon inversion gives

q0(λ) = q((1 − 2n/c)λ)− 1

c
w(λ). (82)

But this means that the w-charge added to Q̂1min will
cancel out from Q̂ because the same term with the op-
posite sign has to be added to Q̂0 as well. Therefore, we
arrive at the unique expression for the charge Q̂:

Q̂ =
∑

λ

q(λ(1 − 2n

c
))Ψ†

λΨλ +
1

2Lc

∑

λ1,λ2,λ3

Cλ1λ2λ3
Ψ†

λ1
Ψ†

λ2
Ψλ3

Ψλ1+λ2−λ3
+O(1/c2), (83)

with

Cλ1λ2λ3
=

(λ1 − λ2)(λ1 + λ2 − 2λ3) [q(λ1) + q(λ2)− q(λ3)− q(λ1 + λ2 − λ3)]

λ2
1 + λ2

2 − λ2
3 − (λ1 + λ2 − λ3)2

, Cλ1λ2λ2
= 0. (84)

1. Locality of 1/c terms

We now turn to the locality of the charge we have constructed in a 1/c expansion. Rewriting the expression for the
1/c corrections of the charge in terms of real space operators (41) we arrive at (in the L → ∞ limit – see Appendix
A):

Q̂ =

ˆ L

0

dx

ˆ L

0

dy

(

(1 +
2n

c
)q̃((1 +

2n

c
)(x− y))

)

Ψ†(x)Ψ(y)

+
1

2c

ˆ L

0

dx1

ˆ L

0

dx2

ˆ L

0

dx3

ˆ L

0

dx4F (x1, x2, x3, x4)Ψ
†(x1)Ψ

†(x2)Ψ(x3)Ψ(x4); (85)

F (x1, x2, x3, x4) =

ˆ

dλ1

2π

ˆ

dλ2

2π

ˆ

dλ3

2π
Cλ1λ2λ3

eiλ1x41eiλ2x42eiλ3x34
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=
1

4
q̃(x3 + x4 − x1 − x2)

[

(sgnx23 − sgnx41)(δ
′(x42)− δ′(x13)) + (sgnx42 − sgnx13)(δ

′(x41)− δ′(x23))

]

, (86)

with xij = xi−xj . Using this expression it is easy to check that the integrand of F (x1, x2, x3, x4) becomes exponentially
small when any of the xi’s diverges from any of the other xi’s. And while we have expressed the charges at 1/c in
terms of the fermions, they are similarly quasi-local in the bosonic description as the string operators are confined to
run between the xi.

V. INTERACTION QUENCH IN THE

LIEB-LINIGER MODEL

Now we will apply the ideas developed in the previous
section to the interaction quench in the LL model (8).
This protocol refers to taking the ground state of (8) at
interaction strength c0 = 0 and studying the dynamics
under (8) at some finite repulsive interaction strength c.

For this quench an exact formula is available describing
ǫ0(λ) [49], the key quantity for our purposes as discussed
in Section III:

ǫ0(λ) = 2 log(c/n) + log

[

(

λ

c

)2
(

(

λ

c

)2

+
1

4

)]

. (87)

This coefficient function diverges only logarithmically in
λ, which in turn corresponds to the density of particles
ρp(λ) having a polynomial tail in λ, i.e. ρp(λ) ∼ λ−4,
λ → ∞ [49], making the ultra-local charges ill-defined on
this state for n > 3, i.e. En>3 = ∞ [41].

Unlike the ultra-local charges, the three sets of charges
defined in Section 3 (Eqns. 27, 29, and 32) have finite
expectations on the initial state of the interaction quench
and correspondingly provide a good basis for expanding
ǫ0(λ). In Fig. 1 we show expansions of ǫ0(λ) truncated to

a finite number of charges, ǫ0(λ) =
∑N

i=0 βiqi(λ), using
these three families of charges (27), (29) and (32). We
also show the corresponding generalized temperatures
(the coefficients of expansion) in the insets of this figure.
For the transformed cosine and Chebyshev charges, the
expansion converges rapidly. Including only 5 charges in
the expansion already provides a decent approximation
to ǫ0(λ). We also see for these two cases the generalized
inverse temperatures decay rapidly in size with increasing
charge index. In contrast the expansion of ǫ0(λ) with the
Hermite charges is not uniform for all λ. We also see that
the Hermite generalized temperatures are not obviously
tending towards zero. This is an indication that ǫ0(λ)
is not square integrable with the weight ω(λ) = 1. Ul-
timately however, the true measure of a truncated GGE
based upon a particular set of charges is the quality of
reproduction of physical quantities, i.e. some parts of ǫ0
will be more important for the physics than others. This
will be discussed in the next section.

1. Alternate Determination of Generalized Temperatures

In Sec. 3 we described a straightforward method of
finding the generalized temperatures in the GGE once
a system of charges is defined: we expanded the source
term, ǫ0(λ), of the generalized free energy on the func-
tions describing the charges in some well defined space of
square integrable functions. This process requires knowl-
edge of ǫ0(λ), which may not always be available. In
this subsection we will therefore consider an alternative
method of finding the generalized temperatures: com-
paring the expectation values of the charges in the initial
state and in a truncated GGE.
In this alternate procedure to determine the general-

ized temperatures, we suppose that we are given as in-
put the expectation values post-quench of the conserved
charges. To then find the generalized temperatures βi

in ǫ0(λ) =
∑

i βiqi(λ), we will solve the following set of
nonlinear equations:

〈Q̂i〉 =
ˆ

dλ

2π
qi(λ)

1

1 + e
∑

N
n=0

βnqn(λ)
, i = 0, . . . , N.

(88)
Note that solving such a system of nonlinear equations,
especially for a large number of generalized temperatures,
can be challenging. In fact, we found that the solution is
in general not unique and to get the right one we had to
use some information available through expanding ǫ0(λ)
on qi(λ) to set the initial values of the iterative solution
scheme. An alternative, more stable method based on
exploiting fluctuation-dissipation relations to obtain the
generalized temperatures was proposed in Ref. [84, 85].
Assuming for now that we can find the right solution
for (88), then to get ρp(λ) we solve Eqs. (18) and (13)
consecutively.
In Fig. 2 we compare reconstructions of the mode

occupation density 2πρp(λ) in the BEC-to-TG protocol
obtained from the two different methods to determine
the generalized temperatures for the transformed cosine
charges. These two methods are i) truncated expan-
sions of ǫ0(λ) (denoted by ’GGE&EX’) and ii) fitting
the parameters of the GGE to the expectation values
of charges via Eqn. 88 (termed GGE&EV). We see that
when we perform the reconstruction with a small number
(5) of charges, the two reconstructions agree (roughly)
equally well with the exact form of ρp(λ). However when
we expand the number of charges to 20, we see that
the GGE&EV method for determining the temperatures
leads to almost perfect agreement between ρp(λ) and its
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FIG. 1. Approximations of ǫ0(λ) (red line) using the trans-
formed cosine (27) (top panel), Chebyshev (29) (middle panel)
and Hermite (32) (bottom panel) charges where we have trun-
cated the GGEs to 5 and 20 charges and assuming a finite c.
For the Chebyshev polynomials the vanishing odd charges are
not counted. In the insets of the three panels, the attendant
generalized temperatures are plotted.

reconstruction. However for the GGE&EX method, 20
charges still leads to noticeable deviations.

An important question here is how the temperatures
as determined in the GGE&EV method converge to their
GGE&EX counterparts as the number of charges in the
(truncated) GGE is increased (or whether they converge
at all). In Fig. 3 we show the dependence of the first four
generalized temperatures on the truncation N obtained
in the GGE&EV scheme relative to their GGE&EX val-
ues: β0 = β2 = 0, β1 = 4, β3 = 4/3. The two schemes

FIG. 2. Here are given reconstructions of the mode occupa-
tion number density in the c = ∞ limit using two different
means to determine the generalized temperatures. In the first,
labeled GGE&EV, we find the temperatures by performing a
fit using Eqn. 88 to the known expectation values of the
charges. In the second, labeled GGE&EX, we read off the
temperatures by expanding ǫ0(λ) in the basis of charges. Here
we compare both methods for two different truncated GGEs:
one where we keep the first 5 charges and one where we keep
20. We work with a density of the gas of n = 1/2 and so the
exact rapidity density is given by ρp(λ) = 1

2π

1

1+λ2 and only

Q̂0 has a non-vanishing expectation value.

to determine the generalized temperatures give different
reconstructions using the same number of charges, how-
ever in the N → ∞ limit the GGE&EV should converge
to the GGE&EX values. We however see from Fig. 3
that after a certain N the approach of the two values
cease. This happens because when we are solving the
nonlinear equations, we have truncated the integral to a
finite domain −50 < λ < 50 and −100 < λ < 100, re-
spectively. We verified that increasing this cutoff starts
to slowly decrease the N → ∞ differences between the
two methods.

2. Density-density correlation function from the truncated

GGE

As we have indicated, an important measure of how
efficient a truncated GGE is its efficacy in describing
physical quantities in the post-quench system. To this
end we consider the density-density correlation function,
both its time independent and time dependent variants.
We begin by looking at the time independent case in

the TG limit:

G(x) = 〈ρp|Φ†(x)Φ(x)Φ†(0)Φ(0)|ρp〉

= n2 −
(
ˆ

dλeixλρp(λ)

)2

, (89)

and compare its reconstructions using different trunca-
tions of the charges (27). The above formula can easily



11

FIG. 3. Differences between the GGE&EV values of the
first four generalized temperatures for the transformed co-
sine charges and their GGE&EX values as a function of the
truncation N . The cutoff in the integral (88) was set Λ = 50
(upper panel) and Λ = 100 (lower panel).

be proved using (40) [49, 86]. (The density-density cor-
relation function can also be obtained in the low energy
limit, see [87]). In Fig. 4 we show results for the re-
construction of G(x) using 5 and 20 charges whose tem-
peratures are determined in the GGE&EX scheme. In
addition to the well-behaving transformed cosine charges
(27), we also display results using the Hermite function
charges (32) in Fig. 5. Reconstructions in the latter case
are far inferior to the former one, as expected.
We now turn to the time dependent density-density

correlation function or dynamic structure factor (DSF),

S(q, ω) =

ˆ

dxdteiqx−iωt〈ρp|ρ̂(x, t)ρ̂(0, 0)|ρp〉, (90)

as obtained from different reconstructions of the repre-
sentative state. A formula is available for the DSF in the
c ≫ 1 limit (taking here n = 1) [88],

S(q, ω) =

(

1 + 6/c

2q
+

1

πc

 

dλ
n(λ+ p)− n(λ+ h)

λ

)

× n(h)(1− n(p)), (91)

where n(λ) is the filling function, n(λ) = ρp(λ)/(ρp(λ) +
ρh(λ)) and the rapidities λ = p and λ = h describe the

FIG. 4. Density-density correlation function in the TG limit
at n = 1/2 from the truncated GGE using 5 and 20 trans-
formed cosine charges.

FIG. 5. Density-density correlation function in the TG limit
at n = 1/2 from the truncated GGE using 5 and 20 trans-
formed Hermite function charges. (The odd charges with van-
ishing temperatures are not counted.)

corresponding particle-hole excitation, q = (1 + 2/c)(p−
h) and ω = p2 − h2 to first order in 1/c or

p =
q

2(1 + 2/c)
+

ω(1 + 2/c)

2q
; (92)

h =− q

2(1 + 2/c)
+

ω(1 + 2/c)

2q
. (93)

To exploit the DSF formula at c large, we need to de-
termine the filling function n(λ) that corresponds to a
truncated GGE. This can be done numerically by ex-
panding ǫ0(λ) in terms of the charges and then solving
(18) for ǫ = log(ρh/ρp) – here ǫ0(λ) serves as a source
term. Solving this equation is done easily by iteration in
Fourier space. The principal value integral in the above
expression for S(q, ω) can easily been evaluated after sub-
tracting the pole contribution at λ = 0, which in any case
we found to be heavily suppressed for small q. Results of
these calculations are shown in Fig. 6.
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FIG. 6. DSF to first order in 1/c at q = π/10 (top panel) and
q = π (bottom panel) for the representative state after the in-
teraction quench c = 0 to c = 16 (red lines) and their approx-
imations using 5 (dotted lines) and 20 charges (black lines) of
the transformed cosine charges, qm(λ) = cos(2m arctan(λ)).

VI. TRAP RELEASE

While the ultra-local charges are ill-defined for the in-
teraction quench, there are, of course quench protocols
where they can be sensibly used. It is interesting in such
cases to compare the ultra-local charges with the quasi-
local ones to see which perform better. (This is a question
that animated Ref. [61].) We will consider this question
in the context of the release of the Lieb-Liniger gas from
a harmonic trap. The initial state is the ground state of
the Hamiltonian

H = −
N
∑

j=1

∂2

∂x2
j

+
1

4

N
∑

j=1

ω2x2
j + 2c

∑

i6=j

δ(xi − xj) (94)

and the dynamics is governed by the Lieb-Liniger Hamil-
tonian (8), i.e. the above with ω = 0. For this quench we
will compare the performance of truncated GGEs based

on the ultra-local and quasi-local charges.
In [89, 90] the equilibration of the Tonk-Girardeau gas

released from a trap was studied. There the gas was
studied in the thermodynamic limit, i.e. N,L → ∞, with
particle density n = N/L fixed, but with the condition
that ν = ωN was kept constant. They found that ρp(λ)
for this quench is given by

ρp(λ) =
2n

πν

√

1− (λ/ν)2 (95)

The true tail of ρp(λ) is a Gaussian instead of the sharp
cutoff at λ = ν for finite but small n. It is clear that this
expression only makes sense for ν > 23/2n (otherwise
the filling 2πρp(λ) would be greater than 1 near λ = 0).
This condition amounts to insisting the size of the gas
in its trapped initial state is smaller than the size of the
system so that there is an actual expansion of the gas
once released.
In order to test which set of charges form a better

truncated GGE using the same number of charges, we
used the GGE&EX method and solved Eqs. (88) for
the transformed cosine, the Hermite, and the ultra-local
charges at different truncations. The recovery of the root
density is shown in Fig. 7. In this case it is the truncated
sets of ultra-local charges that best reproduce the exact
ρp.

VII. DISCUSSION

We have presented herein a discussion of how one can
construct arbitrary bases of conserved charges in inte-
grable models. These bases can be tailored so as to allow
them to describe in an efficient manner particular quan-
tum quenches (in the sense that one can write down a
GGE density matrix for the post-quench state of the sys-
tem). One example that we have focused on in this paper
is the interaction quench in the Lieb-Liniger model. As
we have already discussed, in this quench the standard
ultra-local charges fail to describe the quench [41, 49].
In this quench, excitations are created at arbitrarily high
momenta and so only the first three of the ultra-local
charges have a finite value after the quench. We how-
ever have shown how to construct quasi-local charges that
have finite expectation values for this particular quench.
In constructing these quasi-local charges, we do

not work directly with operatorial expressions for the
charges. Rather we work with the quantity ǫ0(λ), the
source term of the pseudo-energy equation in Eqn. 18
(and for the interaction quench given explicitly in Eqn.
25). For our purposes this quantity is primary as it de-
scribes the action of the GGE density matrix on a Bethe
state |{λi}〉 (where the λi’s are solutions to the Bethe
equations) via

ρ̂GGE|{λi}〉 = e−
∑

i
ǫ0(λi)|{λi}〉. (96)

Thus by expanding the function ǫ0(λ) in terms of a com-
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FIG. 7. Reconstructions of ρp(λ) for the trap release quench using the ultra-local (left panel), quasi-local Hermite (middle
panel) and cosine (right panel) charges using the GGE&EX method at truncations N = 3 and 7. The parameters of this quench
were taken as n = 0.2 and ν = 1.

plete set of functions {qi(λ)}, i.e.

ǫ0(λ) =
∑

i

βiqi(λ), (97)

one can arrive at different sets of charges where the βi’s
are the different inverse temperatures and the qi(λ) de-

scribe the action of the charges Q̂i on the Bethe states:

Q̂j |{λi}〉 = (
∑

i

qj(λi))|{λi}〉. (98)

And as we showed in Sections IV, the quasi-locality of
the charges is directly correlated with the support of the
Fourier transform of qi(λ).
The locality property of the sum of all the operators

defined in this way, i.e. that of the log of the GGE oper-
ator, is controlled however by the locality of ǫ0’s Fourier
transform. Equivalently we could inquire about the lo-
cality of the charge defined by ǫ0 itself. In case of the in-
teraction quench, the Fourier transform of such a charge
has a 1/|x| tail, signaling non locality. So while the indi-
vidual charges that we utilize are always quasi-local, we
are actually trying to approximate a non-local operator
here. This has been discussed in the context of the dif-
ferent quench, for the XXZ spin-chain model already, in
[71, 72]. We note that the non-locality of ǫ0 might have
implications for the thermalization of local observables,
as we expect that local observables might only thermalize
via local GGEs.
One practical advantage of our construction of quasi-

local charges over the original ultra-local charges is that
we can employ bases of charges, {Q̂i} whose action on
the Bethe states {qi(λ)} is bounded in value as the value
of λ → ∞. While of course this is necessary if one is
to construct a GGE for the interaction quench in Lieb-
Liniger, it makes one’s life numerically easier in study-
ing arbitrary quenches. As one example, in Ref. [91] a
quench of a 1D Bose gas prepared in a parabolic potential
and then released into a cosine potential was considered.
The aim here was to demonstrate that even though the
post-quench Hamiltonian broke integrability, a remnant
of the conserved charges survived (at finite particle num-
ber). Doing so however was made more difficult by the

use of the ultra-local charges. Because the construction
used ultra-local chargesQn whose action on a Bethe state
was

Qn|{λi}〉 =
∑

i

λn
i |{λi}〉, (99)

one had to deal with charges that took large numerical
values. This construction would have been easier if a
quasi-local set of operators whose action on the Bethe
states was finite had been available at the time.
This work extends the notion of quasi-local charges

discussed in Refs. [46, 61, 92] in the context of the free
fermionic field theoretic representation of the quantum
Ising model. The discussion here took a different tack
than taken there. In [46, 61, 92], the operatorial expres-
sions of the charges, I(α), were written down first and
the corresponding action of the charges then determined.
These charges were parameterized by a single positive
real variable α controlling their locality (the range of the
associated charge density operator equals α). Equiva-
lents to these charges do exist in our case for c = ∞, the
analog being

Q̂cosα|{λi}〉 =
∑

i

λ2
i cos(αλi);

Q̂sinα|{λi}〉 =
∑

i

sin(αλi). (100)

This is perhaps the most natural basis of expansion of
ǫ0(λ), that of a Fourier integral. And these charges have
finite expectation values for the interaction quench. Per-
haps their only drawback is that this basis is not discrete
(α is a continuous variable) and one thus needs a strat-
egy to choose a finite number of them in implementing a
truncated GGE (but see [61] for such a procedure).
Our approach to forming different GGEs includes the

particular GGE presented in Ref. [71]. In this work the
authors advocate forming a GGE density matrix which
takes the form (in the context of the Lieb-Liniger model),

ρ̂GGE|{λi}〉 =
1

Z exp

[
ˆ

dλǫ0(λ)ρ̂p(λ)

]

|{λi}〉, (101)
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exactly the starting point of this paper. Having written
ρ̂GGE in this form, the differences between Ref. [71] and
our work begin to appear however. The authors consider
their conserved charges in the theory as coming from the
operator ρ̂p(λ) which acts, in the thermodynamic limit,
on a Bethe state, |{λi}〉, via

ρ̂p(λ)|{λi}〉 = ρp(λ)|{λi}〉, (102)

i.e. this operator has as its eigenvalues the density of
excitations at λ. This differs from our approach in two
ways. We instead treat ǫ0 ≡ ǫ̂0 as an operator, or more
precisely a linear combination of quasi-local operators
whose coefficients of expansion are the generalized in-
verse temperatures. The underlying motivation is also
different. For Ref. [71], the introduction of ρ̂p(λ) as a
continuum set of conserved charges is done in the con-
text of a specific model, the XXZ Heisenberg spin chain.
There it is known that one needs, in general, to employ
not just the ultra-local charges, but an infinite set of
families of charges {Xs(λ)}, that can be found from a set
of generalized transfer matrices built using higher spins,
s, in the framework of the algebraic Bethe Ansatz. In
Ref. [71] it was shown that it was not possible generi-
cally to write down a GGE in terms of these charges and
so they proposed as an alternative the family of charges,
{ρ̂p(λ)}, which while non-local (at least for the case of
the Lieb-Liniger – for the XXZ Heisenberg spin chain see
the discussion in [71, 72]), do enable one to write down a
GGE for the XXZ Heisenberg model. (We do note par-
enthetically that if one is willing to represent the GGE
as the limit of a set of truncated GGEs, the technical
difficulty identified by Ref.[71] is avoided, a fact estab-
lished in Ref. [72].) Our motivation is however different.
We are interested in finding bases of quasi-local charges
that are optimized for different quenches. This is where
the practical aspects of our work differs from what was
done in Ref. [72], where ǫ0(λ) was expanded on specific
orthogonal linear combinations of a truncated set of spe-
cific charges, including the ultra-local ones.
Despite these differences, the finding of Ref. [71] is

interesting – namely that there exists complete bases of
conserved charges where it is not possible to write down
a density matrix involving those charges for an arbitrary
quantum quench. It is thus worthwhile asking whether
this is the case for Lieb-Liniger model. Here the answer
would seem to be no. The problem identified by Ref.
[71] could then most likely be associated with a more
complicated particle content as the Lieb-Liniger model
admits a single particle species. Where such difficulties
might show up is any model with string solutions to the
Bethe equations (e.g. [39, 55, 93]), including quenches
that involve multi-component Lieb-Liniger systems such
as [94–97].
As we have discussed the findings of Ref. [71], it is

worthwhile also to consider a related construction of a
set of conserved charges. In the c = ∞ limit, an oft
used set of charges are associated with the occupation
numbers [29]. The occupation number charges, n̂I , have

expectation values between 0 and 1 and mark when there
is a particle with momentum,

λ =
2πI

L
,

where the quantum number I is a half-integer/integer
(see Eqn. 11). Using ǫ0(λ) and Eqn. 14 we can generalize
this notion away from c = ∞. At c = ∞ there is a simple
relationship between the momenta, λI , and the quantum
numbers I. While at finite c, this relationship becomes
more complex, it is still possible to write it down as we
have done in Eqns. 14 and 15. If λ(I) is the momentum
determined by the quantum number I as determined by
Eqn. 14, the expectation value of the occupation number
operator is

〈n̂I〉 =
1

1 + eǫ(λ(I))
. (103)

We can easily write the GGE associated with these
charges by writing the action of the density matrix on
a Bethe state

ρ̂GGE|{λ(I)}〉 =
1

Z exp

[

∑

I

ǫ0(λ(I))

]

|{λ(I)}〉

=
1

Z exp

[
ˆ

dI
ǫ0(λ(I))

1 + eǫ(λ(I))

]

|{λ(I)}〉

=
1

Z exp

[
ˆ

dI〈n̂I〉ǫ0(λ(I))
]

|{λ(I)}〉.
(104)

And so we see that Lagrange multiplier associated with
the occupation number operator n̂I is ǫ(λ(I)).
While our view of the GGE differs from Ref. [71]

with its emphasis on ρp(λ) as the fundamental object,
it also differs from one where a microcanonical view-
point is adopted [85]. In the microcanonical viewpoint
one often invokes the generalized eigenstate thermaliza-
tion (gETH) hypothesis. This hypothesis argues that one
can employ a representative quantum state, |srep〉, in lieu
of performing a trace over a density matrix in computing
the expectation value of any reasonable observable O, i.e.

〈srep|O|srep〉 = Trρ̂GGEO. (105)

In this viewpoint what is important is simply finding a
representative state |srep〉. By the gETH, any state that
is characterized by an occupation number of excitations
given by

ρp(λ)

ρp(λ) + ρh(λ)
=

1

1 + eǫ(λ)
(106)

is equally good. And so we see that in this picture it
is ǫ(λ) (and not ǫ0(λ)) that becomes the primary quan-
tity of interest. Putting aside specific instances where
the gETH is known to fail [27, 98], our interest in find-
ing quasi-local bases of charges for quenches mandates
that we follow an approach to quantum quenches using
a canonical density matrix.
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Appendix A

In this appendix we show how to arrive at Eqn. 85
demonstrating that the charges we are constructing are
quasi-local at 1/c. The spatial dependence of the charges
is encoded in F (x1, x2, x3, x4), defined as:

F (x1, x2, x3, x4) =

ˆ

dλ1

2π

ˆ

dλ2

2π

ˆ

dλ3

2π
Cλ1λ2λ3

eiλ1x41eiλ2x42eiλ3x34 . (A1)

To evaluate this, we first rewrite Cλ1λ2λ3
as

Cλ1λ2λ3
=

1

2

[

λ2 − λ3

λ1 − λ3
− λ1 − λ3

λ2 − λ3

]

×(q(λ1) + q(λ2)− q(λ3)− q(λ1 + λ2 − λ3)). (A2)

Performing a change of variables, {λ1, λ2, λ3} →
{α, β, γ}, with α = λ1 − λ3, β = λ2 − λ3 and γ set
as the argument of q, we can easily evaluate this integral

term by term,

1

2

ˆ

dα

2π

ˆ

dβ

2π

ˆ

dγ

2π

(

β

α
− α

β

)

q(γ)

4
∑

i=1

Xi(α, β, γ).

(A3)
The exponents Xi in the new variables read

X1 = e−i(αx32+βx24+γ(x1+x2−x3−x4)); (A4)

X2 = e−i(αx14+βx31+γ(x1+x2−x3−x4)); (A5)

X3 = −e−i(αx14+βx24+γ(x1+x2−x3−x4)); (A6)

X4 = −e−i(αx32+βx31+γ(x1+x2−x3−x4)). (A7)

Using

ˆ

dα

2π

ˆ

dβ

2π

α

β
e−iαxe−iβy =

1

2
δ′(x)sgn(y), (A8)

we then obtain our final expression for F :

F (x1, x2, x3, x4) =
1

4
q̃(x1 + x2 − x3 − x4)

×
[

(δ′(x24)sgn(x32)− δ′(x32)sgn(x24))

+(δ′(x31)sgn(x14)− δ′(x14)sgn(x31))

−(δ′(x24)sgn(x14)− δ′(x14)sgn(x24))

−(δ′(x31)sgn(x32)− δ′(x32)sgn(x31))

]

. (A9)
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