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We present a theory for the dynamics of binary mixtures with particle size swaps. The general
structure of the theory shows that, in accordance with physical intuition, particle size swaps open up
an additional channel for the relaxation of density fluctuations. Thus, allowing particle size swaps
speeds up the dynamics. To make explicit predictions, we use a factorization approximation similar
to that employed in the mode-coupling theory of glassy dynamics. We calculate an approximate
dynamic glass transition phase diagram for an equimolar binary hard sphere mixture. We find
that in the presence of particle size swaps, with increasing ratio of the hard sphere diameters the
dynamic glass transition line moves towards higher volume fractions, up to the ratio of the diameters
approximately equal to 1.2, and then saturates. We comment on the implications of our findings
for the theoretical description of the glass transition.

Introduction. – Until recently, computer simulation
studies of supercooled fluids suffered from the inability
to equilibrate model glass-forming systems at temper-
atures close to those corresponding to the laboratory
glass transition temperature [1]. Advances in the so-
called swap dynamics computer simulation algorithms al-
lowed researchers to overcome this restriction for a class
of glass-forming systems [2, 3]. Swap dynamics algo-
rithms add Monte Carlo moves in which exchanges of
the diameters of two different particles are attempted
to standard local Monte Carlo or Molecular Dynamics
simulations. It has been found that the slow down of
the swap dynamics algorithms with increasing density
and/or decreasing temperature is much less drastic than
that of the standard local Monte Carlo or Molecular Dy-
namics algorithms. Since swap dynamics generates the
same equilibrium ensemble as either local Monte Carlo or
Molecular Dynamics, more gradual slowing down makes
possible equilibration of certain model systems at tem-
peratures equal to or below those corresponding to the
laboratory glass transition temperature, which enables
studies of equilibrium properties of deeply supercooled
fluids and glassy solids [4].

The advances in the swap dynamics algorithms lead
to interesting theoretical questions. First, why is swap
dynamics so much faster than “normal” dynamics? Sec-
ond, does the swap dynamics speed-up have implications
for the description of supercooled fluids dynamics and
the glass transition? In particular, how can the differ-
ence between the dynamics without and with swaps be
reconciled with the so-called Random First Order Tran-
sition (RFOT) framework, which connects slowing down
upon approaching the glass transition with changes of
static quantities, the configurational entropy and the
static point-to-set correlation length [1, 5, 6]. Here we
briefly comment on the former question; we will return
to the latter one at the end of this Letter.

While intuitively it seems plausible that exchanges of
particles’ radii result in significant changes of local neigh-
borhoods, which should speed up the relaxation of den-
sity fluctuations, a theoretical description of this speed-
up is lacking. In a recent preprint Brito et al. [7] as-

serted, on the basis of general arguments applicable only
to systems with continuous polydispersity, that allow-
ing particle size swaps results in the decrease of the on-
set temperature for glassy behavior. However, their ap-
proach does not lead to a specific quantitative prediction
for this change. Somewhat earlier, Ikeda et al. [8] used
the correspondence between the so-called (avoided) dy-
namic glass transition observed in simulations [9] and
predicted by approximate theories [10], and the dynamic
transition predicted by replica theory [12]. These two
transitions coincide in the only exactly solvable glassy
particle-based model, the infinitely dimensional model of
spherically symmetric particles [13, 14]. Ikeda et al. ar-
gued that the presence of the exchanges of particles’ di-
ameters implies a more general structure of the Ansatz
for the inter-replica correlation for a simple mean-field-
like glass-forming model, the binary Mari-Kurchan model
[15, 16]. They showed that the new Ansatz allows one
to distinguish between dynamic transitions without and
with exchanges of particles’ diameters.

In this Letter we present a dynamic theory for the
acceleration due to the particle size swaps. First, on the
basis of the general structure of the theory, we argue that
particle size swaps open an additional relaxation channel,
which speeds up the dynamics. Then, to make explicit
predictions, we use a factorization approximation to eval-
uate irreducible memory functions [10]. We calculate an
approximate dynamic glass transition phase diagram for
an equimolar binary hard sphere mixture. In the pres-
ence of particle size swaps, with increasing ratio of the
diameters the dynamic transition shifts towards higher
volume fractions. The shift saturates at about 4% at the
diameter ratio of approximately 1.2.

Model: binary mixture with particle size swaps. – We
consider a binary mixture, which is the simplest model
that allows one to investigate the influence of the particle
size swaps on the dynamics. In a recent study of swap
algorithms [3] it was found that particle size exchanges
in systems with a continuous polydispersity result in the
largest speed-up of the dynamics. Continuous polydis-
persity has some theoretical advantages [11], but there
are no approximate expressions for equilibrium pair cor-
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relation functions for systems with continuous polydis-
persities, which makes explicit calculations difficult.

We consider a binary mixture consisting of N particles
in volume V . Particles can be of type A or B, which
differ by size. Since any particle can change its type,
the state of particle i is determined by its position, ri,
and type indicated by a binary variable σi, with σi = 1
corresponding to A and σi = −1 corresponding to B.
The composition of the system is specified by the dif-
ference of the chemical potentials of particles of type A
and B, ∆µ. We note that the composition depends also
on the number density n = N/V and the temperature
T of the system. We will assume that these three pa-
rameters result in concentrations xA and xB , and that
these concentration are constant while the density or the
temperature of the system varies. In practical calcu-
lations we will restrict ourselves to equimolar mixtures
(for which some formulas simplify). We assume that the
“normal” dynamics of the system is Brownian, i.e., that
each particle moves under the combined influence of ther-
mal noise and interparticle forces. The forces are derived
from a spherically symmetric potential, which depends
on the particle type, Vσiσj

(rij), where rij = |ri − rj | is
the distance between particles i and j. In addition to the
Brownian motion in space, the particles can change their
type (size). We assume that each particle can change its
type independently of the type changes of other parti-
cles. This is analogous to the single-spin-flip dynamics
of spin systems. In contrast, in practical computational
applications one typically changes the types/sizes of two
particles in such a way that the number of particles of
each size is conserved, which is analogous to the so-called
Kawasaki dynamics of spin systems. The latter proce-
dure is convenient because it allows one to maintain easily
a specific composition of the system. We believe that re-
placing the latter procedure by single particle size swaps
is a relatively mild change and that both procedures lead
to qualitatively similar results.

The above described model corresponds to the follow-
ing equation of motion for the N -particle distribution,
PN (r1, σ1, ..., rN , σN ; t), abbreviated below as PN ,

∂tPN = ΩswPN ≡ (Ω + δΩsw)PN . (1)

Here the evolution operator Ωsw consists of two parts
describing two relaxation channels, the part describing
Brownian motion of particles,

Ω = D0

∑
i

∂ri · (∂ri − βFi) (2)

and the part describing particle size swaps,

δΩsw = −τ−1
sw

∑
i

(1− Si)wi. (3)

In Eq. (2) D0 is the diffusion coefficient of an iso-
lated particle, D0 = kBT/ξ0, with ξ0 being the fric-
tion coefficient of an isolated particle, β = 1/kBT , and
Fi is the total force on particle i, Fi =

∑
j 6=iFij =

−
∑
j 6=i ∂riVσiσj (rij). In Eq. (3) τ−1

sw is the rate of
attempted particle size swaps, Si is the swap opera-
tor, Siσi = −σi, and wi is the factor ensuring that
the detailed balance condition, (1− Si)wiP eqN = 0, is
satisfied, with P eqN being the equilibrium distribution,

P eqN ∝ exp
(
−β
∑
i 6=j Vσiσj

(rij) +
∑
i
β
2 ∆µσi

)
. The fac-

tor wi depends on the way particle size swaps are at-
tempted. In practical applications one typically uses
Metropolis criterion for accepting attempted swaps. It
should be emphasized that while the interactions influ-
encing particles’ motion in space are pairwise-additive,
the factor wi typically is not and it depends on the whole
neighborhood of particle i.

The basic object of our theory are the density correla-
tion functions,

Fαβ(q; t) =
〈
nα(q)eΩswtnβ(−q)

〉
, (4)

where nα, α = A,B, are the Fourier transforms of the
normalized microscopic densities of particles of type α,

nα(q) =
1√
N

∑
i

1 + σi (δαA − δαB)

2
e−iq·ri . (5)

In Eq. (4) and in the following equations the standard
conventions apply: 〈. . . 〉 denotes the semi-grand canoni-
cal ensemble average over P eqN , the equilibrium probabil-
ity distribution stands to the right of the quantity being
averaged, and all operators act on it as well as on every-
thing else.

We should emphasize that, in contrast to the approach
of Ikeda et al., in our theory the functions that charac-
terize the dynamics and whose non-zero long-time limits
signal the dynamic glass transition are the same for sys-
tems evolving without and with swap dynamics.
General theory. – We use the standard projector op-

erator procedure to derive the general structure of the
theory for the dynamics with particle size swaps. First,
we define a projection operator on the density subspace,
P

P = · · ·
∑
αβ

nα(−q)〉S−1
αβ (q) 〈nβ(q) . . . , (6)

and the orthogonal projection, Q,

Q = I − P ≡ I − · · ·
∑
αβ

nα(−q)〉S−1
αβ (q) 〈nβ(q) . . . . (7)

In Eqs. (6-7) Sαβ(q) denote the partial structure factors,
Sαβ(q) ≡ Fαβ(q; t = 0). Next, using projection operator
identities [10, 17, 18] we express the Laplace transforms of
the time-derivatives of the density correlation functions
in terms of the reducible memory functions,

zFαβ(q; z)− Sαβ(q) =

−
∑
γδ

(
Oαγ(q)−M red

αγ (q; z)
)
S−1
γδ (q)Fδβ(q; z). (8)
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In Eq. (8) O is the frequency matrix, Oαβ(q) =
−〈nα(q)Ωswnβ(−q)〉 and M red

αγ (q; z) is the matrix of re-
ducible memory functions. In the present case, with
two different relaxation channels, it is convenient to ex-
press both matrices in terms of 3-dimensional vectors vα,
α = A,B, and 3x3 matrices O and Mred,

Oαβ(q) = vT
αO(q)vβ , (9)

M red
αβ (q; z) = vT

αM
red(q; z)vβ . (10)

Here vT
A = (1, 0, 1), vT

B = (0, 1,−1), O11 = D0q
2xA,

O22 = D0q
2xB , O33 = (1/2Nτsw) 〈

∑
i wi〉, Oab = 0 for

a 6= b, and the matrix Mred reads

Mred
ab (q; z) =

〈
πa(q) (z −QΩswQ)

−1
πb(−q)

〉
, (11)

where

π1,2(q) =
D0√
N
Q
∑
i

iq · (iq− βFi)
1± σi

2
e−iq·ri ,(12)

π3(q) = − 1√
Nτsw

Q
∑
i

wiσie
−iq·ri . (13)

As argued by Cichocki and Hess [17] and later, more
generally, by Kawasaki [19], for systems with stochastic
dynamics, memory functions analogous to Mred can be
reduced further by introducing the so-called irreducible
evolution operator [20].

We define the irreducible evolution operator Ωirr
sw as

follows [18]

Ωirr
sw = QΩswQ (14)

−
∑
αβ

QΩnα(−q)〉 〈nα(q)Ωnβ(−q)〉−1 〈nβ(q)ΩQ

− QδΩswσ(−q)〉 〈σ(q)δΩswσ(−q)〉−1 〈σ(q)δΩswQ ,

where σ(q) is the microscopic composition field,

σ(q) = nA(q)− nB(q) =
1√
N

∑
i

σie
−iq·ri . (15)

We note that reducible parts of QΩswQ are removed sep-
arately for the two relaxation channels in our system.

Using definition (14) we can express Mred in terms of
matrix Mirr whose elements are functions evolving with
the irreducible evolution operator,

Mred(q; z) = Mirr(q; z)−Mirr(q; z)O−1(q)Mred(q; z),(16)

where

Mirr
ab(q; z) =

〈
πa(q)

(
z − Ωirr

sw

)−1
πb(−q)

〉
. (17)

The combination of Eqs. (8-10) and (16-17) defines the
general structure of our theory. To appreciate its mean-
ing it is instructive to consider an approximation that
neglects the time-delayed coupling between “normal” dy-
namics and particle size swaps. To this end we set

Mirr
ab(q; z) = 0 for a = 1, 2 and b = 3, and a = 3 and

b = 1, 2. One can show [18] that in this case the right-
hand-side of Eq. (8) becomes a sum of two independent
terms (implying two parallel relaxation channels), the
first one originating from “normal” dynamics and the
second one due to particle size swaps. If the relaxation
rate due to the first term becomes very small, the pres-
ence of the second channel can dramatically speed up the
dynamics. We should remember, however, that particle
size swaps alone cannot equilibrate the system.
Mode-coupling-like approximation. – To make explicit

predictions we need to calculate the elements of matrix
Mirr. To this end we follow the spirit of the mode-
coupling theory [10], which is one of the most-successful
but also most-criticized theories for glassy dynamics in
three dimensions. Specifically, we use the sequence of
three approximations [10, 21]: we project functions πa
onto the subspace spanned by the parts of density prod-
ucts orthogonal to the one-particle densities, factorize
four-point dynamic correlation functions while replac-
ing the irreducible evolution operator by the original un-
projected evolution operator, factorize four-point static
correlation functions, and use some additional approxi-
mations that amount to neglecting higher-order correla-
tion functions in the expressions for the so-called vertices
[18]. In this way we obtain the following approximate ex-
pressions for the matrix elements of Mirr:

Mirr
ab(q; t) ≈ 1

2

∑
α,...,θ

∑
k1,k2

〈πa(q)nα(−k1)nβ(−k2)〉

×S−1
αγ (k1)S−1

βδ (k2)Fγε(k1; t)Fδζ(k2; t)

×S−1
εη (k1)S−1

ζθ (k2) 〈nη(k1)nθ(k2)πb(−q)〉 . (18)

The vertices originating from Brownian dynamics part
of the evolution operator have the same form as in the
standard mode-coupling theory for binary mixtures [10,
18]. For an equimolar binary mixture the new vertex,
which originates from the particle size swaps, reads

〈nη(k1)nθ(k2)π3(−q)〉 = −δk1+k2,q
〈
∑
l wl〉

2N3/2τsw

∑
µ[∑

λ

(Sηλ(k1)δθµ + Sθλ(k2)δηµ)− 4Sηµ(k1)Sθµ(k2)

]
× (δµA − δµB) . (19)

For non-equimolar mixtures there are additional terms
in the new vertex, which will be reported elsewhere. We
note that to derive expression (19) we factored out the
average 〈

∑
i wi〉 [18]. This somewhat technical step re-

sults in the dynamic glass transition being independent
of the detailed form of wi.

The exact memory function representation of the den-
sity correlation function, Eq. (8) together with Eqs. (9-
10, 16), combined with the approximate form of Mirr,
Eqs. (18-19), constitute our mode-coupling-like theory
for the dynamics of a binary mixture with particle size
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FIG. 1: Volume fraction ϕ at the dynamic glass transition as
a function of the ratio of the hard sphere diameters dL/dS , for
an equimolar binary hard-sphere mixture. Red squares and
black diamonds denote the location of the transition with and
without particle size swaps.

swaps. To get the explicit predictions for the time-
dependence one has to solve these equations numerically.

Dynamic glass transition. – To find the location of the
dynamic glass transition we assume that as the density
increases and/or the temperature decreases density cor-
relation functions develop plateaus and at the transition
these plateaus do not decay. Thus, at the transition non-
zero long-time limits Fαβ(q;∞) appear discontinuously.
This assumption allows us to derive from our theory the
following self-consistent equation for Fαβ(q;∞),

Fαβ(q;∞)− Sαβ(q) = (20)

−
∑
γδ

vT
αO(q)

[
Mirr(q,∞)

]−1
O(q)vγS

−1
γδ (q)Fδβ(q;∞).

where Mirr(q,∞) is given by Eq. (18) with non-zero long-
time limits Fαβ(q;∞) substituted at the right-hand-side.

We solved self-consistent equations (20) for an equimo-
lar binary hard-sphere mixture using as the static input
approximate equilibrium correlation functions obtained
from the Percus-Yevick closure [22–24]. As shown in Fig.
1, we found that for a system with particle size swaps
the volume fraction at the dynamic glass transition in-
creases with increasing particle diameter ratio up to the
ratio of about 1.2, where the relative increase is about
4%, and then saturates. In agreement with Ref. [25], the
location the dynamic glass transition for an equimolar
mixture without swaps depends very weakly on the ratio
of particle diameters for the ratio smaller than 1.5. In
contrast, Ikeda et al. [8] found that the volume fraction
at the dynamic transition both without and with parti-
cle size swaps increases with the ratio of particle diame-
ters; the absolute separation of these transitions increases
monotonically but the relative separation saturates, al-
though at a diameter ratio larger than found here [26].
The relative difference at the diameter ratio of 1.2 is ap-
proximately the same according to both approaches. We

note that the MK model considered by Ikeda et al. lacks
non-trivial local structure but it is not clear whether this
is the origin of the difference between our results and
theirs. Finally, we show in the Supplemental Material
that neglecting the coupling between “normal” dynam-
ics and particle size swaps results in a phase diagram
qualitatively similar to that showed in Fig. 1.

Discussion. – Wyart and Cates [27, 28] have argued
that the success of swap dynamics algorithms in equi-
librating model systems at temperatures comparable to
the laboratory glass transition temperature implies that
the RFOT scenario needs to be re-evaluated. They con-
jectured that the dominant barriers for low temperature
relaxation are local and the growing static correlation
length is responsible for only a small fraction of slowing
down. In contrast, Ikeda et al. [8] argued that while
the RFOT framework is still valid, there is a need for
a more general way to calculate the configurational en-
tropy. Effectively, they advocated using a less restrictive
constrained equilibrium construction in the derivation of
the replica theory for systems with particle size swaps.
This is equivalent to their more general Ansatz for inter-
replica correlations.

In our approach, the basic functions that signal the
dynamic glass transition are the same for both “normal”
and swap dynamics. Thus, we cannot account for the
presence of particle size swaps by using a different Ansatz
for our non-ergodicity parameters, Fαβ(q;∞). On the
other hand, allowing for particle size swaps does change
the location of the dynamic transition and influences the
values of non-ergodicity parameters. We suggest that a
possible way out of this conundrum is to recognize the
fact that metastable states, whose appearance triggers
the dynamic glass transition and which are counted by
the configurational entropy, should be defined using a dy-
namical criterion. Some time ago [29] we showed that the
standard mode-coupling theory’s equation for the non-
ergodicity parameter can be re-derived from a replica
approach combined with a dynamic criterion (vanishing
of a current). It would be interesting to check whether
Eq. (20) of the present theory can be re-derived in a
similar way [30]. We note that it is possible that differ-
ent dynamics lead to equivalent definitions of metastable
states (e.g. within mode-coupling theory Newtonian and
Brownian dynamics result in the same dynamic glass
transition scenario [21]). However, a significant modi-
fication of the dynamics may result in different states
being metastable and different dynamic glass transition
and configurational entropy scenarios. We leave these
important issues for future work.
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