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We present a new boundary condition scheme for the lattice Boltzmann method that has significantly im-
proved stability for modeling turbulent flows while maintaining excellent parallel scalability. Simulations of a
3D lid-driven cavity flow are found to be stable up to the unprecedented Reynolds numberRe = 5×104 for this
setup. Excellent agreement with energy balance equations, computational and experimental results are shown.
We quantify rises in the production of turbulence and turbulent drag, and determine peak locations of turbulent
production.

I. INTRODUCTION

Fluid dynamic turbulence is a fundamental problem for
theoretical physics and applied engineering [1, 2]. Particu-
larly complex, yet paramount for a plethora of real life sit-
uations (both of natural and technological relevance), is the
case of wall bounded turbulence. Here, in general, one has
to cope with statistically non-homogeneous and anisotropic
flows, where highly non-trivial interactions between bulk and
boundary layer physics emerge. Fluids at high Reynolds num-
bers Re inside cavities are paradigmatic of wall bounded
flows, and have proven extremely challenging for numerical
simulations [3, 4]. In addition to being a prototypical case
study to test the effectiveness of numerical methods to handle
boundary conditions, cavity flows are of interest for a number
of applications in different natural and technological contexts:
from the mixing of composite materials [5, 6] to aneurysms in
blood flows [7]. In all such circumstances, a central question
is to understand the emergence of flow structures and their
topology when Re increases. Unlike other relevant paradig-
matic examples of bounded flows, such as the drag crisis of
a flow past an obstacle, channel flows, Rayleigh-Bénard con-
vection and Taylor-Couette flows, high Reynolds number lid-
driven cavity flows have been so far overlooked as a physics
problem. The aim of our paper is, therefore, twofold. On one
hand we will introduce a new way of implementing boundary
conditions in a regularized lattice Boltzmann method (LBM)
and on the other we will provide hints that, at increasing Re,
complex flow dynamics emerge in a lid-driven cavity. We
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study numerically the 3D lid driven cavity problem (see Fig.
1), exploring regimes up to the unprecedented Reynolds num-
ber of Re = 5× 104 for this type of flow.
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FIG. 1: The magnitude of the vorticity field for the lid-driven
cavity flow at Re = 4.5× 104 and simulation time of

tLB = 3.3× 106 time steps or, in non-dimensional units,
tND = tLBuL/L = 196. An illustration of the axes and the

imposed velocity is also shown. L = 1024. Note that the
walls have been excluded.

Experimental results are available up to Re ≡ uLL/ν =
104 - where uL, L and ν are characteristic velocity, length
and viscosity, respectively - and they have been used to val-
idate and compare to computational methods for the past 30
years [6, 8]. With the increasing ubiquity of simulation tech-
nologies, the field of turbulent flow hydrodynamics commonly
uses computational methods to push the frontier. Direct nu-
merical simulations (DNS) have been conducted with highly
accurate Chebyshev collocation methods [9] and have been
extended up to Reynolds number Re = 2.2 × 104 [10].
Sub-grid scale (SGS) large-eddy simulation (LES) methods
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have been used to simulate up to Re = 1.2 × 104 [11] and
Re = 2.2× 104 [12].

An alternative approach to computationally solve three-
dimensional lid-driven cavity flow is to use lattice Boltzmann
methods coupled with SGS turbulence models to simulate
flows up to Re = 1.2 × 104 [13, 14]. Lattice Boltzmann
methods for lid-driven cavity flow have previously used sim-
ple boundary conditions, such as bounce-back for the Dirich-
let condition at the stationary cavity walls and interpolation
schemes [14–16], as well as regularized schemes to improve
stability [17]. This improvement in stability for LBM is a key
issue, since the time complexity is on the order of L4.

The previous approaches have never been extended past
Re = 22000. Given these limitations, both on the computa-
tional and the experimental sides, we present a DNS scheme
using the regularized lattice Boltzmann method where we in-
troduce a novel on-site Dirichlet boundary condition, yielding
improved stability up to Re = 5 × 104. Due to these im-
provements, we pave the way to more stable high Reynolds
number simulations in arbitrary geometries. This LBM frame-
work presents two significant advantages over existing meth-
ods. First, the robust stability of the scheme allows simula-
tions to be conducted at lower grid resolutions, without resort-
ing to local mesh refinement or turbulence models. Second,
the inherent scalability of both LBM and the boundary condi-
tions leads to a computational model that scales efficiently on
high-performance computing resources [18].

II. METHODS

The LBM [19–21] is a discrete kinetic model governed by
the following evolution equation for the particle distribution
function f :

fi(r+ci, t+1) = f
(eq)
i (r, t)+

(
1− τ−1

)
f̂i

(neq)
(r, t), (1)

where r, ci and t are, respectively, the space, microscopic ve-
locity and time, all in dimensionless units [22, 23]. We use the
D3Q19 stencil with velocity links ci, i = 0, ..., 18. We em-
ploy the scheme which regularizes f according to the density,
momentum and second order moments [24, 25],

{ρ, ρuα, ρm(2)
αβ} =

∑

i

gi{1, ciα, ciαciβ − δαβ/a2s} (2)

where δαβ is the Kronecker delta, as =
√

3 is a scaling factor,
and gi = fi or f̂i; f̂ represents the regularized distribution.
The moments in eq. (2) are generated by the Hermite polyno-
mials of order n denoted by H

(n)
α1...αn [26]. The equilibrium

function f (eq) is taken as a second-order velocity expansion
in the Hermite polynomials:

f
(eq)
i (r, t) = ρwi(1 + a2suαciα +

1

2
a4suαuβH

(2)
αβ,i); (3)

wi are the quadrature weights which depend on the absolute
value of the direction ci (see Appendix A). The second-order

moments are projected into the velocity space via

f̂i
(neq)

(r, t) =
1

2
ρwia

4
s

(
m

(2)
αβ − uαuβ

)
H

(2)
αβ,i. (4)

The regularization procedure is completed by

f̂i(r, t) = f
(eq)
i (r, t) + f̂i

(neq)
(r, t). (5)

While the regularization scheme leads to improved gen-
eral stability of LBM [17, 25, 27], it does not directly ad-
dress boundary conditions. Many on-site boundary conditions
solve for the unknown distributions using methods such as: i)
bounce-back of the non-equilibrium distribution [28]; ii) iter-
ative scheme to solve for an unknown slip velocity [29]; iii)
diffusive boundary, which assumes that the outgoing stream of
particles lose its memory about the incoming stream of parti-
cles [30]; or iv) schemes that replaces only the subset of dis-
tributions which are unknown at the boundary [31, 32]. How-
ever, the restriction to replacing a subset of the distributions
leads to instability at even moderate Reynolds numbers [33].
Dorschner et al. [34] use a first-order finite difference scheme
to evaluate the second-order moments - related to the strain
rate tensor, while the velocities are taken from the previous
time step. Krithivasan et al. [35] use a combination of the
bounce-back rule and the non-local diffusive boundary condi-
tion. Regularized on-site boundary conditions, which replace
the entire distribution at the boundary, have been developed,
but encounter instability at large Re and require complex iter-
ative schemes to address edges and corners [33, 36]. Alterna-
tive approaches involve extrapolation schemes and finite dif-
ference methods to handle flows at large Re, but these meth-
ods compromise the inherent parallelism of LBM [37].

Instead, we present a new on-site, Dirichlet-type, regular-
ized boundary condition that uses the second-order moments
to solve a system of equations analytically. As the system
of equations depends only on lattice topology, this regular-
ized boundary condition applies equally to faces, edges, and
corners. In this way, it avoids the usage of iterative solvers
(e.g., [29, 36]) or the non-locality of extrapolation schemes,
but nonetheless demonstrates robust stability.

Two sets of directions must be defined at the boundary
nodes to utilize the current boundary conditions: the incoming
to the site particles Is = {i | r − ci is a fluid site}, and the
outgoing from the site particles Os = {j | cj = −ci, i ∈ Is}
(see Appendix A for details). At each boundary node – which
can be viewed as a fluid node with a distinctive rule of evolu-
tion – we compute the quantity

∑

i∈Is

fiHαβ,i
(2).

The reconstruction process of the distribution function f̂ at a
boundary node is performed summing the still unknown reg-
ularized particles to obtain the second-order moment as:

∑

i∈Is

fiHαβ,i
(2) +

∑

i/∈Is

f̂iHαβ,i
(2)

= ρm
(2)
αβ . (6)
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The second order moment ρm(2)
αβ can be decomposed as a sum

of regularized particle distributions

ρm
(2)
αβ =

∑

i∈Is

f̂iHαβ,i
(2)

+
∑

i/∈Is

f̂iHαβ,i
(2)
.

The decomposition above combined with eq. (6) leads to the
following set of D(D + 1)/2 equations (D is the Euclidean
dimension):

∑

i∈Is

fiHαβ,i
(2) =

∑

i∈Is

f̂iHαβ,i
(2)
. (7)

Since we are dealing with Dirichlet boundary conditions, the
velocity u is known a priori. As a closure relation, we im-
pose the mass conservation during the collision process at the
boundary node:

∑

i∈Is

fi(r, t) =
∑

i∈Os

fi(r + ci, t+ 1) =

=
(
1− τ−1

) ∑

i∈Os

f̂i(r, t) + τ−1
∑

i∈Os

f
(eq)
i (r, t),

(8)

where we have used an equivalent form of eq. (1):

fi(r + ci, t+ 1) =
(
1− τ−1

)
f̂i(r, t) + τ−1f

(eq)
i (r, t).

The relation expressed in eq. (8) means that the number of
incoming particles to the site, represented in the LHS, is ex-
actly equal to the number of outgoing particles from the site,
represented by the RHS. The solution of the system of eqs.
(7) and (8) for the unknowns ρ and m(2)

αβ makes possible the
projection of the particle distribution function through eq. (5),
since f̂ is a function of ρ, uα and m(2)

αβ , only, and the particle
distribution function is then explicitly written, using eq. (5),
as:

f̂i(r, t) = ρwi(1 + a2suαciα +
1

2
a4sm

(2)
αβH

(2)
αβ,i). (9)

It follows that the system of equations composed by eqs. (7-8)
has analytical solutions for all kinds of neighborhoods: faces,
edges and corners. General forms of eqs. (7) and (8), as well
as explicit relations for the solutions of the above equations
are given in Appendix A.

III. RESULTS

The flow occurs in a cubic cavity driven by a constant tan-
gential velocity equal to u = (uL, 0, 0) applied at the top of
the cubic cavity; on the other five faces of the cavity we set
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FIG. 2: Plot of the maximum stable Reynolds number for the
lid driven cavity flow versus the number of grid points used in
several lattice Boltzmann schemes: plain BGK (bottom line),
regularized LB (middle line) using Guo et al. boundary condi-
tions, and this work (top line). Data from regularized (middle
line) and plain BGK (bottom line) were extracted from [17].

the velocity to zero. We compare our method to the work of
Montessori et al. [17], who have implemented a regularized
LB using the boundary condition described in Guo et al. [38]
and also a plain BGK version of the LBM, without regular-
ization. It can be seen in Fig. 2 that our proposed method
greatly enhances stability, generally using only 60% of the
grid points for the other best case scenario – the regularized
LB with the boundary conditions of Guo et al. Importantly,
the only difference between our scheme and the one used in
[17] is the boundary condition. Due to the time complexity
of the 4th-order and by reducing the required grid size for a
stable simulation, we increase the space of feasible high reso-
lution simulations.

We present results for Re between 103 and 5 × 104, and
for resolutions of L = {256, 511, 1024}. We set uL = 0.1cs,
where cs = 1/

√
3 is the sound speed in the LB fluid, avoiding

compressibility effects by keeping the Mach number low. The
relaxation time is tuned to set the Reynolds number through
the viscosity ν = (τ − 1/2) /a2s. The pressure p is given by
p = c2sρ.

To validate our code, we compare our results to those of
Ref. [9] who present highly accurate numerical results for lid-
driven cavity simulations using spectral methods. The com-
parison is favorable, with no discernible differences between
the two Re = 103 results for both velocity and pressure. A
plot of the two sets of traces can be seen in in Fig. 3.

To further verify the model’s consistency, we performed
two direct comparisons with theoretical results, deriving ex-
act relations from the total kinetic energy and the turbulent
kinetic energy balance equations. These relations act as val-
idation since there are no experimental or computational re-
sults to compare with for Re = 1.5× 104 and above.
The total kinetic energy, the strain rate tensor, Sαβ =
1
2 (∂αuβ + ∂βuα), and the squared velocity u2x, are related in
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TABLE I: Relative error values for the validation ratios
rS = 4L〈S2〉V/∂zu2x(z)|z=L, (a), and rε ≡ 〈ε〉V/〈P〉V , (b).

Results are shown for several Reynolds numbers and
resolutions. The dash symbols represent numerical unstable

solutions.

(a) Relative error in rS , ||rS − 1||

Re L = 256 L = 511 L = 1024
3.2 ×103 6.9% 3.5% 1.6%
1.0 ×104 10.2% 4.8% 2.6%
1.5 ×104 13.8% 5.6% 2.9%
2.5 ×104 - 8.2% 3.4%
4.0 ×104 - - 4.8%
4.5 ×104 - - 5.0%
5.0 ×104 - - 5.6%

(b) Relative error in rε, ||rε − 1||

Re L = 256 L = 511 L = 1024
1.0 ×104 9.1% 8.4% 10.5%
1.5 ×104 8.5% 2.2% 6.1%
2.5 ×104 - 5.4% 3.3%
4.0 ×104 - - 1.7%
4.5 ×104 - - 2.2%
5.0 ×104 - - 1.3%

the following way:

〈S2〉V =
1

4L
∂zu2x(z)

∣∣∣∣
z=L

, (10)

where S2 ≡ SαβSαβ . The symbol 〈...〉V denotes an aver-
age over the whole volume, while (...)(z) stands for an aver-
age over the xy-plane; a time average over a statistically sta-
tionary state is also implied. Equation (10) expresses the bal-
ance between power input from the lid (RHS) and dissipation
(LHS). The strain rate tensor (LHS) is locally computed using
the expression given in Appendix B, while the RHS is evalu-
ated with finite differences. For the turbulent kinetic energy
equation, the production P and the dissipation ε of turbulent
kinetic energy obey the following relation [39]:

〈P〉V = 〈ε〉V . (11)
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FIG. 3: (a) Plot of normal velocity traces along the centerlines
of the x and z. (b) Plot of the normalized pressure traces along
the same dimensions. The normalized pressure is defined as:
p? = (p − pmin)/(pmax − pmin), where pmin and pmax are the
minimum and maximum pressure, respectively, along the cen-
terline. Both plots are for Re = 103(L = 1024). The data in
circles for each plot were extracted from [9].

Relations (10) and (11) examine the large and small scales,
respectively; details of their derivation are shown in Ap-
pendix B. Results for the relative errors of the validation ra-
tios rS ≡ 4L〈S2〉V/∂zu2x(z)|z=L and rε ≡ 〈ε〉V/〈P〉V are
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shown in Table I. The errors for the runs up to Re = 5× 104

are limited to ∼ 5% at the large scales and to ∼ 10% at the
small scales. As required by direct numerical numerical simu-
lations, the lattice Boltzmann grid spacing, ∆LB = 1, should
be sufficiently small to solve the Kolmogorov scale η

η =

(
ν3

〈ε〉V

)1/4

. (12)

Using eq. (11) and the non-dimensional production of turbu-
lent kinetic energy P? = P/(u3L/L), eq. (12) reads as:

η = L
(
〈P?〉VRe3

)−1/4
.

Taking the extreme case Re = 5 × 104 (L = 1024), the cal-
culated production is 〈P?〉V = 8.32 × 10−4 (see Table II),
and the correspondent Kolmogorov scale is η = 1.80, which
conforms with the requirement ∆LB ≤ η [34, 40].
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FIG. 4: Normalized averaged velocity profiles in the
x-direction, Ux/uL, along the z-axis at x = y = L/2 for
Reynolds numbers Re = 3.2× 103, 104, 2.5× 104, and

5×104 (L = 1024). Experimental values for Re = 3.2×103

and Re = 104 (symbols � and4) were extracted from [8].

In Fig. 4 we present the profiles of Ux(x = L/2, y =
L/2, z) along the vertical coordinate for different Reynolds
numbers. The mean velocity is given by 〈uα〉 ≡ Uα, where
〈...〉 indicates a temporal average over the stationary state.
For the sake of further validation, we compare our numeri-
cal data (solid lines) with experimental results from [8], for
Re = 3.2 × 103 and Re = 104, finding very good agree-
ment. We also show the profiles for Re = 2.5 × 104 and
Re = 5× 104. As seen in Fig. 4, when the Reynolds number
increases, there is a decrease in the peak of the minimum of
Ux near the bottom wall. This is an effect of the increased
production of turbulence: as Re increases, in fact, turbulent
fluctuations tend to disrupt the large scale circulation. Conse-
quently, the drag coefficient, defined as

CD =
2ν〈S2〉
(u3L/L)

(13)

decreases with Re more slowly than in the laminar case,
∼ Re−1 (in particular we observe that CD ∼ Re−2/3, see
inset of Fig. 5). For Re = 5 × 104, the minimum veloc-
ity Ux/uL is −0.181, and the velocity profile becomes al-
most flat. Hitherto, computational results have not vastly
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FIG. 5: Average production of the turbulent kinetic energy in
the x-direction (yz-plane), P?(x), for Reynolds numbers

104, 1.5× 104, 2.5× 104, and 4.5× 104. The resolution is
L = 1024. Since the values of the mean production for
0 ≤ x/L ≤ 0.8 are ≈ 10−4 for all Re, only values for
x/L ≥ 0.8 are shown. Inset: log-log plot of the turbulent

drag coefficient CD ≡ 2ν〈S2〉L/u3L versus Reynolds
number: dots are the numerical data, the dashed line

corresponds to the scaling CD ∼ Re−2/3.
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FIG. 6: Maximum production of the turbulent kinetic energy
at the yz−plane vs Re. Dashed lines indicate the power laws

P? (x?max) ∝ Re, for Re ≤ 2.5× 104, and
P? (x?max) ∝ Re3/2 , for 4× 104 ≤ Re ≤ 5× 104.

exceeded experimental results so there was no incentive to
perform quantitative experiments past Re = 104. Given the
new results at greater Reynolds number, such as in Fig. 4, we
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encourage others to further probe this new regime.
Fig. 5 shows the profiles of the turbulence production

P(x), averaged in yz planes. For all of the production curves
there is a peak followed by a fast decay from the down-
stream wall (plane x = L), towards the negative direction
of the x-axis, until x ≈ 0.8L, when the production becomes
approximately constant. The high peaks of production for
Re ≥ 4 × 104 in the vicinity of the downstream wall indi-
cate a larger conversion of mean (non-turbulent) kinetic en-
ergy to turbulent kinetic energy, resulting in turbulent drag.
In Table II we present the results for the average production
over the whole system, as well as the value of the production
peak and the x-coordinate where this peak happens. Both the
non-dimensional average volumetric production 〈P?〉V and
maximum average areal production P?(x) increase with the
Reynolds number. The location where the maximum areal
production occurs moves closer to the wall, from 4% to 1%
of L — indicating that the boundary layer thickness decreases
as Re increases from 104 to 4.5 × 104. In Fig. 6 we plot
the maximum production P? (x?max) vs Re: interestingly, we
observe a linear relationship P? (x?max) ∝ Re for Re up to
2.5×104, whereas P? (x?max) ∝ Re3/2 forRe ≥ 4×104. The
latter might be the indication that for some critical Reynolds
2.5 × 104 < Rec < 4 × 104 a transition to a new dynamical
regime occurs, characterized by the presence of further topo-
logical structures in the flow. This picture is corroborated by
Fig. 7, where we plot the probability density function (pdf)
of the Laplacian of the pressure field ∆p ≡ ∂2ααp. The lat-
ter fulfills, for an incompressible velocity field, the following
equality

∆p = Ω2 − S2, (14)

where S2 is the trace of square strain rate tensor (defined
as above), and Ω2 = ΩαβΩαβ is the trace of the square
of the antisymmetric part of the gradient tensor, Ωαβ =
1
2 (∂αuβ − ∂βuα). Minima of the pressure field, where ∆p >
0, correspond to regions of high rotation and low strain, like

−4 −2 0 2 4
10−5 (∆p)L2/u2

L

10−7

10−5

10−3

10−1

p
d
f

Re = 2.5 × 104

Re = 4.5 × 104

FIG. 7: Probability density function (pdf) of the Laplacian of
the pressure field ∆p, computed over the whole volume, for

Re = 2.5× 104 and Re = 4.5× 104 (L = 1024).

TABLE II: Results for the non-dimensional production of
turbulent kinetic energy, or production, P? = P/(u3L/L), as

a function of the Reynolds number (L = 1024). The
following results are shown: the average production over the
whole cavity, 〈P?〉V ; the maximum value for the average of

production at the yz-plane, P?(x), and the location
x?max = xmax/L for the peak of production.

Re 〈P?〉V P? (x?max) x?max

1.0 ×104 3.62 ×10−4 2.68 ×10−3 0.966
1.5 ×104 4.23 ×10−4 3.88 ×10−3 0.970
2.5 ×104 4.69 ×10−4 6.42 ×10−3 0.978
4.0 ×104 7.41 ×10−4 2.07 ×10−2 0.989
4.5 ×104 7.77 ×10−4 2.51 ×10−2 0.990
5.0 ×104 8.32 ×10−4 2.85 ×10−2 0.991

vortex cores. We observe in Fig. 7 that the pdf of ∆p de-
velops a fat tail at large positive values when Re is increased
from 2.5× 104 to 4.5× 104. This tail suggests the emergence
of new strong vortical structures, on top of the primary and
secondary vortices (notice that the magnitude of ∆p is given
in units of (uL/L)2, which gives a measure of the enstrophy
content of the large scale primary vortex).

IV. CONCLUSIONS

We have proposed a new lattice Boltzmann boundary con-
dition for Dirichlet problems based on a regularized form of
the lattice Boltzmann equation. The robust stability of this
DNS scheme allows simulations to be conducted without re-
sorting to local mesh refinement or turbulence models and
leads to a computational model that scales efficiently on high-
performance computing resources. This numerical scheme is
applied to a turbulent flow and simulation results are com-
pared with available experimental data for Re = 3.2 × 103

and 104, showing good agreement. Simulations are conducted
up to Re = 5 × 104, beyond the limit that was found in the
published literature and leads to new insights into the role of
the physical mechanisms that are responsible for the produc-
tion of the turbulent kinetic energy inside the cavity. Partic-
ularly, we find that when Re increases, there is an increas-
ing conversion of the main stream kinetic energy into turbu-
lent kinetic energy along the downstream wall, and the ef-
fect of the turbulent drag reveals itself in the velocity field.
In a future work, we plan to make a more systematic analy-
sis in terms of scaling properties of global quantities, such as
dissipation, momentum fluxes, over an extended the range of
Re, in order to probe new emerging dynamical regimes. As
a method developed within the lattice Boltzmann framework,
it may be directly applied to this class of models. The im-
mediate follow ups are other standard velocity stencils (like
D3Q27, D2Q9 [41]) and high-order models [42]. For the
standard D3Q27 and D2Q9 velocity sets using BGK, the set
of eqs. 7 and 8 must be solved again and these solutions will
give rise to the Dirichlet boundary conditions for these mod-
els. Regarding the D3Q15 velocity set, there will be no so-
lution for corners, since the number of particle distributions
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(four) is smaller than the number of equations (seven) leading
to an undetermined system, and then the application of the
present method is not straightforward for the D3Q15. The
present model can also be applied to other collision kernels,
like the entropic LB [43, 44] and the regularized LB with re-
currence relations [45, 46]. For instance, the present method
can be applied to the entropic collision model at the bound-
aries leading to a non-linear system of equations in order to
guarantee the non-linear stability of the entropic scheme and
the conservation of mass.
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Appendix A: Boundary Conditions

We provide details of the proposed method for the boundary
conditions in the following order: 1) the D3Q19 velocity set;
2) the types of boundary sites: corner, edges and faces; 3)
the explicit equations for the moments; 4) the solutions for
all kinds of concave boundary sites; and 5) a summary of the
method.

1. D3Q19 stencil

The D3Q19 stencil is defined by the following particle di-
mensionless velocities: c0 = (0, 0, 0), c1 = (1, 0, 0), c2 =
(0, 1, 0), c3 = (0, 0, 1), c4 = (−1, 0, 0), c5 = (0,−1, 0),
c6 = (0, 0,−1), c7 = (1, 1, 0), c8 = (1, 0, 1), c9 = (0, 1, 1),
c10 = (1,−1, 0), c11 = (1, 0,−1), c12 = (−1, 1, 0),
c13 = (−1, 0, 1), c14 = (0, 1,−1), c15 = (0,−1, 1), c16 =
(−1,−1, 0), c17 = (−1, 0,−1), c18 = (0,−1,−1). The
weights wi associated with the directions ci are the follow-
ing: w0 = 1/3; wi = 1/18 for i = 1, ..., 6; and wi = 1/36
for i = 7, ..., 18. An image of the stencil is shown in Fig. A1.

c1

c2

c3

c4c5

c6
c7

c8
c9

c10

c11

c12

c13

c14

c15

c16

c17

x
y

z

FIG. A1: D3Q19 stencil. For simplicity, the origin of the
system of coordinates is located at the center of the grid. The

velocity vectors of the lattice are shown pointing from the
origin toward their next step sites.

2. Boundary sites

In our approach to solve the Dirichlet boundary conditions,
we have assumed that the boundaries are aligned with spatial
and velocity coordinates, a common practice in lattice Boltz-
mann (LB). Since we are dealing with a wet-node bound-
ary type, all boundary sites can be divided into three groups:
faces, edges and corners. As already mentioned, we have also
restricted this work to concave boundaries, considering our
main goal was to perform simulations of a LB-fluid inside a
concave cavity. Nevertheless, we are currently working on the
extension of this idea to convex boundary sites as well.

Recall the definitions of the incoming and outgoing direc-
tions at a boundary site: the incoming particles to the site in-
dex set Is is defined by Is = {i | r − ci is a fluid site}, while
the outgoing particles from the site index set Os is given by
Os = {j | cj = −ci, i ∈ Is}. Outgoing vectors for a corner,
an edge and a face are shown in Figs. A2, A3 and A4, respec-
tively, while one incoming set of vectors for a face is shown
in Fig. A5.

The corner boundary site is defined by the intersection of
three perpendicular planes defined by the normals n̂k = lkêk,
where êk is the vector of the canonical basis in R3 associated
with the coordinate xk. Hereafter, k = 1, 2, 3; (x1, x2, x3)
is any permutation of the coordinates (x, y, z); and lj = ±1
defines the orientation of the planes: the normals must point
from the fluid toward the solid (see label in Fig. A2). There
are seven incoming and seven outgoing particle distributions
at a corner boundary site and a typical one is shown in Fig.
A2.

The second type of boundary site is the edge, which is the
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FIG. A2: Example of a corner boundary site, located at the
point (x, y, z) = (0, 0, 0). The fluid portion is defined by the

intersection of the regions x ≥ 0, z ≥ 0 and y ≤ 0. The
normals are given by n̂1 = (0, 0,−1), n̂2 = (−1, 0, 0) and
n̂3 = (0, 1, 0). The shaded part of the figure represents the

solid region. The visible vectors are the outgoing vectors of a
corner boundary site. At this site l1 = l2 = −1 and l3 = 1.

Also, I = {0, 2, 4, 6, 12, 14, 17} and
O = {0, 1, 3, 5, 8, 10, 15}.

intersection of two perpendicular planes. The edge is defined
by the two normals of these planes, n̂1 = l1ê1 and n̂2 = l2ê2.
Since there is no need for a third plane, l3 = 0. There are a
total of ten elements in the I and O sets, each. An example of
an edge is shown if Fig. A3.

The face boundary site is simply defined by a normal vector
n̂1 = l1ê1. In this case, l2 = l3 = 0. There are fourteen
incoming - and fourteen outgoing - particle distributions at a
face boundary site. Figures A4 and A5 depict an example of
a face.

3. General explicit equations for the moments

The following known quantities are defined at the boundary
sites:

ρI ≡
∑

i∈Is

fi, (A1)

ρIm
(2)
αβ,I ≡

∑

i∈Is

fiH
(2)
αβ,i, (A2)

where Greek letters represent the spatial coordinates,
H

(2)
αβ,i = ciαciβ − δαβ/a

2
s is the 2nd-order tensor Hermite

polynomial, and as =
√

3 is the scaling factor. In some places
we will also use the equivalent definition

m
(2)
αβ,I = ρ−1I

∑

i∈Is

fiH
(2)
αβ,i.

FIG. A3: Example of an edge boundary site, located at the
point (x, y, z) = (0, 0, 0). The fluid portion is defined by

z ≥ 0 and x ≥ 0. The normals are given by n̂1 = (0, 0,−1)
and n̂2 = (−1, 0, 0). In this case, l1 = l2 = −1. The set I is
given by {0, 2, 4, 5, 6, 12, 14, 16, 17, 18} and the outgoing set
is O = {0, 1, 2, 3, 5, 7, 8, 9, 10, 15}. The visible vectors form

the outgoing set at this site.

Note that in eqs. (A1) and (A2) the distributions fi are the
incoming populations, so they are not regularized yet. Now,
recall that the system of equations for the moments m(2)

αβ and
ρ is given by the following D(D + 1)/2 + 1 equations

ρIm
(2)
αβ,I =

∑

i∈Is

f̂iH
(2)
αβ,i, (A3)

ρI = (1− ω)
∑

i∈Os

f̂i(r, t) + ω
∑

i∈Os

f
(eq)
i (r, t), (A4)

where ω = τ−1 and D is the number of spatial dimensions.
Equations (A3) and (A4) are eqs. (7) and (8) from the main
text. In three dimensions, for instance, there are seven equa-
tions total, and in the following we will proceed with D = 3.
Due to the Dirichlet-type of boundary conditions, the veloc-
ities ux1 , ux2 and ux3 are prescribed so eqs. (A3) and (A4)
lead to a system of equations for the unknown moments ρ and
m

(2)
αβ , since f̂ is a function of ρ, uα, and m(2)

αβ only.
In order to avoid a non-linear system of equations, we will

now seek solutions for ρm(2)
αβ instead of m(2)

αβ .
We split the set of eqs. (A3) into their diagonal moments

ρIm
(2)
x1x1,I

, ρIm
(2)
x2x2,I

, ρIm
(2)
x3x3,I

and the non-diagonal mo-

ments ρIm
(2)
x1x2,I

, ρIm
(2)
x1x3,I

, ρIm
(2)
x2x3,I

. We will make use
of a modified delta function, defined by:

δ̃lk =

{
1, if lk = 0,

0, otherwise,

valid for k = 1, 2, 3.
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FIG. A4: Example of a face boundary site, located at the
point (x, y, z) = (0, 0, 0). The fluid portion is defined by

z ≥ 0; the orientation of this face boundary site is defined by
the normal n̂1 = (0, 0,−1) at the xy-plane. Also, l1 = −1.

The outgoing vectors are shown, and the outgoing set is
O = {0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16}. The incoming

vectors are depicted in Fig. A5.

FIG. A5: The same face boundary site of Fig. A4, and now
the incoming vectors are shown. With this orientation, the

incoming set is given by
I = {0, 1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 16, 17, 18}.

For the diagonal moment ρm(2)
x1x1,I

, the regularized distri-
bution of the r.h.s in eq. (A3) is expanded and summed in a
general way, taking into account the geometrical parameters

that form the boundaries, leading to:

ρIm
(2)
x1x1,I

= ρ
(
P

(1)
123 + ux1

P
(u)
123 + ux2

S
(u)
123 + ux3

S
(u)
132

)
+

ρm(2)
x1x1

P
(m)
123 + ρm(2)

x2x2
S
(m)
123 + ρm(2)

x3x3
S
(m)
132 +

ρm(2)
x1x2

1

6
l1l2 + ρm(2)

x1x3

1

6
l1l3 − ρm(2)

x2x3

1

12
l2l3,

(A5)

where we have defined

P (1)
pqr = − 1

12
+

2

27
δ̃lp +

1

54
δ̃lp

(
δ̃lq + δ̃lr

)
+

− 1

108

(
δ̃lq + δ̃lr + δ̃lq δ̃lr

)
,

(A6)

P (u)
pqr = lp

(
2

9
+
δ̃lq
18

+
δ̃lr
18

)
, (A7)

S(u)
pqr =

(
− 1

36
− δ̃lr

36
+
δ̃lp
18

)
lq, (A8)

P (m)
pqr =

11

24
+

2

9
δ̃lp +

7

72

(
δ̃lq + δ̃lr

)
+

δ̃lp
18

(
δ̃lq + δ̃lr

)
+

1

72
δ̃lq δ̃lr ,

(A9)

S(m)
pqr =

1

12
− 1

36

(
δ̃lp + δ̃lq + δ̃lr

)
+

− 1

36

(
δ̃lp + δ̃lq

)
δ̃lr +

1

18
δ̃lp δ̃lq ,

(A10)

and {p, q, r} can assume all of the permutations of the set
{1, 2, 3}. Equations (A6)-(A10) depend purely on geometri-
cal parameters given by the definition of the boundary. Analo-
gous expressions can be readily written for the other two diag-
onal terms, ρIm

(2)
x2x2,I

and ρIm
(2)
x3x3,I

based on the symmetric
properties of the terms in eq. (A5). These full equations for
ρIm

(2)
x2x2,I

and ρIm
(2)
x3x3,I

read as follows:

ρIm
(2)
x2x2,I

= ρ
(
P

(1)
213 + ux2

P
(u)
213 + ux1

S
(u)
213 + ux3

S
(u)
231

)
+

ρm(2)
x2x2

P
(m)
213 + ρm(2)

x1x1
S
(m)
213 + ρm(2)

x3x3
S
(m)
231 +

ρm(2)
x1x2

1

6
l1l2 + ρm(2)

x2x3

1

6
l2l3 − ρm(2)

x1x3

1

12
l1l3,

(A11)

ρIm
(2)
x3x3,I

= ρ
(
P

(1)
312 + ux3

P
(u)
312 + ux1

S
(u)
312 + ux2

S
(u)
321

)
+

ρm(2)
x3x3

P
(m)
312 + ρm(2)

x1x1
S
(m)
312 + ρm(2)

x2x2
S
(m)
321 +

ρm(2)
x1x3

1

6
l1l3 + ρm(2)

x2x3

1

6
l2l3 − ρm(2)

x1x2

1

12
l1l2.

(A12)
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For the non-diagonal moment ρIm
(2)
x1,x2,I

the same argu-
ment that we have used to obtain eq. (A5) is applied and we
can extract from eq. (A3)

ρIm
(2)
x1x2,I

= ρ
(
Q

(1)
12 + ux1

Q
(u)
12 + ux2

Q
(u)
21

)
+

ρm(2)
x1x1

1

12
l1l2 + ρm(2)

x2x2

1

12
l1l2+

−ρm(2)
x3x3

1

24
l1l2 + ρm(2)

x1x2
Q

(m)
12 ,

(A13)

where

Q(1)
pq =

1

36
lplq, (A14)

Q(u)
pq =

1

12

(
1 + δ̃lp

)
lq, (A15)

Q(m)
pq =

1

4

(
1 + δ̃lp

)(
1 + δ̃lq

)
. (A16)

In eqs. (A14)-(A16), Q(1)
pq , Q(u)

pq , and Q
(m)
pq are dependent

only on the geometrical parameters of the boundary site. For
the other two non-diagonal terms, namely ρIm

(2)
x1x3,I

and

ρIm
(2)
x2x3,I

, equivalent expressions can be obtained from eq.
(A13) based on symmetry arguments, and for the sake of com-
pleteness we write down the full expressions for ρIm

(2)
x1x3,I

and ρIm
(2)
x2x3,I

:

ρIm
(2)
x1x3,I

= ρ
(
Q

(1)
13 + ux1Q

(u)
13 + ux3Q

(u)
31

)
+

ρm(2)
x1x1

1

12
l1l3 + ρm(2)

x3x3

1

12
l1l3+

−ρm(2)
x2x2

1

24
l1l3 + ρm(2)

x1x3
Q

(m)
13 ,

(A17)

ρIm
(2)
x2x3,I

= ρ
(
Q

(1)
23 + ux2

Q
(u)
23 + ux3

Q
(u)
32

)
+

ρm(2)
x2x2

1

12
l2l3 + ρm(2)

x3x3

1

12
l2l3+

−ρm(2)
x1x1

1

24
l2l3 + ρm(2)

x2x3
Q

(m)
23 .

(A18)

Finally, for the mass conservation, the regularized f̂ and
equilibrium f (eq) particle functions, on the r.h.s. of eq. (A4),
are expanded and summed up in the outgoing set index O to
explicitly obtain:

ρI = ρ
(
R

(1)
123 + ux1

R
(u)
123 + ux2

R
(u)
231 + ux3

R
(u)
312

)
+

ρω
(
u2x1

a4s
2
P

(1)
123 + u2x2

a4s
2
P

(1)
231 + u2x3

a4s
2
P

(1)
312+

ux1ux2a
4
sQ

(1)
12 + ux1ux3a

4
sQ

(1)
13 + ux2ux3a

4
sQ

(1)
23

)
+

(1− ω)
(
ρm(2)

x1x1

a4s
2
P

(1)
123 + ρm(2)

x2x2

a4s
2
P

(1)
231+

ρm(2)
x3x3

a4s
2
P

(1)
312 + ρm(2)

x1x2
a4sQ

(1)
12 +

ρm(2)
x1x3

a4sQ
(1)
13 + ρm(2)

x2x3
a4sQ

(1)
23

)
,

(A19)

with

R(1)
pqr =

7

12
+

1

9

(
δ̃lp + δ̃lq + δ̃lr

)
+

1

36

(
δ̃lp δ̃lq + δ̃lp δ̃lr + δ̃lq δ̃lr

)
,

(A20)

R(u)
pqr = −1

3
lp

(
1 +

1

4
(lq + lr)

)
. (A21)

It can readily be seen from eqs. (A5), (A13) and (A19) that
if we set l1 = l2 = l3 = 0, i.e., a regular bulk fluid site, the
identities ρI = ρ and ρIm

(2)
αβ,I = ρm

(2)
αβ immediately follow.

4. Explicit solution for the boundary conditions

Here we show the solutions for corners, edges and faces for
the system of equations composed by eqs. (A5), (A13) and
(A19).

Corners — A corner is defined by the signs of l1, l2 and l3,
hence δ̃l1 = δ̃l2 = δ̃l3 = 0. The solution of the system of
equations at the corners is for ρ:

ρ = ρI
bC
dC

(A22)

where

bC =
1

24
(1− ω)

(
m

(2)
x1x1,I

+m
(2)
x2x2,I

+m
(2)
x3x3,I

+

−2l1l2m
(2)
x1x2,I

− 2l1l3m
(2)
x1x3,I

− 2l2l3m
(2)
x2x3,I

)
,

(A23)

and

dC = 4 + 10ω + (4ω − 12) (l1ux1
+ l2ux2

+ l3ux3
) +

−9ω
(
u2x1

+ u2x2
+ u2x3

)
+

6ω (l1l2ux1
ux2

+ l1l3ux1
ux3

+ l2l3ux2
ux3

) .

(A24)

The moments ρm(2)
αβ are, then:

ρm(2)
x1x1

=
1

3
ρI

(
10m

(2)
x1x1,I

− 2m
(2)
x2x2,I

− 2m
(2)
x3x3,I

+

−6l1l2m
(2)
x1x2,I

− 6l1l3m
(2)
x1x3,I

+ 6l2l3m
(2)
x2x3,I

)
+

+
2

9
ρ (1− 2l1ux1

+ l2ux2
+ l3ux3

) ,

(A25)

ρm(2)
x1x2

=
1

3
ρI

(
−3l1l2m

(2)
x1x1,I

− 3l1l2m
(2)
x2x2,I

+

3l1l2m
(2)
x3x3,I

+ 17m
(2)
x1x2,I

+

−l2l3m(2)
x1x3,I

− l1l3m(2)
x2x3,I

)
+

−2

9
ρ (l1l2 + l1ux2

+ l2ux1
+ l1l2l3ux3

) .

(A26)
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Again, by symmetry, relations for ρm(2)
x2x2 and ρm(2)

x3x3 can
be obtained directly from ρm

(2)
x1x1 , as well as ρm(2)

x1x3 and
ρm

(2)
x2x3 are obtained from ρm

(2)
x1x2 . For example, one can get

ρm
(2)
x2x2 from eq. (A25) swapping indexes 1 and 2, leaving 3

alone. For the cross terms, to obtain, for example, the moment
ρm

(2)
x1x3 , one must swap between indices 1 and 3 in eq. (A26),

leaving aside index 2.

Edges — An edge is defined by the orientations l1 and l2.
Therefore, δ̃l1 = δ̃l2 = 0 and δ̃l3 = 1, since l3 = 0. The
solution of the linear system at the edges leads to the following
relations for the moment ρ:

ρ = ρI
bE
dE

(A27)

where

bE = 1656− 216 (ω − 1)×
(

8m
(2)
x1x1,I

+ 8m
(2)
x2x2,I

− 2m
(2)
x3x3,I

− 19l1l2m
(2)
x1x2,I

)
,

(A28)

and

dE = 720− 660 (l1ux1
+ l2ux2

) +

ω
(

430− 30 (l1ux1 + l2ux2) + 414l1l2ux1ux2+

−690
(
u2x1

+ u2x2

)
− 69u2x3

)
.

(A29)

With a solution for the density ρ, the relations for the moments
ρm

(2)
αβ follow:

ρm(2)
x1x1

=
1

23
ρI

(
47m

(2)
x1x1,I

+m
(2)
x2x2,I

− 6m
(2)
x3x3,I

+

−34l1l2m
(2)
x1x2,I

)
− 2

69
ρ (−8 + 15l1ux1

+ 8l2ux2
) ,

(A30)

ρm(2)
x3x3

=
2

69
ρI

(
−9m

(2)
x1x1,I

− 9m
(2)
x2x2,I

+ 54m
(2)
x3x3,I

+

30l1l2m
(2)
x1x2,I

)
− 4

69
ρ (1 + l1ux1

+ l2ux2
) ,

(A31)

ρm(2)
x1x2

=
1

23
ρI

(
l1l2

(
−17m

(2)
x1x1,I

− 17m
(2)
x2x2,I

+

10m
(2)
x3x3,I

)
+ 118m

(2)
x1x2,I

)
+

−19

69
ρ (l1l2 + l1ux2

+ l2ux1
) ,

(A32)

ρm(2)
x1x3

= 2ρIm
(2)
x1x3,I

− 1

3
l1ρux3 . (A33)

Due to symmetry, the relation from ρm
(2)
x2x2 is derived from

eq. (A30) and ρm(2)
x2x3 is derived from eq. (A32), simply by

exchanging indices 1 and 2 in the previous equations.

Faces — At a given face, we will consider l1 6= 0 only, so
l2 = l3 = 0, and δ̃l2 = δ̃l3 = 1, δ̃l1 = 0. The orientation

of the face is defined by the sign of l1. The solution of the
linear system for the faces leads to the following relations for
the moment ρ:

ρ = ρI
9 (1− ω)m

(2)
x1x1,I

+ 12

ω(1− 6u2x1
)− 3l1ux1 (1 + ω) + 9

. (A34)

With the expression for the density ρ, the expressions for the
moments ρm(2)

αβ read:

ρm(2)
x1x1

=
3

2
ρIm

(2)
x1x1,I

− 1

2
l1ρux1 +

1

6
ρ, (A35)

ρm(2)
x2x2

=
4

33
ρI

(
10m

(2)
x2x2,I

−m(2)
x3x3,I

)
, (A36)

ρm(2)
x1x2

= 2ρIm
(2)
x1x2,I

− 1

3
l1ρux2

, (A37)

ρm(2)
x2x3

= ρIm
(2)
x2x3,I

. (A38)

Due to symmetry, similar expressions for ρm(2)
x3x3 and ρm(2)

x1x3

can be obtained from ρm
(2)
x2x2 and ρm(2)

x1x2 , respectively, writ-
ten down explicitly as:

ρm(2)
x3x3

=
4

33
ρI

(
10m

(2)
x3x3,I

−m(2)
x2x2,I

)
, (A39)

ρm(2)
x1x3

= 2ρIm
(2)
x1x3,I

− 1

3
l1ρux3

. (A40)

5. Summary of the boundary conditions

The present boundary condition can be summarized as fol-
lows: it is a Dirichlet, on-site explicit scheme, where we have
divided the sites as fluid and boundary nodes. Mass is a pre-
served quantity, while second-order moments are modeled.

The algorithm of the scheme can be described as:

1. In the streaming step, at a given boundary site, record
the distribution values propagating/arriving from the
neighboring fluid sites (including other boundary sites);
the associated microscopic velocity vectors are referred
to as the incoming directions.

2. Compute the second-order moment - the momentum-
flux tensor - as a sum over only these incoming distribu-
tion values; the distribution values which would arrive
from the neighboring solid sites are not considered.

3. The local velocity is treated as known (due to a Dirichlet
boundary condition) whereas the local boundary den-
sity still remains unknown.

4. To ensure mass conservation, the total mass carried by
the outgoing post-collisional distribution values (asso-
ciated with the microscopic velocity vectors opposite to
the incoming directions) must be equal to the total mass
carried by the incoming pre-collisional, original distri-
bution values.
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5. The incoming (as well as the outgoing) distribution
functions are reconstructed according to the usual reg-
ularization procedure. To this end, it is required that
the second-order moment, computed as the sum over
the reconstructed incoming distributions only, is equal
to the moment computed in step 2 (i.e. the sum over the
original, incoming distributions).

6. The conditions from steps 4 and 5 are used to setup a
system of equations from which the local density and
the true/full momentum-flux tensor can be solved, ul-
timately resolving the outgoing reconstructed distribu-
tions.

Appendix B: Balance equation relations for the total and
turbulent kinetic energies

1. Total Kinetic Energy Balance Equation

In order to obtain a relation to verify the consistency of the
simulation results, let us begin with the total kinetic energy
balance equation [39]

∂tE + ∂α(uαE + Tα) = −2νSαβSαβ , (B1)

where E = 1
2uαuα is the total kinetic energy, Tα ≡ uαp/ρ−

2νuβSαβ and Sαβ = 1
2 (∂αuβ + ∂β uα) is the strain tensor,

which can be locally computed within the lattice Boltzmann
framework through [33, 47]

Sαβ =
a2s
2τ

(
uαuβ −m(2)

αβ

)
. (B2)

We average eq. (B1) over the whole volume V and over time
t ∈ [ti, tf ] in the statistically stationary state of extension δ ≡
tf − ti:

〈∂α (uαE)〉V + 〈∂αTα〉V = −2ν〈SαβSαβ〉V , (B3)

where usage has been made of the incompressibility condition
and, hereafter,

〈φ〉V ≡
1

δ

ˆ tf

ti

(
1

|V|

˚
V
φ (x, y, z, t) dx dy dz

)
dt

and

φ (z) ≡ 1

δ

ˆ tf

ti

(
1

L2

¨
L×L

φ (x, y, z, t) dx dy

)
dt

for a generic field φ = φ (x, y, z, t). Also, |V| ≡ L3. The time
dependence of eq. (B1) disappears (in the following deriva-
tions we will omit, for simplicity, the integration on time,
which is, however, implicitly assumed). Applying Gauss the-
orem to the l.h.s of eq. (B3) we get:

1

|V|

‹
∂V

n̂ ·uEdσ+
1

|V|

‹
∂V

n̂ ·T dσ = −2ν〈S2〉V , (B4)

where S2 ≡ ¯̄S : ¯̄S and the integrals are extended over the
bounding surface. The first integral is identically zero because
of the impenetrability condition at the walls, n̂ ·u|∂V = 0; for
the second integral the following holds
‹
∂V

n̂ · T dσ =

‹
∂V

(
(n̂ · u) p

ρ
− 2ν (n̂⊗ u) : ¯̄S

)
dσ =

= −2ν

‹
∂V

(n̂⊗ u) : ¯̄Sdσ,

(B5)
again owing to n̂ ·u|∂V = 0. Because of the no-slip boundary
condition, the integrand (n̂⊗ u) : ¯̄S is zero over all faces
except the lid, where u (x, y, z = L, t) = (ulid, 0, 0). The
only non-zero term of (n̂⊗ u) : ¯̄S at the lid is uxSzx, hence:
‹
∂V

(n̂⊗ u) : ¯̄Sdσ =

¨
L×L

(
ux

1

2
(∂xuz + ∂zux)

)∣∣∣∣
z=L

dx dy =

=

¨
L×L

(
ux

1

2
(∂zux)

)∣∣∣∣
z=L

dx dy =

=
1

4
∂z

(¨
L×L

u2x dx dy

)∣∣∣∣
z=L

=

=
L2

4
∂zu2x(z)

∣∣∣∣
z=L

.

(B6)
Combining the eqs. (B4), (B5) and (B6) we get the relation:

〈S2〉V =
1

4L
∂zu2x(z)

∣∣∣∣
z=L

. (B7)

2. Turbulent Kinetic Energy Balance Equation

Now we derive a second consistency relation. The balance
equation for the turbulent kinetic energy, k, is [39]:

∂tk + Uα∂αk + ∂αT
′
α = P − ε, (B8)

where k ≡ 1
2 〈u′αu′α〉. The turbulent transport term is

T ′α =
1

2
〈u′αu′βu′β〉+ 〈u′αp′/ρ〉 − 2ν〈u′βsαβ〉,

and the production of turbulence is P = 〈u′αu′β〉∂βUα. The
dissipation of turbulent kinetic energy ε is defined by

ε = 2νsαβsαβ ,

where

sαβ =
1

2

(
∂αu

′
β + ∂βu

′
α

)
,

and the fluctuating velocity u′α = uα−Uα, where Uα = 〈uα〉.
Furthermore, p′ = p − 〈p〉. The symbol 〈...〉 represents the
time average of a property dependent on (x, y, z, t) over a time
interval of length δ during which the system is in a statistical
steady state:

〈φ〉(x, y, z) ≡ 1

δ

ˆ tf

ti

φ (x, y, z, t) dt.
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Taking the average of eq. (B8) over the volume V and over
time t ∈ [ti, tf ], we note that the time dependent term disap-
pears and we are left with:

〈∂α (Uαk)〉V + 〈∂αT ′α〉V = 〈P〉V − 〈ε〉V . (B9)

Following the procedure analogous to the one executed at the
total kinetic energy equation, we apply the divergence theo-
rem to the the l.h.s. of eq. (B9). Due to the impenetrability
condition, i.e., n̂ · U |∂V = 0, the term 〈∂α (Uαk)〉V is iden-
tically zero. For the second term at the l.h.s. of eq. (B9) we
have

‹
∂V

n̂ · T ′dσ =

‹
∂V

(
1

2
n̂ · u′u′2+

(n̂ · u′) p′

ρ
− 2ν (n̂⊗ u′) : ¯̄s

)
dσ = 0,

(B10)

since the velocity fluctuation at the boundaries is null, i.e.,
u′|∂V = (0, 0, 0). Then, the relation between production and
dissipation follows:

〈P〉V = 〈ε〉V .

Appendix C: Simulation Code

The regularized boundary conditions were implemented in
HARVEY, a parallelized hemodynamics code [18]. The code
is written in C and C++ and uses MPI for parallelization. As
can be seen in Algorithm 1, the regularized wall boundary
condition occurs after both the collision and stream steps.

As most of the operations in the boundary condition are
constant across time steps, the values are cached in a lookup
table. The appropriate value is then indexed using the type of
wet wall condition (face, edge, or corner).

Algorithm 1 Regularized lattice Boltzmann for lid-driven
cavity

1: procedure LBM(ts) . ts is the total number of time steps in the
simulation

2: d← initialize distribution() . Maxwellian equilibrium
distribution

3: i = 0
4: while i < ts do
5: d← collide(d)
6: d← stream(d)
7: w ← filter wall sites(d)
8: mI ← incoming moments(w). Moments using only the

incoming site D3Q19 velocities for a given wall type
9: mR ←WALL CONDITION(mI ) . All moments after

wall condition is applied
10: w ← convert to discrete velocities(mR)
11: d← update wall sites(d,w)
12: end while
13: p← get density(d)
14: v ← get velocity(d)
15: return p, v
16: end procedure
17: procedure WALL CONDITION(mI )
18: ρI ← get rho(mI )
19: mxxI ← get secondmoments(mI )
20: ρ← density at wall(ρI ,mxxI ) . Use equation A22 for a

corner, A27 for an edge, and A34 for a face
21: mxx ← density at wall(mxxI , ρI , ρ) .

Use equations A25-A26 for a corner, A30-A33 for an edge, and
A35-A40 for a face

22: mx ← 0 . First order moment, no slip condition
23: mR ← pack moments(ρ,mx,mxx)
24: return mR

25: end procedure
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