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Cross-beam energy transfer (CBET) is a laser-plasma instability that significantly impacts laser energy de-

position in laser-driven inertial confinement fusion (ICF) experiments. Radiation-hydrodynamics simulations,

which are used to design and tune ICF implosions, use ray-based CBET models, but existing models require ar-

tificial multipliers to conserve energy and to obtain quantitative agreement with experiments. The discretization

of the ray trajectories in traditional ray-based CBET models does not account for the rapid variation in CBET

gain as rays pass through caustics. We introduce a new model that allows one to treat caustics much more

accurately and greatly improves energy conservation. The ray-based CBET calculations show excellent agree-

ment with laser absorption from 2-D wave-based calculations (0.3% difference) and a 3-D 60-beam OMEGA

implosion (2.4% difference) without artificial multipliers.

In laser-based inertial confinement fusion (ICF), a

millimeter-scale cryogenic capsule of deuterium-tritium fuel

with a thin outer ablator is imploded either directly by laser il-

lumination or indirectly by x rays emitted from a laser-heated,

high-Z hohlraum [1, 2]. In both approaches, multiple laser

beams overlap in a plasma and their low-frequency beat waves

can drive ion-acoustic waves. By means of a process known

as cross-beam energy transfer (CBET), the ion-acoustic waves

mediate the transfer of energy between beams, significantly

impacting the deposition of laser energy [3].

Direct-drive ICF experiments on the OMEGA laser [4] have

shown a 10% to 20% reduction in laser absorption due to

CBET [5]. Indirect-drive ICF experiments at the National Ig-

nition Facility (NIF) have exploited CBET to control implo-

sion symmetry by tuning the wavelength separation between

laser beams [6, 7]. The scale of these experiments, in terms of

preparation time, complexity, and cost, necessitate the use of

radiation-hydrodynamic simulations with CBET models for

the rapid design, tuning, and optimization of implosions [8].

Due to the computational expense of wave-based calcu-

lations, the CBET models used in radiation-hydrodynamic

codes are exclusively based on ray tracing, and, even then, 3-

D implementations can be prohibitive. Furthermore, existing

CBET models require artificial multipliers to obtain quantita-

tive agreement with experiments [7, 9–12]. This is in part due

to a major challenge of ray tracing: the reconstruction of the

field amplitude diverges at caustics. While sophisticated tech-

niques exist for approximating the full solution to the electro-

magnetic wave equation in the vicinity of caustics [13], there

is no consensus as to how caustics should be treated in ray-

based CBET models.

The use of artificial multipliers is particularly problematic

in the radiation-hydrodynamic codes used to simulate ICF im-

plosions. These codes model many physical processes, and an

artificial multiplier in one model can mask deficiencies and

inhibit progress in seemingly unrelated areas. Even within the
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CBET models there are various ways to introduce the artificial

multipliers, and these essentially arbitrary choices can have a

significant impact on the results. For these reasons, it is im-

portant to benchmark reduced models like ray-based CBET

calculations against more complete calculations so that when

discrepancies do arise, it is possible to determine whether the

discrepancy is caused by missing physics or an inaccurate so-

lution to the original problem.

In this Letter, we present a ray-based CBET algorithm that

opens up the possibility for full-scale 3-D CBET modeling

in radiation-hydrodynamics codes without artificial multipli-

ers. The key insight is that the energy transfer between beams

should be truncated past the caustic of the pump beam. Ray-

based CBET calculations with caustic gain truncation (CGT)

show excellent agreement with laser absorption from both 2-D

wave-based calculations and a 3-D 60-beam OMEGA implo-

sion. A large difference between results obtained with and

without CGT (in terms of both accuracy and energy conserva-

tion) indicates the importance of including a careful treatment

of caustics in ray-based CBET calculations.

Ray-based CBET modeling relies on the assumption that

the energy exchange between two lasers can be approximated

locally using the homogeneous gain, and that the interaction

between all rays in a given region of space can be treated in-

dependently, pairwise. Additionally, the large separation be-

tween the hydrodynamic and acoustic/electromagnetic time

scales allows for steady-state CBET calculations using the in-

stantaneous hydrodynamic conditions.

The general approach to ray-based CBET modeling follows

four steps: (1) calculate trajectories for all rays in each laser

beam, (2) discretize the ray trajectories along their paths, (3)

determine all possible pairwise interactions, and (4) solve the

resulting system of equations for the energies along the ray

paths. Here it is assumed that steps (1) and (2) have already

been completed. In terms of the absolute square of the en-

veloped electric field, the differential change of the ith ray (the

seed ray) at the jth location along its path due to an interaction

with the kth ray (the pump ray) at the lth location along its path

for parallel-polarized beams in a homogeneous plasma is (in



2

–200 –100 0 100 200

–200

–100

0

100

200
x 

(n
m

)

y (nm)

–200 –30 –25 –20 –15–100 0 100 200

×10–3

y (nm) x (nm)

nc nc

(a) (b) (c)

0

2

4

6

8

10

e 
E

z 
/

(m
ec
~

0
)

Rays
LPSE

0.00

0.01

0.02

0.03

0.04

e 
E

z 
/

(m
ec
~

0
)

FIG. 1. (a) Ray- and (b) wave-based simulations of the magnitude of the enveloped electric fields for two beams (injected from the bottom and

left) interacting in an azimuthally symmetric plasma. The critical surface is indicated by a white dashed line. (c) Lineouts of the fields from

LPSE (solid blue curve) and rays (red dashed curve). The location of the caustic is denoted by a vertical dashed black line.

cgs units) [3]
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where ε = 1 − ne/nc, ne is the electron density, nc =

200

150

100

50

0

–50

–100

–150

–200

x 
(n

m
)

200

150

100

50

0

–50

–100

–150

–200

x 
(n

m
)

–200 –100 0 100 200

y (nm)

0.5

–0.5

0.0

(a)

(b)

nc

nc

E
E

E
–

ay
s

i0
m

ax
r

z
L

P
S

E
z

2
2

2
c

m

0.5

–0.5

0.0

E
E

E
–

ay
s

i0
m

ax
r

z
L

P
S

E
z

2
2

2
c

m

FIG. 2. The difference in field energy in the ray- and wave-based

calculations for (a) CBET turned on and (b) CBET turned off in the

ray-based calculation. A Gaussian filter with a 1-µm standard devia-

tion has been applied to smooth out differences resulting from phase

mismatches in regions with high-frequency interference.

meω2
i j/(4πe2) is the critical density for light with frequency

ωi j (and wavevector ki j), me is the electron mass, −e is the

electron charge,

(

Li jkl
s

)−1

=
e2|Ek0|2

4mecωi jkBTe(1+ 3Ti/ZTe)

ne

nc

ωs

νia

P(ηi jkl),

P(η) =
(νia/ωs)

2η

(η2 − 1)2 +(νia/ωs)2η2
,

ηi jkl =
ωkl −ωi j − (kkl −ki j) ·u

ωs

,

νia is the ion-acoustic wave energy–damping rate, ωs is the

acoustic frequency, Te (Ti) is the electron (ion) temperature, Z

is the ionization state, kB is Boltzmann’s constant, and u is the

plasma flow velocity. L
i j
a = c

√
εnc/(νeine) is the laser absorp-

tion length [14], where νei = 4
√

2πe4Z2niΛei/(3
√

meT
3/2

e ),

Λei is the Coulomb logarithm [15], |Ek0| =
√

8πIk0/c is the

magnitude of the incident (vacuum) field of the kth ray, and

Ik0 is the corresponding intensity.

The function gi jkl is introduced to account for the fact that

there may not be a valid interaction between the two rays. Two

rays will interact if they (1) intersect in configuration space

and (2) are on distinct “sheets,” where each sheet corresponds

to a region of ray phase space that has a single-valued pro-

jection onto configuration space [the divisions between sheets

are at caustics (Fig. 3)] [13]. Accordingly, gi jkl = 1 if both of

these conditions are satisfied and 0 otherwise.

Equation 1 can be discretized along ray trajectories in an

inhomogeneous plasma if it is written in terms of ray en-

ergy, which is conserved along ray trajectories in the ab-

sence of CBET and absorption. In the geometric optics

limit, |Ei j|2/|Ei0|2 = Wi j (dSi0/dSi j)/
√

ε, where Wi j is the

ray energy normalized to the incident energy (Wi0 = 1) and

dSi0/dSi j is the ratio of the initial to current cross-sectional

area of the ith ray, which is tracked by tracing bundles of rays

[16]. This approximation for the fields diverges at caustics,
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FIG. 3. (Top) The first sheet of the two beams for the configuration

shown in Fig. 1 overlaid on the Cartesian grid. (Bottom) A close-up

of one of the grid cells. The filled gray region denotes the first sheet

of the beam coming from the bottom. The ray trajectories correspond

to the first sheet of the beam coming from the side. The solid red part

of the ray trajectories shows where the rays would interact with the

beam coming from the bottom without the caustic gain truncation

(CGT) correction. The dashed blue part of the ray trajectories is the

region where there is no interaction with the beam coming from the

bottom. Note that finite sheets are shown for illustrative purposes;

only the parabolic edge corresponds to a caustic. The other edges of

the sheet are chosen such that the intensity is vanishingly small (for

the sides) or outside the interaction region (for the injector).

where either ε → 0 or dSi j/dSi0 → 0. A simple way to correct

for this is to treat the density profile as being locally linear.

The field of a plane wave incident on a linear density gradient

(ne/nc = x/L) has an analytic solution (Airy function) with

a peak field
(

|Ei j|2/|Ei0|2
)

max
= ξi j(ne/nc)

1/2
i,max [14], where

(ne/nc)i,max is the maximum density along the path of the ith

ray, ξi j = 0.9(ωi jL/c)1/3, and L = L∗nc/n∗ (n∗ and L∗ are the

density and density scalelength at the caustic). Applying this

as a limit to the peak field amplitude in Eq. 1 gives the differ-

ential change in energy due to a single pairwise interaction

dWi j

ds
=−Wi j

L
i j
a

+ gi jkl

Wi jWkl√
εL

i jkl
s

min

[

1√
ε

dSk0

dSkl

, ξkl

(

ne

nc

)1/2

max

]

.

(2)

Each ray can potentially interact with every other sheet at ev-

ery point along its path. Discretizing Eq. 2 along the ray paths

and summing over all possible interactions gives

Wi, j+1

Wi j

= exp

[

− si j

L
i j
a

+
si j√
εeff

∑
S

∑
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Wklgi jkl∆Skl

L
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]

,

(3)

where

1√
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= min

[

1√
ε
, 2

√

L
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]

,

∆Skl = min

[

1√
ε

dSk0

dSkl

, ξkl

(

ne

nc

)1/2

max

]

,

and si j is the length of the ray-path section from j to j+1 for

ray i. εeff is introduced to keep the discretized equation from

diverging when ε → 0, which originates from the vanishing

group velocity of the seed beam for near-normal-incidence

rays. The path integral is finite, so we use the analytic re-

sult for normal-incidence rays in a linear density gradient,
∫ L

L−s dx/
√

1− x/L = 2
√

sL.

The first sum in Eq. 3 is over sheets S , and the second

sum is over all of the ray-path locations belonging to sheet

S . The summand corresponds to the expected interaction

strength from all of the rays in the current grid cell on the cur-

rent pump-beam sheet. In practice it is more efficient if only

one non-zero term from each sheet is used (chosen randomly).

Equation 3 is typically solved using fixed-point itera-

tion. To improve the rate of convergence [16], we substitute

W̃i j ≡Wi j/Wi, j−1 to obtain

W̃i, j+1 = exp

(

−Ai j +∑
S

∑
kl∈S

Gi jkl

l

∏
m=1

W̃km

)

, (4)

where

Gi jkl =
si jgi jkl∆Skl

√
εeffL

i jkl
s ∑np∈S gi jnp

(5)

and Ai j = si j/L
i j
a . The normalized ray energies are given by

Wi j = ∏
j

k=1 W̃ik. Here the rays were discretized on a Carte-

sian grid except for the special case of rays changing sheets in

a grid cell, where an additional split in the ray path is intro-

duced at the sheet boundary. The limitations of this model that

require the introduction of CGT are best illustrated by first in-

troducing a prototypical example of CBET in the presence of

fold caustics.

Figure 1 compares the electric fields from 2-D (a) ray- and

(b) wave-based calculations of CBET between two beams in
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FIG. 4. The laser absorption (left column) and energy conserva-

tion error (right column) for the nominal (red circles) and CGT

(blue squares) ray-trace algorithms as functions of grid resolution for

[(a),(b)] 2-D two-beam calculations; [(c),(d)] 2-D 16-beam calcula-

tions; and [(e),(f)] 3-D 60-beam calculations. The 2-D calculations

are compared to LPSE results and the 3-D calculations are compared

to OMEGA results (black dashed lines).

an azimuthally symmetric plasma. The wave-based calcula-

tions were performed using LPSE (laser-plasma simulation

environment) [16, 17]. The ray-based solution was obtained

by solving Eq. 4 and then taking the coherent sum of the

fields from the four ray sheets (two from each beam) [13].

The plasma conditions were similar to what would be encoun-

tered in an OMEGA implosion except they have been scaled

down by a factor of 4. The laser intensities were 2 × 1015

W/cm2 (0.351-µm light). The LPSE grid resolution was 50

cells/µm. The results from the two calculations are difficult

to distinguish by eye—a testament to the fact that the geo-

metric optics approximation is valid nearly everywhere in the

long-scalelength plasmas encountered in ICF. The difference

in field energy is shown in Fig 2(a). Differences between the

fields are due in part to the fact that propagation can be af-

fected by the ponderomotively driven density perturbations in

LPSE but not in the ray-based calculation. Note that the ray-

based calculation over and under predicts the field energy in

the scattering region in similar proportion. To put Fig 2(a)

in context, Fig. 2(b) shows the same comparison with CBET

turned off in the ray model. This causes the ray-based cal-

culation to dramatically under predict the amount of scattered

light.

Figure 1(c) shows a lineout of the fields from the two solu-

tions at one of the caustics in calculations where CBET was

turned off. The fact that the agreement between the solu-

tions is excellent right up to the edge of the ray sheet (ver-

tical dashed black line) suggests that the simple approxima-

tion used to calculate the fields at the caustic does not have a

significant impact on the accuracy of the global solution.

The limitation of Eq. 4 is depicted in Fig. 3, which shows

the first sheet of each beam (one shaded gray and one as rays

with a black outline) and the Cartesian grid that was used to

discretize the ray trajectories. The rays in the beam coming

from the left should interact only with the beam coming from

the bottom when they are inside the gray region because the

field of the beam coming from the bottom vanishes outside

that region. Because of the discretization, however, the rays

interact wherever they are colored red. In the CGT algorithm,

the CBET interaction length in Eq. 5 is allowed to depend on

the pump ray such that the gain of a seed ray is limited to only

the portion of the grid cell where it is inside the correspond-

ing pump-beam sheet. Accordingly, we introduce a new path

length si jkl , which depends on the indices of the pump ray and

appears only in the CBET term but is equal to si j in grid cells

where the beam corresponding to the kth ray does not have a

caustic,

Gi jkl =
si jklgi jkl∆Skl

√
εeffL

i jkl
s ∑np∈S gi jnp

. (6)

The si jkl are determined by finding the intersections between

the seed rays and the sheet boundaries of the pump beams.

In 2-D, the sheet boundaries are polygons. In 3-D, the sheet

boundaries are closed surfaces that were stored on a triangle

mesh. Despite the fact that the CGT correction is spatially lo-

calized to the caustic region, it has a large impact on the global

solution because of the highly nonlinear nature of Eq. 4. Note

that although a Cartesian grid was used here, Eq. 4 does not

make any assumptions about the grid, and essentially any grid-

ding scheme will suffer from the same issue (except for an

unstructured grid constructed from the sheet boundaries).

Figures 4(a) and 4(c) compares the laser absorption as a

function of the CBET grid resolution using the nominal and

CGT ray-based CBET algorithms to two-beam (cf. Fig. 1)

and 16-beam LPSE calculations. The 16-beam calculations

used the same plasma conditions as the two-beam calcula-

tions with the beams injected uniformly at 22.5◦ increments

with intensities of 4× 1014 W/cm2. Both simulations had a

significant reduction in laser absorption due to CBET (the ab-

sorption without CBET was 96%), and at the highest grid res-

olutions, the ray-based results were within 0.3% of the LPSE

results. The nominal and CGT ray-based algorithms converge

to the same result in the limit of infinite resolution because

the size of the grid cells where the error is introduced in the

nominal calculations vanishes. Convergence is achieved much

more rapidly using the CGT algorithm, particularly in the 16-

beam case (because there are many more caustics). The high-

est resolution calculation with the nominal algorithm had an
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accuracy comparable to the CGT algorithm with an order-of-

magnitude-less resolution. The computational cost of solving

Eq. 4 is proportional to the number of grid cells, so an order-

of-magnitude reduction in resolution represents a large com-

putational savings: a factor of 100 in 2-D and a factor of 1000

in 3-D.

Figure 4(e) shows the results of 3-D CBET calculations of

the instantaneous laser absorption during the main drive of a

60-beam OMEGA implosion with peak single-beam intensi-

ties of 8.8×1013 W/cm2. The plasma profiles were taken from

the 1-D radiation-hydrodynamic code LILAC [18]. The 3-D

calculations included several corrections that are typically in-

cluded in radiation-hydrodynamic codes (the Langdon effect

[19], the Dewandre effect [20], and polarization smoothing

[16, 21]).

As suggested by the difference between the two-beam and

16-beam results in 2-D, the difference between the CGT and

nominal algorithms is even more striking in the 3-D 60-beam

results. At the highest resolution (4× 106 grid cells, 7× 106

rays, and 9 × 109 interactions) that was achievable due to

memory constraints, the nominal algorithm was still far from

converging with the CGT result. The difference in laser ab-

sorption between the CGT calculation at the highest resolu-

tion and the experiment was 2.4%.

Figures 4(b), 4(d), and 4(f) show the energy conservation

error in the ray-based solvers (defined as the difference be-

tween the incident energy and the sum of the absorbed and

scattered energies normalized to the incident energy). It is

critical to consider energy conservation when assessing a ray-

based CBET algorithm because the underlying discretized

equations do not explicitly conserve energy. Away from caus-

tics, they conserve energy in the limit of infinite resolution,

but in the presence of caustics, even the converged solutions

are nonconserving. The energy conservation error is corrected

for in an ad hoc manner in radiation-hydrodynamic codes, but

there is no consensus as to how such corrections should be

implemented. Regardless of the technique, ray-based CBET

results should not be expected to be any more accurate than

their uncorrected conservation error because any correction

produces a result that is no longer a solution to the original

equation. For example, the difference between the nominal

ray-trace absorption and the measurement is only 4.2% in the

highest-resolution 3-D calculations, but this result is of little

value because 15.2% of the energy is unaccounted for, and

correcting for that could have a large impact on the result.

With the CGT algorithm, the conservation error is only 3.4%,

which suggests that whatever correction is made to enforce

energy conservation will produce a result that is still relatively

faithful to Eq. 4.

In summary, a new algorithm was presented for ray-based

CBET calculations in the presence of caustics. The CGT al-

gorithm significantly improves accuracy and energy conser-

vation in ray-based CBET calculations and shows excellent

agreement with 2-D two- and 16-beam wave-based calcula-

tions and a 60-beam OMEGA implosion without the use of

artificial multipliers.
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