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We investigate the deformation of a longitudinally stretched rectangular sheet which is clamped
at two opposite boundaries and free otherwise with experiments, numerical analysis and asymptotic
analysis of the biharmonic elastic equation governing their planar equilibrium configurations. The
displacement field of the sheet is measured by tracking embedded fluorescent tracers with a digital
image correlation (DIC) technique. The experiments and numerical finite element analysis (FEA)
are found to be in overall good agreement except at the very corners where large deformations
occur. We find that the deformed sheet can be broadly divided into a uniaxially stretched central
region and two clamp dominated side regions. A subregion characterized by a diverging stress can be
identified at each of the four clamped-free corners within the clamp dominated region. We postulate
that the divergence at the corners is regularized by nonlinear elastic deformations occurring in this
subregion at the very corners and provide a nontrivial scaling for its size. Within the intermediate
corner dominated subregion, measured displacements grow with distance r from the corners as rα,
with power α < 1 consistent with the development of stress singularities at the intersection of the
free and clamped edges.

I. INTRODUCTION

A stretched thin elastic sheet is a paradigm in under-
standing the shape and instabilities of highly deformable
elastic solids [1–4]. Rectangular sheets stretched lon-
gitudinally, while clamped at two opposite edges, con-
tract transversely at the free edges due to Poisson’s ef-
fect. As is by now well-known, wrinkles may occur for
sufficiently thin sheets [3, 5], but their exact nature re-
mains a matter of debate [6–9]. Such a boundary condi-
tion can further induce longitudinal wrinkles and creases
when the sheet is twisted at low tension [10–13], and im-
pact the wavelength of transverse wrinkles at high ten-
sion [14, 15]. But, even before the onset of instabilities,
a stretched sheet embodies the complexity of thin sheet
elasticity due to geometric nonlinearities even in Hookean
(i.e. linear-elastic) materials. This may be one of the rea-
sons why only crude approximations of the pre-wrinkling
state have been considered to address their threshold and
morphology [3]. In the following, we focus on the de-
formation of a longitudinally stretched sheet to highlight
the subtle interplay of elasticity and boundary conditions
even in the absence of wrinkling.

Equilibrium configurations of an elastic sheet are gov-
erned by the biharmonic equation:

∆2φ(x, y) = 0, (1)

where ∆ =
(
∂2/∂x2 + ∂2/∂y2

)
, x and y are the co-

ordinates along stretching and transverse direction, re-
spectively, and φ(x, y) is the Airy stress function [16].
Further, φ(x, y) is defined through σxx = ∂2φ/∂y2,
σyy = ∂2φ/∂x2, and σxy = −∂2φ/∂x∂y, where σij with
i, j = x, y are the 2D stress tensor components. The
stress σij and strain εij are linearly related through
the standard Hooke’s law under plane stress condi-

tions [16]. At the linear order in the displacement, the
strain is defined through the displacement field u =
(ux, uy) as εxx = ∂ux/∂x, εyy = ∂uy/∂y, and εxy =
(∂ux/∂y + ∂uy/∂x) /2. Now, the boundary conditions
imposed at an elastic sheet of length L and width W
stretched by γx = ∆L/L by imposing a relative displace-
ment ∆L between clamped edges reads, along the free
edges (0 < x < L):

σyy(x, 0) = σyy(x,W ) = 0, (2)

and, along the clamped edges (0 < y < W ):

ux(0, y) = uy(0, y) = 0, (3)

ux(L, y) = ∆L and uy(L, y) = 0. (4)

Harmonic and biharmonic equations with mixed
boundary conditions, such as Eqs. 1-4, are encountered
in various situations in physics including edge effect in
electrostatics, wetting phenomena and crack propaga-
tion [17]. In all these examples, the solution is singu-
lar as it exhibits a divergence at the location where the
boundary condition changes abruptly. In the context of
fracture mechanics, it is for example crucial to accurately
predict the elastic field and the stress concentration de-
veloping near the tip of crack. Therefore, powerful meth-
ods have been developed to obtain the equilibrium con-
figurations by solving Eq. 1 with appropriate boundary
conditions [18–21]. Yet, it remains a challenge to obtain
analytical expressions over the entire domain. Progress
can be made using asymptotic approaches allowing one to
obtain the elastic field in a small region surrounding the
crack tip. In this intermediate region, it is well-known in
fracture mechanics that the elastic field exhibits a self-
similar structure characterized by a universal exponent
α = 1/2 [22].
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In a stretched elastic sheet, stress focusing and sin-
gularities also occur at the points where clamped edges
meet free edges, as first discussed by Williams [23] and
then by Bentham [24]. In the case of a semi-infinite long
sheet which is clamped at one end, Bentham showed [24]
that the longitudinal stress is singular and proportional
to r−α, where r is the distance from the corner. But,
unlike cracks, the exponent of the singularity 0 < α < 1
depends strongly on the Poisson ratio and geometrical
factors. Later, Stern and Soni [25] calculated the dis-
placement fields and stress distribution which is also sin-
gular at the corner of a rectangular sheet of semi-infinite
extent which is held under mixed free-clamped boundary
conditions. As far as we know, these calculated fields
have not been tested quantitatively against experiments.
Further, because of the difficulty in deriving exact so-
lutions of the equations for elastic sheets, finite element
analysis (FEA) has been increasingly used in structural
engineering to obtain stress and strain distributions. The
efficacy of those techniques in cases where stress singular-
ities can exist, as at the corners of clamped-free boundary
conditions [23] remains unclear. Moreover, the overall
shape and displacement field of a finite sized sheet has
not been investigated in any detail.

For materials with large Young’s modulus such as steel
and glass, the apparent change in shape of a finite sized
sheet is not obvious for typical stresses applied before
the material ruptures. In case of softer elastic materials
such as latex rubber, the deformation becomes notice-
able when examining images in the context of reports
on wrinkling in stretched thin sheets [3, 6, 8]. Because
a singularity is present at each of the four corners [24],
their interactions can be further important to the ob-
served displacement field of the finite-sized sheet and its
edge shape. However, a study of the shape, which can
further illuminate the stress distribution in the sheet as
it is stretched, has not been reported. This can not only
lead to a better understanding of the large deformation
regime in elastic materials but also the nature of insta-
bility observed in thin sheets under boundary forcing.

In this paper, we discuss experiments on elastomer
thin sheets which are clamped at both ends, and mea-
surements of their local displacement field with Digital
Image Correlation technique. Because an analytical ex-
pression of the displacement field over the entire sheet is
not possible, the experimental results are then compared
with numerical simulations using Finite Element Anal-
ysis, assuming a Hookean response of the material. An
overall agreement between the experiments and simula-
tions is found. In particular, two regimes of deformations
are identified: a uniaxially stretched region in the central
part, and clamp dominated regions on the corresponding
sides. Within the clamp dominated region, we find exper-
imentally and numerically that the elastic field is singular
near each of the four corners of the sheet. We showed that
these results are consistent with the asymptotic analysis
of the problem performed by Stern and Soni [25]. Sur-
prisingly, our work is the first experimental validation of
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FIG. 1. (a) Schematic of the clamped stretched elastic sheet
and the coordinate system. (b) An image of a stretched
polyvinyl siloxane sheet (L = 10 cm, L/W = 2, and γx =
∆L/L = 0.35).

their results. Finally, we discuss the regularization of the
singularity observed very close to the corners.

II. PROTOCOLS

A. Experimental System

In order to investigate the deformation of elastic sheets,
we experimentally study elastomers (polyvinyl siloxane
and latex rubber) with initial length L, width W , and
thickness t. The polyvinyl sheets were fabricated using
molds in the laboratory, whereas the latex sheets were
bought from a commercial supplier and ironed flat to re-
move any creases. The sheets were cut to a specified
size before being mounted between two parallel flat alu-
minum clamps as shown schematically in Fig. 1(a). The
length and width of the sheet are aligned with the x and
y axes of the Cartesian coordinate system with origin
corresponding to the bottom left corner of the sheet as
shown in Fig. 1(a). The material properties of the sheets,
including the Poisson ratio ν and the Young’s modulus E,
are obtained as part of the analysis of the displacement
measurements discussed in the following sections.

The elastic sheet is then stretched by moving one of
the clamps which is attached to a motorized linear trans-
lating stage. Thus, the clamps stretch the sheet along
the x axis, while being held parallel to the y axis. The
resulting sheet stretched by a length increment ∆L is also
shown schematically in Fig. 1(a), and an actual example
corresponding to a polyvinyl sheet is shown in Fig. 1(b).
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FIG. 2. (a) Image of a sheet with randomly placed markers
which fluoresce under UV light with no applied strain γx = 0.
(b) Same image with the measured displacement field (white
arrows) superimposed under an applied strain γx = 0.0375.
Only the left half of the sheet is shown. (L/W = 2, t/W =
1.9 × 10−3, t = 0.15 mm).

Thus, the current sheet length is L + ∆L and the cor-
responding applied strain γx = ∆L/L. Because of the
symmetry of the system, the resulting maximum trans-
verse contraction of the width ∆W can be expected to
occur at the mid-distance between the clamps. Thus, the
corresponding width is W −∆W . We also denote ux and
uy, the components of the displacement field along the
x-axis and y-axis, respectively, in Fig. 1(a). As shown
in Fig. 1(b), we image the sheets against a contrasting
background with a digital camera with a resolution of
1824× 2048 pixels to obtain the shape of the sheet using
white light illumination. Thus, we can identify the edge
of the sheet by processing the images using standard edge
detection algorithms.

B. Displacement Field with Digital Image
Correlation

The displacement field of the stretched sheet is mea-
sured using Digital Image Correlation (DIC) technique
used to measure deformations in elastic medium [26].
This technique requires the surface to have a random
texture. Because the surface of the materials used are
featureless, we apply markers in a random pattern which
fluoresce under UV light as shown in Fig. 2(a). In this
technique, the displacement field u(r) (with r = (x, y))
is related to the intensity fields of the picture by I0(r) =
I1(r + u) where I0 and I1 are the intensity fields of the
reference image before loading and the image after load-
ing, respectively. The local displacement u of a material
point originally at r is obtained by minimizing the cross-
correlation function C(u) = 〈(I1(r + u)− I0(r))

2〉 with
respect to u where 〈...〉 is an average over a window cen-
tered on r with a lateral size which is typically between
8 to 64 pixels, depending on the image resolution. An
interpolation of the pictures based on a Fourier decom-

DIC FEA
(a)

(b)
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FIG. 3. Maps of the measured ux (a) and uy (b) in ex-
periments corresponding to the displacement field shown in
Fig. 2(b). The iso-ux and iso-uy are also shown. Maps of ux
(c) and uy (b) obtained with numerical FEA corresponding to
the same system as in the experiments along with iso-ux and
iso-uy contour lines. The experimental and numerical maps
are observed to be overall in agreement.

position along with a multiscale approach to locate the
minimum of C yield a robust and accurate calculation of
the displacement with a subpixel resolution [26].

We first consider a latex sheet with size L = 16 cm
and W = 8 cm, and thickness t = 0.15 mm to investigate
the observed displacement field as a function of applied
uniaxial strain γx. Fig. 2(b) shows an example of a dis-
placement field superposed on the reference image when
the elastic sheet is stretched by 6 mm (γx = 0.0375). Be-
cause of the symmetry of the system, we focus on the left
half of the system (0 < x < L/2) to not only obtain the
data with higher resolution but to show it with higher
magnification as well. Here, it is to be noted that only
a fourth of the vectors are shown for clarity, i.e. every
alternate row and column is skipped to avoid overlaps in
the plotting. Because of the size of the cross-correlation
window used to detect displacements, the field is effec-
tively averaged over an area of 1.3× 1.3 mm2. This aver-
aging allows for a high precision in the measurement of
displacements of the order of 100µm, corresponding to
a resolution of approximately 1× 10−3 w.r.t. its length,
which is of order of the thickness of the sheet. This small
averaging window has little impact on the scale of the
spatial trends of interest except at the very corners of
the sheet.
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FIG. 4. A symmetric stretched sheet can be divided essentially into two main regions from the clamped boundaries. Further,
two subregions can be identified as a function of distance r from a corner. The corresponding distances along strain direction
LC , LCo, LNL are denoted. The corner dominated region corresponds to LNL < r < LCo.

From Fig. 2(b), one observes that the displacement
field increases overall in magnitude from the left to the
right because the left clamp is fixed and the right clamp
(at x = L, not shown) is moved. Further, the direction of
the arrows indicate that the relative magnitude of the dis-
placement of the sheet in the longitudinal and transverse
directions changes continuously with relatively smaller
displacements in the transverse direction compared with
the longitudinal direction.

To see these trends in the displacement field more
quantitatively, the map of ux is shown in Fig. 3(a) along
with iso-ux contour lines. The complementary map of
uy is shown in Fig. 3(b). We find that the central re-
gion of the sheet experiences a uniaxial stretching. Near
the clamp, one observes not only that the sheet displaces
increasingly with x but also somewhat more greatly at
the sides compared with the center axis y = W/2 of the
sheet. This is apparent from the curvature of the lines
denoting the iso-uy contours in Fig. 3(a), and the iso-
ux contours in Fig. 3(b). Thus, in this region near the
clamps, the stretching is biaxial.

C. Finite Element Analysis

We perform numerical analysis to further substantiate
the experimental measurements. FEA has been used ex-
tensively to calculate the displacement fields and stress
distributions in solids. Even though imposed mixed
boundary conditions yields an elastic singularity at each
corners of the stretched sheet, we find that Eqns. 1-4
solved using the FEA module in MATLAB converges and
yields stable results.

The corresponding ux and uy maps are shown in

Fig. 3(c) and Fig. 3(d), respectively, and are observed
to be similar to those corresponding to the experiments.
In particular, the FEA displacement maps confirms the
presence of a uniaxially stretched region and a clamp
dominated region in the stretched elastic sheet with
mixed clamped and free boundary conditions at oppo-
site ends.

In the following sections, we will compare the obtained
fields using the experimental and numerical methods
quantitatively, besides analyzing the observations with
asymptotic analysis.

III. DEFORMATION REGIONS IN THE
STRETCHED SHEET

From a visual inspection of the displacement field ob-
tained by DIC and, further confirmed by FEA, we iden-
tify two regions: (a) a uniaxially stretched region, and
(b) a clamp dominated region where the stretch is bi-
axial as illustrated in Fig. 4. The transition between
these two regimes occurs at characteristic distance LC
from the clamps. The clamp length LC may be expected
to be dependent on the Poisson ratio, the sheet geometry
and the applied strain.

As one attempts to understand the deformation of the
sheet closer to where the free and clamped edges meet at
the four corners in the region x < LC , the displacement
field may be characterized by universal features akin to
singular field at the vicinity of a crack in a brittle mate-
rial. Thus, we anticipate the existence of two other char-
acteristics lengthscales, the corner length LCo(< LC) and
the nonlinear zone length LNL(< LCo) near each corner,
as illustrated in Fig. 4. For r > LCo, the distance from
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FIG. 5. (a) Displacement profile ux measured along the x axis
at y = W/2 for a latex sheet (L/W = 2, t/W = 1.9 × 10−3,
t = 0.15 mm). The clamp induces a slight deviation from
linearity near x = 0. A linear fit of the data away from
the clamp gives εxx = 0.0351 and u0 = 0.25 mm (see Eq.5).
(b) Displacement profile uy measured along the transverse
direction at x = 3L/4 in the uniaxially stretched region. A
linear fit of the data gives εyy = −0.0159. (c) The Poisson
ratio ν = −εyy/εxx is essentially independent of the applied
strain γx. (d) The nominal stress increases linearly with the
strain for γx < 0.2. A linear fit gives E = 1.1 MPa.

the corner is too large for corner singularity to play a
significant role. For r < LNL, very close to the corner
singularity, we expect that linear elasticity breaks down
as is commonly observed in the process zone at the tip of
a crack [20]. As a consequence, one may postulate that
universal features emerging from the stress singularity
may develop over a distance LNL < r < LCo.

A. Uniaxially Stretched Region

We now characterize the linear mechanical properties
of the sheet from the DIC measurements in the uniaxially
stretched region, i.e. LC < x < L − LC . We integrate
the transverse and longitudinal strains, εyy = −νεxx and
εxx = γx, respectively, in this region and obtain the dis-
placement fields:

ux = u0 + γxx, (5)

uy = −νγx(y −W/2), (6)

where, u0 is a constant of integration which is dependent
on the Poisson ratio and vanishes when ν = 0. From
Eqns. 5 and 6, we can readily check that the iso-uy and
iso-ux are parallel and perpendicular to the longitudinal
edges, respectively, which is consistent with the contours

(b)

(a)

FIG. 6. (a) Measured transverse displacement uy normalized
by γxW/2 for a latex sheet as a function of the normalized
longitudinal coordinate x/L for applied strain γx in the range
0.09 to 0.30 (L/W = 2, t/W = 1.9× 10−3, t = 0.15 mm). (b)
The data collapses onto a master curve independent of γx.
The dashed line corresponds to the profile obtained by FEA
with ν = 0.45.

shown in Fig. 3. In principle, u0 is set by matching the
solutions at the transition between the uniaxial and bi-
axial stretching regions. However, it is a priori unclear
how to perform this in practice.

In Fig. 5(a), we plot the longitudinal displacement pro-
file ux along the x axis at y = W/2. A change of slope
is observed near the clamp, signaling the transition to
bi-axial strain. We then obtain the longitudinal strain
measured as the slope of a linear fit of the data in the
region where deformations are uniaxial. Using Eq. 5, we
find u0 = 0.25 mm which is much smaller that the sheet
length and, thus, it can be neglected to evaluate the lo-
cal strain, εxx ≈ γx. In Fig. 5(b), we show the uy profile
along the y axis in the linearly stretched region. The
displacements profile decreases linearly with y with no
observable effect at the boundaries. From the various
applied strain γx, we measure the Poisson ratio from the
relation ν = −εyy/εxx, and find ν = 0.45 ± 0.02 (see
Fig. 5(c)).

Finally, we measure the force F for various applied
strain. In Fig. 5(d), a plot of the nominal stress F/(Wt)
as a function of the applied strain γx reveals that the
material is linear elastic for γx < 0.2. For larger γx, strain
softening develops as commonly observed in rubbers and
elastomers [1]. In this regime, Young’s modulus is E =
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FIG. 7. The observed edge profiles for polyvinyl sheets with
two different aspect ratios: (a) L/W = 1.8, W = 6.3 cm, t =
0.3 mm, and γx = 0.25, and (b) L/W = 3.3, W = 3.1 cm, t =
0.3 mm, and γx = 0.30. (c) Corresponding profiles obtained
with FEA for various L/W indicated are observed to show the
same trends observed in the experiments. The arrows indicate
the location of the shallow maximum in uey. (d) The estimated
Lc increases with L/W to approximately 0.5W ± 0.05W .

1.1 MPa and the shear modulus defined as µ = E/(2(ν+
1)) = 0.38 MPa. No hysteresis or permanent deformation
were observed upon unloading the sample for this entire
range even in the non-linear regime.

B. Edge profile and clamp length scale

We start by analyzing the edge profile uey of the sheet as
a function of the applied strain and the aspect ratio L/W .
This edge profile simply corresponds to the displacement
field of the points at the free edge of the sheet, thus,
uey(x) ≡ uy(x, 0), by definition. In Fig. 6(a), we show
the edge profiles measured by DIC for γx in the range
0.09-0.30. The aspect ratio of the sheet is L/W = 2. At
a fixed γx, the amplitude of the profile is increasing with

x until reaching a stationary value which indicates that
the edges are parallel to the direction of stretch. This
is consistent with the fact that the sheet is uniaxially
stretched in that region. Thus, using Eq. 6, we have at
y = 0, uey = νγxW/2 which explains the overall increase
of the profile amplitudes with γx. Superposing exper-
imental and numerical profiles obtained by FEA (solid
lines) for the same γx, we observe good agreement, thus
validating both the experimental measurements and nu-
merical simulations.

Further, as shown in Fig. 6(b), when normalizing the
displacement by γxW/2, we observe a good collapse of
the profiles on a master curve, not only in the central
region, but also near the clamps over the entire range
of applied strain. Thus, material nonlinearities can be
neglected in the range of strain applied.

Next, we explore the role played by the aspect ratio at a
fixed applied strain. Experimental data for two different
aspect ratios are shown in Fig. 7(a) and (b). We observe
a good agreement with the numerical profiles calculated
by FEA (solid lines). In Fig. 7(c), we plot the normalized
profile for aspect ratio in the range 0.5− 10 obtained us-
ing FEA. For aspect ratios L/W < 1, the profiles do not
reach a stationary regime which indicates that, near the
free edges, the stretching is bi-axial. As the aspect ratio
is progressively increased, we observe the development
of a flat central region when W/L > 1. Interestingly,
the normalized profile reaches a maximum larger than
ν which is the maximum value expected from Eq. 6 as
highlighted by the arrows in Fig. 7(c). For L/W ≤ 2, we
find a unique, global maximum located at the center of
the sheet (x/L = 1/2). But for L/W > 2, we observe
the formation of two local maxima near the two opposite
clamps (only the left half of the sheet is shown for clar-
ity). These qualitative features could not be observed
in the experiments because of material and measurement
uncertainties.

To estimate the clamp length experimentally, LC is
defined as the distance from the clamp where uey(LC) =
νγxW/2 (a vertical dashed line is shown for the case of
L/W = 10 in Fig. 7(c)). This criterion corresponds to the
point from where the free edges are essentially parallel.
In Fig. 7(d), we plot the measured LC as a function of
the aspect ratio and find that for L/W > 1, the clamp
length normalized by the width is independent of L/W ,
and LC/W = 0.5 ± 0.2, where the variation occurs due
to the method used to measure LC .

C. Displacement field in the clamp dominated
region

We now analyze the displacement field inside the sheet.
It is convenient to use polar coordinates to express ux
and uy (see Fig. 1(a) for the notations). In Fig. 8(a) and
(b), we plot the longitudinal and transverse displacement
profiles obtained by DIC for r/W = 0.5 as a function of
polar angle θ. The different curves correspond to a fixed
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FIG. 8. Longitudinal (a) and transverse (b) displacements
profiles as a function of the angle varying γx at a fixed distance
from the corner r/W = 0.5. Solid lines are profiles obtained
by FEA. (c) All the profiles collapse on two master curves in
excellent agreement with numeric profiles obtained by FEA
(solid lines).

strain varied in the range 0.09−0.3. We observe that the
overall profiles increase in amplitude with γx and that
they are smooth functions of θ monotonically decreasing
to zero at θ = π/2, thus satisfying the imposed boundary
conditions at x = 0. Excellent collapse of the profiles is
obtained when normalizing the displacement by γxW as
shown in Fig. 8(c). Comparing the measured profiles
shown in Fig. 8(a-c) with numeric profiles obtained by
FEA (solid lines), we obtain a quantitative agreement.

In Fig. 9(a) and (b), we analyze the evolution of the
displacement profiles with increasing distance from the
corner, while keeping the applied strain fixed (γx =
0.079). We obtain a quantitative agreement between the
profiles obtained using DIC and FEA, except very close
to the corners corresponding to small r/W . At these
small distances, we find that the numerical data system-
atically underestimate the experimental data, although
the trend still remain consistent. For the longitudinal
displacement, the evolution of the overall amplitude is
observed to increase monotonically with r. However, the
transverse profiles shown in Fig. 9(b) reveal a more com-
plex dependence with r as the profiles intersect. For

(a)

r↗

r↗

(b)

FIG. 9. Longitudinal (a) and transverse (b) displacements
profiles as a function of the angle varying the distance from
the corner r/W = 0.063, 0.13, 0.25, and 0.50, at fixed γx =
0.079. Solid lines are profiles obtained by FEA.

example, the profile measured at the largest distance
(r/W = 0.50) exhibits the largest transverse displace-
ment at θ = 0 but the smallest at around θ = π/2.
This precludes a successful collapse of the data after a
proper rescaling of the displacement, at least in the rel-
atively large range of r considered. Thus, we consider a
smaller subregion around the corners to develop further
understanding of the observed displacement field near the
clamps in the next section.

IV. CORNER DOMINATED SUBREGION

We start by presenting the analytical results obtained
by England [27], and later by Stern and Soni [25] using
an asymptotic approach applied near the vicinity of the
corner between semi-infinite clamped and free edges.

A. Asymptotic analysis

The displacement components ux and uy near a corner
upon loading can be decomposed as [25]:

ux(r, θ) = uex(r) Φx(θ) [1 + F(r, θ)] , (7)

uy(r, θ) = uey(r) Φy(θ) [1 +H(r, θ)] , (8)
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where, uex and uey are the longitudinal and transverse dis-
placement at the edge, and Φx and Φy are smooth har-
monic functions of θ which depend on ν. We explicitly
include higher order contributions to the displacement
field, F(r, θ) and H(r, θ). These functions encapsulate
the complex dependence of the displacement field with
r, and are responsible for the absence of simple scaling
law for ux and uy for arbitrary r as evident in Fig. 9(b).
However, in the asymptotic limit r/W � 1, F(r, θ) and
H(r, θ) vanish yielding a separable form for ux(r, θ) and
uy(r, θ). In this limit, uex and uey reads [25]:

uex(r) =
gx(ν)

2µ
KIr

α (9)

uey(r) =
gy(ν)

2µ
KIr

α , (10)

where KI is the stress intensity factor in mode I (trac-
tion mode), gx(ν) and gy(ν) are smooth functions of ν,
and µ = E/[2(1 + ν)] is the shear modulus. Further,
Φx(θ) and Φy(θ) are monotonically decreasing functions
with Φx(0) = Φy(0) = 1, and Φx(π/2) = Φy(π/2) = 0.
The expression for gx(ν), gy(ν), Φx(θ), and Φy(θ) can be
found in Appendix A. The exponent α is the solution
of [25]:

cosα =
2α2

κ
− κ2 + 1

2κ
, (11)

where κ = (3 − ν)/(1 + ν) in case of plane stress. For
an incompressible material ν = 0.5, and thus κ = 5/3,
α = 0.69 ≈ 2/3, and µ = E/3. In the case of the ma-
terials used in our experiments where ν = 0.45, we have
α = 0.71. Because the amplitude of the displacement
grows sublinearly with r, the stress is singular at the
four corners. Indeed, we have σrr ∼ µ∂ur/∂r, and thus
σrr ∼ KIr

α−1, with α < 1, which diverges as r goes to
zero. This is obviously unphysical as was already noted
by Williams [23]. Therefore, it is necessary to introduce a
cutoff length at a small scale below which the asymptotic
solution is no longer valid.

The functional dependence of the stress intensity factor
with the applied loading, mechanical properties, and the
sheet dimensions has not been yet given. By dimensional
analysis, we expect:

KI = kI(ν)
F

A
W 1−α , (12)

where kI is a smooth function of ν. As the Poisson ratio
ν tends to zero, the stress field is uniaxial over the entire
length of the sheet, without any bi-axial stress build-
ing up in the clamp dominated region. Therefore, we
expect that clamp dominated region to disappear alto-
gether with the elastic singularity. Then, we argue that,
as ν → 0, the extension of the clamp dominated region
LC scales as LC ∼Wνγ (γ > 0), and the strength of the
singularity scale KI ∼ kI ∼ νβ (β > 0).

1
0.73 FEA

AA

(a)

1
0.68 FEA

AA

(b)

FEA
AA

(c)

=0 =0

FEA
AA

(d)

LCo/W LCo/W

r↗ r↗

*
**

*

FIG. 10. The dependence of the longitudinal displacement
ux (a) and transverse displacement uy (b) with distance from
the corner r for θ = 0. Good agreement between numer-
ics (dashed lines) and asymptotic analysis (solid lines) is ob-
tained for r/W < LCo/W = 0.1. Profiles are obtained by
FEA (dashed lines) and asymptotic analysis (solid lines). θ-
dependence of ux (c) and uy (d) for r/W = 0.063, 0.1, 0.25,
and 0.5. Good agreement between numerics (FEA, dashed
lines) and asymptotic analysis (AA, solid lines) is obtained
for r < LCo = 0.1W .

B. Range of validity of the asymptotic
displacement field

As argued earlier, the asymptotic solutions derived
within a linear elasticity framework are expected to be
accurate over a finite range of distance from the corner,
bounded from below by the large deformation or nonlin-
ear zone, and from above by the fact that the sheet is
finite sized. Therefore, to compare the asymptotic solu-
tion with experiments, it is crucial to address its range
of validity and evaluate the cutoff lengths at small and
larger scales which can depend on the Poisson ratio, sheet
geometry and applied strain.

Now, the higher order terms in the Eqns. 7 and 8 be-
come of the same order as the singular terms, far enough
from the corner. Since analytic expressions for the higher
order terms are not available, we resort to discussing the
range of validity of the asymptotic predictions based on
the numerical results. The longitudinal and transverse
displacements along the direction θ = 0 are shown in
a log-log plot in Fig. 10(a) and Fig. 10(b), respectively.
We define the corner length LCo as the distance below
which the numeric profile and asymptotic prediction are
in agreement to within 10% relative difference. With
this definition, we obtain a measure of the corner length,
LCo = 0.1W . For r < LCo, a fit of the data gives
ux(r, 0) ∼ r0.73 and uy(r, 0) ∼ r0.68, in good agreement
with prediction of α = 0.71 in case where ν = 0.45 by
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Stern and Soni [25].
Next, we analyze the angular dependence of the dis-

placement field. In Fig. 10(c) and (d), we plot the longi-
tudinal and transverse displacement as a function of θ for
r/W in the range 0.0625− 0.5. Consistent with previous
comparisons, we obtain good agreement between numer-
ics (dashed lines) and asymptotic analysis (solid lines)
for r/W < LCo/W = 0.1, corresponding to the profiles
with a star label.

C. Small scale cutoff

Now, we focus on the small scale cutoff below which
the model equations used cannot be expected to be valid.
It has been long realized [23] that the divergence of the
stress at the singularity is not physical and is regularized
by nonlinear processes which operate in any material at
sufficiently large stresses. Such processes mean that the
linear elastic equations used are no long valid. For exam-
ple, in fracture mechanics, which is governed by similar
elastic equations [19, 20, 22], a fracture process zone is
well known to occur near the tip of a fracture due the
singular nature of the solutions there. The nature of
the nonlinear processes and the size of the process zone
are highly dependent on the type of material, the type
of loading and the geometry of the sample. In our ex-
periments, we did not observe irreversible deformation
due to plasticity or damage with the material used over
the range of applied strain. Thus, nonlinear elastic (re-
versible) deformations alone may suffice to regularize the
singularity at the corner.

Assuming that elastic nonlinearity becomes dominant
for stresses σ ∼ µ or strain of O(1), we can provide
a natural lengthscale LNL below which linear elasticity
breaks down. From Eqs. 9 and 10, the typical strain
experience at a distance r is given by ε ∼ KI/µr

α−1.
Thus, when r ≈ LNL, KI/µL

α−1
NL ∼ 1, yielding LNL ∼

(KI/µ)
1/(α−1)

. Using Eq. 12, we obtain:

LNL/W = f(ν) γ1/(1−α)x , (13)

where, f(ν) is an unknown function of ν which should
vanish as ν → 0. Similar scaling for the extent of the
process zone, where nonlinearities dominate, has been
derived in the context of crack propagation in gels and
adhesives [28–30]. With the typical strain and width used
in the experiment (γx ∼ 0.1, W = 80 mm), and assuming
that f is O(1) for incompressible material, LNL/W ∼
10−3, thus LNL is of order 0.1 mm. This length scale is
of order of the spatial accuracy of the DIC technique and
the thickness of the sheet, and cannot be clearly resolved
in our experiments. With the geometrical and loading
parameters used in the study, Eq. 13 yields a regularized
region based on nonlinear elastic effect of order of the
thickness. For thick enough sheet, 3D elasticity effects
may take over near the clamps before the development
of large stresses predicted by Stern and Soni. More work

FIG. 11. Normalized edge profile from experiment (colored
disks) and numeric simulations (solid line) as a function of
x/W . Measured profile exhibits a power law compatible with
numeric profiles and theoretical predictions introducing an
offset xs/W = −0.01. Insets : same data without offset.

is needed to investigate the crossover between 2D and
3D elasticity for very thin sheets, especially the regime
where t� LNL.

D. Comparisons with DIC and FEA methods

We now compare the results obtained from experi-
ments and simulations with the predictions from the
asymptotic analysis having obtained the inferred range
of LNL < r < LCo, where LNL/W = 10−3 ∼ 0 and
LCo/W = 0.10. In Fig. 11, we show in a log-log plot,
the transverse displacement at the edge uey normalized
by γxW/2 as a function of x/W (see inset). We find
that the experimental profiles are compatible with the
theoretical prediction and FEA profiles after introduc-
ing a small offset xs/W = −0.01 in the x-axis. Because
edge profile develops a power behavior over a range of
lengthscales which are difficult to reach experimentally,
the agreement with theory is very sensitive to an offset
in the origin of the x axis.

Next, we compare the θ-dependence of experimen-
tal displacements field with theoretical predictions for
r/W = 0.0625, 0.10, 0.2, and 0.25 in Fig. 12. For
r/W < LCo/W = 0.1, we expect that the experimen-
tal profiles measured at various distance from the corner
collapse on a single power law when normalized by rα

with α = 0.71. In Fig. 12(a), we plot the longitudinal
displacement normalized by γxW

1−αrα (∼ rα) as a func-
tion of θ. We observe a good collapse of the data when
α = 0.71. For comparison, in the inset, we show the ef-
fect of a rescaling using α = 1. Although the evolution of
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(a)

(b)

� = 1

� = 1

� = 0.71

� = 0.71

r↗

r↗

FIG. 12. Displacement profiles in the longitudinal (a)
and transverse (b) direction measured at a distance r =
5, 10, 15, 20 mm from the corner (γx = 0.09). A good collapse
of the data is obtained when the displacements are normalized
using α = 0.71 rather than α = 1 (see inset).

the profile is consistent with numeric profiles obtained by
FEA (dashed line), the experimental profiles are shifted
upward by an overall constant. Then, we show the re-
sult of the same analysis for the transverse displacement
in Fig. 12(b). We observe a better collapse of the data
using α = 0.71 than α = 1 (see inset), confirming that
the displacement field is singular at the corners.

Thus, we clearly find that the strain and stress fields
are controlled by a nontrivial exponent. Although the ex-
perimental data do not allow a precise measure of the ex-
ponent of the singularity, we demonstrate unambiguously
that it is smaller than unity confirming the existence of
an elastic singularity at the corners of a longitudinally
stretched sheet.

V. CONCLUSIONS

In summary, we obtain the displacement field and the
shape of elastic sheets under longitudinal stretching with
complementary experimental and theoretical models. In
particular, we accurately measure the local displacements
experienced by the sheet using DIC techniques over a
wide range of applied strains. We also calculate the dis-
placement field using finite element analysis with equa-
tions used to model planar deformation of sheets under
boundary applied stresses. This numerical analysis is

performed with the same sized sheets as in the experi-
ments, but assuming that the thickness of the sheet does
not evolve, even when a significant range of strain is ap-
plied. Nonetheless, we find that linear elasticity provides
a reasonable description of the overall displacement field
and shape of the free edges for applied strained γx at
least up to 0.3.

While a reasonably simple form of the elastic equa-
tions are found to describe the overall deformations, these
equations cannot be fully solved analytically. Thus, to
make progress toward developing an analytical frame-
work to understand the observed sheet displacement
field, we identify regions and subregions in the deformed
sheet which are amenable to further analysis. We find
that the sheet can be divided overall into a simple uniax-
ially stretched central region, and a more complex clamp
dominated region near each clamped edge. The length
scale from the clamps where linear uniaxial stretching
occurs can be understood as resulting from a trade off be-
tween satisfying the no slip boundary condition imposed
at the clamps and minimizing the additional elastic en-
ergy induced by the transverse stresses.

Further, inside the clamp dominated regions, we iden-
tify two subregions depending on the distance from each
clamped-free corner of the sheet. In the corner dominated
subregion, we find that asymptotic analysis, performed
in the context of sheets with semi-infinite clamped and
free edges under strain by Stern and Soni [25], is found to
be in excellent agreement with FEA analysis both for the
evolution of the displacement field with distance from the
corner (∼ rα with α = 0.71 for Poisson ratio ν = 0.45)
and the angular dependence. The extent of this subregion
characterized by a diverging stress is found to be of or-
der LCo = 0.1W for the elastomers used. We show that
asymptotic and FEA analysis give a reasonable descrip-
tion of the measured displacement fields obtained by DIC
technique. While the power law uy ∼ rα could not be
checked experimentally in terms of distance r because of
a lack of sufficient range of length scales within the corner
dominated zone, we observe good agreement between the
asymptotic solutions and the experiments for the angular
dependence. Further, we infer that the derived power law
of 0.71 is consistent with our measurements. Very close
to the corners, we postulate the existence of a large de-
formation subregion where nonlinear process may occur
because of the large diverging stresses there, analogous
to the process zone in fracture mechanics. However, due
to the lack of permanent deformation upon stretching,
we expect that the corner singularity to be regularized
by nonlinear elasticity.

Finally, from the perspective of wrinkling in elastic
sheets, we confirm with our experiments that a stretched
sheet remains planar because the sheet thickness chosen
in our study are above the critical threshold required for
wrinkling [6, 8]. In case where transverse wrinkles are
observed in sheets with [15], or without twist [6], it was
observed that the wrinkles form only in the central re-
gions and are suppressed near the clamped boundaries to
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a distance which is of order of half the width of the sheet.
With our analysis of the clamp length LC , we provide a
quantitative characterization of the range over which the
clamps induce a significant contribution to elastic field
which has important implications to the development of
models of tensional wrinkling. According to our study,
the stress fields in the corner dominated subregion ex-
tend from each corner to a similar distance. This biax-
ial stretching appears to suppress the formation of wrin-
kles in that region even when the sheet is thin enough
to display transverse wrinkles. The observed extent of
the corner dominated subregion may be further consis-
tent with reports [6, 8] that wrinkles are not observed for
sheets with L/W well below two, even in case of suffi-
ciently thin sheets. Future work is required to connect
the comprehensive analysis of the state of stress of the
sheet provided by our study in the pre-wrinkling regime
to the occurrence and extent of wrinkling in thin sheets.

Appendix A: Auxiliary functions for the asymptotic
displacement fields

The analytic expressions of the asymptotic displace-
ment fields we use are adapted from Stern and Soni [25].
There, fields were formulated using polar coordinates.
Here, we provide the corresponding formulations using
cartesian coordinates by introducing auxiliary functions

gx(ν) = f Ir (0) + ηf IIr (0) , (A1)

gy(ν) = f Iθ (0) + ηf IIθ (0) (A2)

where, η = KI/KII is the mixed-mode ratio, KI and
KII are the equivalent of the stress intensity factors and
depend on the applied load and ν. The mixed-mode ratio
is given by

η =
sin(απ)

κ+ 2α+ cos(απ)
, (A3)

where α is the exponent of the singularity which is given
by Eq. 11. Eq. A3 implies that the local elastic field near
the corner always includes an opening mode and a shear
mode as commonly observed in interfacial crack between
two different materials [31].

Then, the expressions for Φx(θ) and Φy(θ) reads:

Φx(θ) =g−1
x (ν)

(
f Ir (θ) + η f IIr (θ)

)
cos θ (A4)

−g−1
x (ν)

(
f Iθ (θ) + η f IIθ (θ)

)
sin θ , (A5)

Φy(θ) =g−1
y (ν)

(
f Ir (θ) + η f IIr (θ)

)
sin θ (A6)

+g−1
y (ν)

(
f Iθ (θ) + η f IIθ (θ)

)
cos θ , (A7)

where,

f Ir (θ) =(κ− α) cos[(1− α)(π/2− θ)]
−(κ− a) cos[(1 + α)(π/2− θ)] , (A8)

f IIr (θ) = −(κ− α) sin[(1− α)(π/2− θ)]
+(κ+ a) sin[(1 + α)(π/2− θ)] , (A9)

f Iθ (θ) =(κ+ α) sin[(1− α)(π/2− θ)]
−(κ− a) sin[(1 + α)(π/2− θ)] , (A10)

f IIθ (θ) =(κ+ α) cos[(1− α)(π/2− θ)]
−(κ+ α) cos[(1 + α)(π/2− θ)] . (A11)
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