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E. Stanifer, P.K. Morse, A.A. Middleton, M.L. Manning
Syracuse University Department of Physics

To better understand the surprising low-frequency vibrational modes in structural glasses, where
the density of states D(ω) deviates from mean field predictions, we study the spectra of a large
ensemble of sparse random matrices where disorder is controlled by the distribution of bond weights
and network coordination. We find D(ω) has three regimes: a very-low frequency regime that
can be predicted analytically using extremal statistics, an intermediate regime with quasi-localized
modes, and a plateau in D(ω). When there is a finite probability of bond weights approaching
zero strength, the intermediate regime displays a scaling consistent with D(ω) ∼ ω4, independent
of network coordination and system size, just as in simulated structural glasses.

The vibrational spectra of disordered glassy materi-
als exhibit universal features. Although these features
govern the mechanical response and provide insight into
mechanisms for material failure, their origin remains
poorly understood.

Perhaps the most well-studied feature of the density
of vibrational states D(ω) is the boson peak, which is
an excess of vibrational modes above the Debye predic-
tion, D(ω) ∝ ωd−1 [1–3]. In jammed packings the fre-
quency at which the peak occurs, ω∗, scales linearly with
the average excess number of contacts δz above the iso-
static point where the number of constraints equals the
degrees of freedom [2, 4, 5]. Additionally, the eigenvector
statistics of modes in the boson peak follow a universal
distribution [6].

Recently, another universal feature has been identi-
fied in simulations of low-dimensional jammed systems:
D(ω) ∼ ω4 below ω∗ [7–9], which deviates from recent
mean-field calculations for the spectra in infinite dimen-
sions that predict D(ω) ∼ ω2 [10, 11]. This interesting
behavior has also been found in Heisenberg spin glass
systems [12]. Understanding this regime is important, as
the vibrational modes are quasilocalized and help govern
flow and failure in disordered solids [1, 12–17].

Given the success of random matrix theory in predict-
ing universal features in other physical systems [18, 19],it
is natural to wonder if a random matrix model may also
explain the ω4 scaling in jammed packings. Other fea-
tures, including the boson peak, have already been un-
derstood in terms of Euclidean random matrices, which
are dynamical matrices for a set of points that are ran-
domly and uniformly distributed in space [20].

Although there are generic arguments that the global
minima of random functions should have a spectrum that
scales as ω4 [21], we would like to construct a random
matrix model to provide insight into how features of the
ω4 region, such as the prefactor, or the location of the
scaling regime, change with parameters such as the excess
coordination δz. Such an understanding is important for
predicting how material preparation protocols alter the
mechanical response of glassy materials.

We study matrices that share three important features
with the dynamical matrix: they are symmetric, positive
semidefinite, and force balancing. In higher dimensions,

force balance corresponds to d sum rules on partial sums
of entries in each row of a matrix, while in 1D, the force
balancing restriction simply requires the sum over all the
entries in a row must be zero [1]. This rule is also obeyed
by standard or weighted Laplacians, Lij , which are also
symmetric and positive semi-definite. They are defined
by

Lij =


−kij i and j are connected,∑
l 6=i kil i = j,

0 Otherwise,

(1)

where kij is the independently chosen random weight of
the edge between particles i and j and in the special
case of the standard Laplacian, kij = 1 [22]. Standard
Laplacian matrices are well-studied and possess distinc-
tive vibrational spectra [23–26], so we focus on weighted
Laplacians for the remainder of this article.

In order to calculate the Laplacian we must specify the
topology of the underlying graph. Although recent ad-
vances have been made in analytically characterizing the
spectra of Laplacians on an Erdős-Rényi graph [27, 28],
Erdős-Rényi networks are not locally isostatic, as a signif-
icant fraction of nodes are under-coordinated (fewer than
isostatic coordination zc = 2d), which leads to highly
localized excitations that are not seen in jammed pack-
ings [27].

Instead, we consider the weighted Laplacian on a zc-
regular graph with a small number of additional edges,
or crossbonds. Since weighted Laplacians only obey one
sum rule, they are effectively 1D and zc = 2. The number
of additional bonds is δzN where N is the number of
points and δz is the excess coordination.

Another important control parameter is the distribu-
tion of the edge weights and, in particular, the weight of
this distribution near zero. We choose to parameterize
this distribution as a power law with exponent α, nor-

malized so that the mean is 1, ρ(k) ∝ kα on
[
0, α+2

α+1

]
. A

uniform distribution corresponds to α = 0 and we only
consider normalizable distributions, α > −1.
Finite size scaling for the weighted ring : We first

study the finite size scaling of the low frequency excita-
tions at isostaticity, when δz = 0 and the underlying net-
work topology is simply a ring of size N . Although this
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is a well-studied model, we believe its finite-size scaling
can provide insight into the case with δz > 0.

Figure 1: The rescaled density of states, D(ω′) where ω′ = ωN ,
for the two-regular graph with N=16, 64, 256, 1024, and 4096 and
α = 0, normalized by system size, N , averaged over at least 106

matrices. The analytic prediction for the low-frequency scaling is
shown as the black dashed line. In the upper-left we have a sketch
of a 1d chain with periodic boundary conditions (the open circles
are the same node) Inset: Unscaled density of states, D(ω).

The inset to Fig. 1 shows the sample averaged den-
sity of states for α = 0, calculated via diagonalization
of the matrix, as a function of system size N , averaged
over 2× 106 matrices. The main panel shows the sample
averaged density of states as a function of the normalized
frequency, ω′ = ωN , highlighting a region of power-law
scaling at the lowest frequencies that disappears in the
thermodynamic limit.

We hypothesize that the lowest-energy mode on a
weighted ring is well approximated by a stretching of the
two weakest bonds, with all other bond lengths relatively
fixed. We expect this to be the case when α ≤ 0, so that
the weight of the lowest two bonds are well separated
from bonds with larger values of kij , especially in the

limit of low ω, ω < N−
2α+3
4α+3 .

If the two weakest bonds have strengths k1 and k2 and
are separated by m nodes, the frequency of this mode

is
√

N(k1+k2)
m(N−m) . As we show in the supplement, one can

use extremal statistics to find the exact distribution of
the weakest bonds on the ring to predict that the low-
frequency density of states scales as:

D(ω) ∝ N2α+3ω4α+3 (2)

For a uniform distribution of bond weights (α = 0),
the contribution of these modes to the density of states
scales as (Nω)3. The scaling of Eq. 2, using α = 0, is
shown as the black dashed line in Fig. 1.

Crossbonded ring with uniform bond weights:
We hypothesize that adding a small number of cross-
bonds alters the low-frequency behavior by reducing the
effective distance between the two weakest bonds. In the
case of δz = 0, the two weakest bonds separate the ring
into two segments that can move relative to one another
at nearly zero cost, but if a crossbond connects those
two segments it will significantly increase the energy of
that mode. Therefore, the weak bonds that contribute to
low-frequency modes must both be in a segment between

crossbonds. Because there are Nδz such segments, we ex-
pect that crossbonds give rise to an extensive number of
low-energy modes, so that the scaling regime described in
the previous section persists in the thermodynamic limit.

We search for very low-weight edges that generate a
two-cut of the network: two edges that, if removed, dis-
connect the network. In the supplement, we show the
low-frequency density of states scales as

Dα(ω) ∝
(

1

δz

)2α+3

ω4α+3, (3)

independent of system size. In this equation, the term 1
δz

takes the place of the term proportional to system size
in the weighted ring (Eq. 2). The excess coordination
effectively rescales the system, promoting a finite size
effect seen in the vibrational spectrum of the ring to a
thermodynamic property of the crossbonded system.

Figure 2: The density of states for fixed system size (N=1000) and
changing δz = 0.1, 0.168, 0.282, 0.476, 0.8 In the upper-left we have
a sketch of a 1d chain with periodic boundary conditions (the
open circles are the same node) with additional bonds. Inset:
The density of states, D(ω), for fixed δz = 0.1 and changing
system size N = 20, 60, 120, 240, 500, 1000, 2000, and 4000.

To test the universal form predicted by Eq. 3, we com-
puted the spectrum D(ω) for rings with crossbonds and
uniform bond weights (α = 0). For each value of δz and
N we generated between 105 and 2 × 106 matrices [29],
with independently chosen weights and uniformly ran-
dom placements of the endpoints of the Nδz/2 cross-
bonds. The inset to Fig. 2 displays plots of the sample-
averaged density of states D(ω) for fixed δz = 0.1 as N
increases. This example plot supports the convergence
of D(ω) to a gapless distribution as N → ∞. The main
panel of Fig. 2 displays the computed density of states
(solid lines) for large N (N = 1000) and varying δz. The
dashed lines in Fig. 2 show fits of the form D(ω) ∝ ω3 to
the low frequency region, as predicted by Eq. 3. These
fits are in good agreement with the computed spectra.

Based on Eq. 3 and the more complete form of the
density of states derived in Appendix B, we expect a
collapse of D(ω) when frequencies are scaled by δz, for
α = 0. Fig. 3(a) shows the density of states for the scaled
frequency, ω = ω/δz. For δz = 0.168 we numerically
identify a frequency ωe that best separates the ω3 scaling
regime from the remaining spectrum. Eq. 3 then predicts
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that all other cutoff frequencies should scale linearly with
δz, which is in good agreement with the data as shown
by the open squares in Fig 2 and 3(a).

In addition to the crossover at ωe, there is a second
crossover where D(ω) flattens to a plateau. In jammed
packings at zero temperature, where the boson peak oc-
curs at the onset of the plateau, ω∗ is often defined as the
frequency at which the density of states attains a fixed
fraction f (typically 25 %) of its value in the plateau [30].
We use that same definition here with f = 0.25.

Figure 3: a)The density of states, D(ω), rescaled by δz,
ω′ = ω/δz. The blue dashed line indicates the transition from the
ω3 regime to the ω4 regime while the black dashed line indicates
the transition to the plateau. The inset shows the scaling of ω∗

and ωe with δz is linear. b)The inverse participation ratio, IPR,
rescaled by δz. The IPR approaches a quasilocalized plateau in
the ω3 region.

In many disordered solids, numerical evidence suggests
ω∗ ∝ δz [2, 5]. To check whether this is also true for our
matrices, we plot the density of states as a function of
the rescaled frequency ω′ = ω/δz, for various values of
δz, shown in Fig 3(a). We see a good collapse of the three
regions, suggesting that both crossovers are linear in δz,
which is also highlighted by the inset to Fig 3(a).

Importantly, this confirms that although the interme-
diate region between the two crossover frequencies spans
less than a decade in frequency, it is well-defined and
does not change as a function of excess coordination or
system size. Specifically, these results mandate the fol-
lowing functional form for the density of states in our
random matrix model with α = 0:

D(ω) =


(
ω
δz

)3
ω ≤ ωe

∝ ωψ ωe ≤ ω ≤ ω∗

∝ const ω∗ ≤ ω
(4)

To extract the scaling of D(ω) below the boson peak,

we fit D(ω) to this functional form and extract the best-
fit ψ for each value of δz (See table in supplemental
materials). We find that all curves are consistent with
ψ = 4.0±0.05 for frequencies ωe ≤ ω ≤ ω∗. This suggests
D(ω) ∝ ω4, just as seen below the plateau in simulations
of jammed packings.

Given the striking similarities between the density of
states in this simple model and jammed packings, we
would also like to know if the eigenvector statistics are
similar. In jammed systems, many modes at frequen-
cies below the boson peak are quasilocalized [30]. This
is quantified by the inverse participation ratio (IPR),
Y (ω) =

∑
i v

4
i /(
∑
i v

2
i )2, where v is the vector associ-

ated with the eigenfrequency ω. In Fig 3(b), the very
low-frequency regime of the IPR plateaus, and the value
of this plateau scales with δz, indicating that only about
1
δz nodes are participating in the vibration. We have also
shown in the supplemental materials that the value of the
IPR is independent of system size in this quasi-localized
regime.

Interestingly, the intermediate region exhibits values of
IPR that are typically associated with quasilocalized ex-
citations. Moreover, the size of those excitations seems to
decrease as δz increases. In jammed solids, an outstand-
ing open question is how the size of localized excitations
changes as one approaches the jamming transition.
Crossbonded ring with power-law bond weights:

Having a simple constructive model that reproduces
many features of the vibrational modes in jammed pack-
ings is useful, because we can vary the model and ask
what features are necessary to generate the ω4 scaling
in the density of states. One natural choice is to perturb
the distribution of bond strengths away from the uniform
distribution by changing the power-law exponent α.

Figure 4: The density of states for α = −0.4, −0.2, 0, 0.25, 0.5, 1,
and 2, with δz = 0.1. Inset: D(ω′ = Aω4α+3) for the same
values of α as in the main figure, where A is the coefficient
predicted in Appendix B. The black dashed line is the predicted
scaling for the low frequency regime.

For α > 0, very weak bonds become rare and the as-
sumptions that lead to Eq. 3 break down. Numerically,
we observe that a gap appears to open up in the spectrum
as α increases, as seen in Fig 4. For α < 0, we expect
Eq. 3 should still hold, as shown by the numerical data
in the inset of Fig 4. In this case, however, the crossover
frequency no longer scales linearly with δz, and so the
power-law scaling between ωe and ω∗ – the exponent ψ



4

in Eq. 4 – is no longer independent of δz. In other words,
an intermediate regime consistent with D(ω) ∝ ω4, inde-
pendent of δz, is only possible for α = 0. It seems that
having finite probability of bonds with weight approach-
ing zero provides for approximate ω4 scaling.
Discussion: In this article, we propose a simple ran-

dom matrix model that is locally nearly isostatic and
captures features of the vibrational states of disordered
packings that are typically associated with marginality.
Specifically, the model recapitulates a plateau in the den-
sity of states above ω∗, and a regime consistent with ω4

scaling immediately below that. Our model also has a
second crossover frequency ωe, below which D(ω) scales
as ω3.

The modes in this extremely low frequency regime are
governed by extremal statistics, and so we can calculate
their properties analytically. This allows us to demon-
strate that ωe scales linearly with excess coordination δz
if and only if the weak bonds are uniformly distributed,
suggesting that ω4 seen in jammed packings arises due
to a special, self-organized distribution of the weakest
bonds.

Of course, jammed packings only exist in dimensions
greater than unity. Above one dimension, the bond be-
tween particles is described by a tensor and not a scalar
weight. The d by d interaction block that corresponds
to a single bond in the Hessian matrix can be written

as Hijαβ = −V ′′|u‖|2 − V ′

rij
|u⊥|2. The first term is often

referred to as the stiffness while the second term is called
the prestress term [31].

Interestingly, observations in 3D jammed packings sug-
gest that the ω4 regime only exists when the V ′ term is
unperturbed; even very small perturbations to the pre-
stress [3] open up a gap in the density of states [32]. This
suggests that a self-organized balance between the stiff-
ness and prestress must occur in systems near isostaticity.
Moreover, the stiffness is always positive and the pre-
stress always decreases the entries in the Hessian, so it is
plausible that the prestress term is driving some interac-
tions to be very weak near isostaticity. This is similar to
our simple model where self-organized weak interactions
also dominate the low-energy excitations. Therefore, it
may be the case that the fine-tuning of α necessary in our
model corresponds to fine-tuning in the prestress in real
glasses. To investigate this possibility, future research
will focus on studying the statistics of interparticle inter-
actions to quantify the effective stiffness of bonds [33] in
simulated glasses as the prestress is perturbed away from
marginality [3].

In addition, a more concrete connection will require us
to extend the insight from our simple model to higher
dimensions. We see an ω4 regime when bond strengths
are uniform, but it is unclear what quantity would be
analogous to a uniform bond weight in a d× d sub-block
in a random matrix. Concurrent work by Benetti et al
focused on d-dimensional Laplacian matrices where the
magnitude of each bond is unity, but the geometry of
the bond is randomly distributed, and these also gen-

erate scaling consistent with ω4 at low frequencies [34].
Benetti et al. show this scaling in a higher-dimensional
model also requires a network that is nearly isostatic. We
are hopeful that in future work we may be able to con-
nect our analytic results to these numerical ones in higher
dimensions. One possible avenue is to study whether the
geometric disorder in the model by Benetti et al. re-
quires some interactions between nodes to be effectively
zero along special soft directions.

Furthermore, although ω4 scaling as been observed in
several glass forming systems [7], the ω3 regime may be
unique to 1D systems, as it has not been reported in
simulations or in the random matrices with 3 × 3 sub-
blocks [34]. In addition, we see about half a decade of
frequency consistent with ω4 scaling, while the most re-
cent data from Lerner and collaborators [7, 9, 32] finds
almost a full decade.

Nevertheless, the ω3 scaling regime is interesting. Dis-
ordered rings are well-studied, but major results focus on
localization caused by disorder [35, 36]. To our knowl-
edge, the finite-size scaling effects of the vibrational spec-
trum have not been discussed previously. Our model
demonstrates that finite size effects in the disordered
ring, such as this gapless low-frequency scaling, can be
promoted into properties that are maintained in the ther-
modynamic limit by network disorder.

Although we have excellent understanding of the ω3

regime in this simple model, and convincing numerical
evidence demonstrating D(ω) is consistent with ω4 scal-
ing over a window of about half of a decade in ω, we have
not identified a mechanism to understand this regime,
where we know the assumption of two weak bonds and
two rigid arms breaks down. In this analysis we have re-
stricted ourselves to two-cuts, where only two weak bonds
are involved in a mode. However, one can consider higher
order cuts, where we remove more than two bonds, and
yet which still have relatively low energies.These higher
order cuts have been left for future work due to the spe-
cialized techniques for finding such partitions, like spec-
tral clustering [37], which are beyond the scope of this
work.

One possible avenue for understanding this regime is
suggested by recent numerical work that shows univer-
sality in the eigenvector statistics associated with the
boson peak. Specifically, eigenstatistics in jammed pack-
ings match those from both the random matrix model
described here, as well as the dense limit of this model
where all nodes are connected to one another [6]. Inter-
estingly, the eigenvector statistics are also identical in a
much simpler model which is just the sum of a diagonal
matrix and a Gaussian orthogonal matrix. Very recent
analytic work suggests that such matrices are marginal;
they are on the edge of a non-ergodic localized phase [38].
It would therefore be very interesting to extend this an-
alytic work to sparse matrices and study the tail of the
density of states.

Another way to extend our model is to alter the loop
structure of the underlying graph. In our random matrix
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model, the loop structure is uncontrolled since we add
crossbonds with uniform probability across the graph.
This is different from jammed systems where neighbors
of one particle are more likely to be neighbors of each
other and loops are small. It is fairly straightforward to
extend our analytic analysis of the ω3 regime to random
matrix models with smaller loops, and we expect that
the prefactor and the onset of the scaling ωe will change,
but the ω3 scaling will not. However, this change could

impact the behavior of the ω4 regime.
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Appendix A: Extremal statistics in the two-regular
graph

In this section, we calculate the scaling for a ring of
N particles and a ring with crossbonds where particles
are bonded to their nearest neighbors and the strengths
of those bonds, {bi}, are chosen independently with the
distribution f(b). (It is also assumed that the masses of
the particles are identical.)

The mode associated with exciting only the 2 weakest
bonds is a very low energy mode. The calculation here
is done by taking the 2 weakest bonds as they are, but
assuming all other bonds are rigid.

Figure 5: A ring or periodic 1d spring system with the two
weakest bonds highlighted as springs.

We will call the strength of these bonds k1 and k2 with
a distance of m nodes between the bonds. This system is
equivalent to 2 masses joined by a spring which has 1 non-

trivial mode with a frequency of
√

N(k1+k2)
m(N−m) ≡

√
Ns

m(N−m)

where s = k1 + k2.
The distribution of the weakest bond strength is given

by

ρ1(k1) = N ∗ f(k1) ∗ (1− F (k1))N−1, (A1)

which is just the probability density of a bond having
strength k1 multiplied by the probability that all other
bonds are at least that strong [39]. The distribution of
the second lowest mode is somewhat more complicated
since we need to enforce that k2 ≥ k1. So the distribution
of k2 given k1 is

ρ2(k2|k1) =
(N − 1)θ(k2 − k1)

(1− F (k1))N−1
f(k2)(1− F (k2))N−2.

(A2)
The frequency depends on the sum s = k1 + k2. The

distribution of this sum can be obtained from the convo-
lution of the distribution of k1 and k2.

ρs(s) =

∫ kmax

kmin

ρ1(k1)ρ2(s− k1, k1)dk1, (A3)

ρs(s) = N(N − 1)

∫ kmax

kmin

f(k1)f(s− k1)

(1− F (s− k1))N−2θ(s− 2k1)dk1.

(A4)

By changing variables and assuming m is uniformly dis-
tributed, we can obtain the distribution of the frequencies
as

ρω(ω) =

N−1∑
m=1

ρs(
m(N −m)

N
ω2)

2m(N −m)

N(N − 1)
ω. (A5)

1. Power Law Distribution

Let f(b) = α+1
Lα+1 b

α and F (b) =
(
b
L

)α+1
under the limit

b ∈ [0, L] and α > −1. In the main text, we define
L = 2+α

1+α such that the mean of the distribution is 1. By
substitution, we find

ρs(s) =
N(N − 1)(α+ 1)2

L2(α+1)

∫ L

0

θ(s− k1)θ(L− s+ k1)

θ(s− 2k1)kα1 (s− k1)α

(
1−

(
s− k1

L

)α+1
)N−2

dk1.

(A6)

These step functions are only non-zero in the range
max(0, s− L) ≤ k1 ≤ s/2. Using this information and a
change of variables, k = sq, we can extract the primary
contribution of s:

ρs(s) = s2α+1N(N − 1)(α+ 1)2

L2(α+1)
θ(L− s

2
)∫ 1

2

max(0,1−Ls )

qα(1− q)α
(

1−
(
s(1− q)

L

)α+1
)N−2

dq.

(A7)

Under the assumption that s is small, such that(
1−

(
s(1−q)
L

)α+1
)N−2

≈ 1 (we will discuss the range

of validity of this assumption below), the density of
states for large N can be found via direct integration of∫ 1

2

0
(q(1− q))αdq = Γ(α+1)2

2Γ(2α+2) :

ρs(s) ≈ s2α+1N(N − 1)(α+ 1)2

L2(α+1)

Γ(α+ 1)2

2Γ(2α+ 2)
, (A8)

ρω(ω) ≈ NΓ(α+ 1)2(α+ 1)2

Γ(2α+ 2)L2α+2
ω4α+3

N−1∑
m=1

(
m(N −m)

N

)2α+2

.

(A9)
By converting the sum over m into a similar integral over
m
N we have

ρω(ω) ≈
√
π(α+ 1)2(2α+ 2)Γ(α+ 1)2

24α+5Γ(2α+ 7
2 )L2α+2

N2α+4ω4α+3.

(A10)
Since this only applies to the lowest vibrational mode,
the density of states is given by ρω/N :

D(ω) ≈
√
π(α+ 1)2(2α+ 2)Γ(α+ 1)2

24α+5Γ(2α+ 7
2 )L2α+2

N2α+3ω4α+3.

(A11)
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Appendix B: Extremal statistics in the two-regular
graph with additional bonds

A more generic system is the ring with crossbonds.
These crossbonds are simply additional connections be-
tween particles that are non-adjacent in the ring. See Fig-
ure 6 for an example of a crossbonded graph; although
the sketch is 2 dimensional the cross bond interaction
only depends on the distance along the ring not the eu-
clidean distance across the ring.

Figure 6: A sketch of a crossbonded network with 56 particles
and 7 crossbonds. The green arrows delineate the regions between
crossbonds where 2 edges can disconnect the network. The red
arrows point out edges that can’t disconnect the network. The
yellow arrows point out sets of edges that would disconnect the
network that aren’t between crossbonded nodes.

With crossbonds, we are restricted to choosing bonds
in a region between 2 crossbonded nodes. These regions
are shown in Figure 6 by the green arrows.

1. Distribution of Bounded Regions

Let m1 be the number of edges between crossbonded
nodes.

We place the cross bonds randomly. Therefore the
crossbonded nodes are chosen uniformly. If we have E
crossbonds then there are 2E crossbonded nodes (which
may not be unique). The increase in average coordina-
tion number is given by δz = 2E

N . So the number of

crossbonds and crossbonded nodes are Nδz
2 and Nδz re-

spectively.
Since these are uniformly placed, we can expect the dis-

tance between them to be defined via a Poisson process.
We can find the distribution of the second crossbonded
node where we set the first crossbonded node to 1, since
we can always rotate along the ring. Order statistics pro-
vide the following result:

p1(m1) =
(1− m1

N )Nδz−1∑N−1
m=0(1− m

N )Nδz−1
≈ eδz − 1

eδz
e−m1δz. (B1)

This distribution very quickly approaches the thermody-
namic expression of an exponential decay.

2. Crossbonded Spectrum

For each chain of length m1, we choose the 2 weakest
bonds where the bonds are chosen from the distribution
f(b) = α+1

Lα+1 b
α under the limit b ∈ [0, L] and α > −1. In

the main text, we define L = 2+α
1+α such that the mean of

the distribution is 1. We can write ρs(s) as

ρm1
s (s) =

(α+ 1)2m1(m1 − 1)

L2(α+1)
s2α+1θ(L− s

2
)∫ 1

2

max(0,1−Ls )

qα(1− q)α
(

1−
(
s(1− q)

L

)α+1
)m1−2

dq.

(B2)

We assume small s, such that

(
1−

(
s(1−q)
L

)α+1
)m1−2

≈

1. Following the same argument from the previous sec-
tion where m2 is the number of nodes between the weak-
est bonds, we find the distribution:

ρω(ω) = ω4α+3 Γ(α+ 1)2(α+ 1)2

2Γ(2α+ 2)L2α+2

eδz − 1

eδz

N−1∑
m1=2

e−m1δzm1

m1−1∑
m2=1

(
m2(N −m2)

N

)2α+2

.

(B3)

We take the thermodynamic limit and approximate the
sums as integrals (over x = mi

N and dx = 1
N ) and expand

the result in the low δz limit to obtain:

ρω(ω) =
Γ(2α+ 5)Γ(α+ 1)2(α+ 1)2

2(2α+ 3)Γ(2α+ 2)L2α+2

ω4α+3

δz2α+4
. (B4)

Importantly, this is not just for the smallest mode.
Since there are several regions on the ring from which
pairs can be chosen, this analysis an extensive fraction of
modes. On average, there are Nδz regions separated by
crossbonded nodes. Therefore, we can apply this analysis
for the lowest Nδz modes of a total N modes, ie. a
fraction of modes δz. The density of states is given by
ρω(ω) ∗ δz

Dα(ω) =
Γ(2α+ 5)Γ(α+ 1)2(α+ 1)2

2(2α+ 3)Γ(2α+ 2)L2α+2

ω4α+3

δz2α+3
. (B5)

Note that α = 0, the uniform distribution, is unique in
that ω and δz have the same exponent

D0(ω) =
4

L2

( ω
δz

)3

. (B6)

3. Full Spectrum

In the full spectrum we need to identify the frequency,
ω∗, at which the spectrum crosses over into a plateau.
In disordered solids, there are ample examples of this
cutoff scaling linearly with δz; this is also true for the
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disordered ring with crossbonds. ωe only scales linearly
with for α = 0. Therefore it is only for α = 0 that the
scaling between ωe and ω∗, ψ is independent of δz.

So the full spectrum of α = 0 is given by:

D(ω) =


4
L2

(
ω
δz

)3
ω ≤ ωe(

4ω3−ψ
e

L2δz3

)
ωψ ωe ≤ ω ≤ ω∗

c ω∗ ≤ ω
. (B7)

In practice, ψ is consistent with 4.

δz ψ
0.1 4.0761

0.168 4.0115
0.282 3.9606
0.476 3.9496
0.8 3.9749

(B8)

4. Behavior of Sloshing Modes

The value of the IPR for a sloshing modes depends
explicitly on the distance between the active bonds. If
the active bonds are separated by m particles the IPR is
given by

Y =
1

m
+

1

N −m
− 3

N
. (B9)

Thus the increasing of the IPR plateau with δz in
the sloshing regime is indicative of a decrease in the
distance between active bonds. By construction of the
crossbonded system, the distance between active bonds
is limited by the distance between crossbonded nodes,
which decreases with δz.

In low-frequency regime the IPR is independent of sys-
tem size, while modes in the boson peak is strongly de-
pendent on system size. We find that the low frequency
regime is collapses; the behavior of the system below ω∗

is independent of system size.

Figure 7: IPR at a fixed δz = 0.1, with system sizes varying from
300 to 1000 in steps of 100. The black dashed line indicates ω∗.

We can also measure the participation of the bonds
with what we call the Bond Inverse Participation Ratio
(BIPR):

Yb(ω) =

∑
(i,j)(vi − vj)4

(
∑

(i,j)(vi − vj)2)2
, (B10)

where (i, j) is an edge in the network. In the limit of low
frequency, there is a plateau of BIPR = 1

2 which indi-
cates that only 2 bonds are extending or compressing for
the modes in that regime. This is secondary confirmation
that the sloshing mode assumption is reasonable for this
simple model.

Figure 8: The BIPR with the frequency rescaled by δz,
ω′ = ω/δz. The blue dashed line indicates ωe while the black
dashed line indicates ω∗.


