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We perform computational studies of repulsive, frictionless disks to investigate the development of
stress anisotropy in mechanically stable (MS) packings at jamming onset. We focus on two protocols
for generating MS packings at jamming onset: 1) isotropic compression and 2) applied simple or
pure shear strain γ at fixed packing fraction φ. MS packings of frictionless disks occur as geometric
families (i.e. quasi-parabolic segments with positive curvature) in the φ-γ plane. MS packings from
protocol 1 populate parabolic segments with both signs of the slope, dφ/dγ > 0 and dφ/dγ < 0.
In contrast, MS packings from protocol 2 populate segments with dφ/dγ < 0 only. For both
simple and pure shear, we derive a relationship between the stress anisotropy and local dilatancy
dφ/dγ obeyed by MS packings along geometrical families. We show that for MS packings prepared
using isotropic compression, the stress anisotropy distribution is Gaussian centered at zero with
a standard deviation that decreases with increasing system size. For shear jammed MS packings,
the stress anisotropy distribution is a convolution of Weibull distributions that depend on strain,
which has a nonzero average and standard deviation in the large-system limit. We also develop a
framework to calculate the stress anisotropy distribution for packings generated via protocol 2 in
terms of the stress anisotropy distribution for packings generated via protocol 1.

I. INTRODUCTION

For systems in thermal equilibrium, such as atomic
and molecular liquids, macroscopic quantities, such as
the shear stress and pressure, can be calculated by av-
eraging over the microstates of the system weighted by
the probabilities for which they occur, as determined by
Boltzmann statistics [1]. In contrast, granular materials,
foams, emulsions, and other athermal particulate media
are out of thermal equilibrium and this formalism breaks
down [2, 3].

For dense, quasistatically driven particulate media, the
relevant microstates are mechanically stable (MS) pack-
ings with force- and torque-balance on all grains [4, 5].
In contrast to thermal systems, the probabilities with
which MS packings occur are highly non-uniform and de-
pend on the protocol that was used to generate them [6].
For example, it has been shown that MS packings gen-
erated via vibration, compression, and pure and simple
shear possess different average structural and mechanical
properties [7–10]. In previous work on static packings of
purely repulsive frictionless disks at jamming onset, we
showed that the differences in macroscopic properties do
not occur because the collections of microstates for each
protocol are fundamentally different, instead the proba-
bilities with which different MS packings occur change
significantly with the protocol [9]. Thus, it is of fun-

damental importance to understand the relationship be-
tween the packing-generation protocol and MS packing
probabilities.

Jamming, where an athermal particulate system tran-
sitions from a liquid-like to a solid-like state with a non-
zero yield stress, induced by isotropic compression has
been studied in granular and other athermal materials for
more than 20 years [7, 11, 12]. Recently, Bi, et al. showed
that packings of granular disks can jam via simple and
pure shear at fixed area [8]. This was a surprising re-
sult because many previous studies had emphasized that
the application of shear at fixed packing fraction gives
rise only to flow and unjamming behavior. This point
is emphasized in the schematic jamming phase diagram
in the stress Σ and packing fraction φ plane in Fig. 1
(a), which shows that the yield stress Σy increases with
φ above jamming onset φJ at zero shear. Here, we as-
sume that Σy ∼ (φ − φJ)ν , where ν = 0.5. In Fig. 1
(b), we flip the axes and plot the packing fraction versus
shear strain, which increases quadratically from φJ . In
both Fig. 1 (a) and (b), increasing the shear strain does
not give rise to jamming. However, we will show below
that this picture is incomplete, and the application of
shear strain can cause unjammed systems of frictionless,
spherical particles to jam [9, 13].

Despite important work [9, 13, 14] since the origi-
nal manuscript by Bi, et al., there are still many open
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FIG. 1. (a) A schematic jamming phase diagram in the stress
Σ and packing fraction φ plane. The solid line indicates the
yield stress Σy(φ). For applied stress Σ < Σy, the system is
jammed and for Σ > Σy, the system flows and is unjammed.
We assume that the yield stress obeys Σy ∼ γy ∼ (φ− φJ)ν ,
where ν = 0.5 and φJ is the jammed packing fraction in the
absence of shear stress. (b) A jamming phase diagram similar
to that in (a) except rendered in the φ-γ plane. The jammed
packing fraction increases quadratically with strain from φJ .
With the jamming phase diagrams in (a) and (b), increasing
strain does not cause a system to transition from unjammed
to jammed states.

questions concerning shear jamming. For example, 1)
Can shear jamming occur in MS packings of frictionless
grains and if so, do these shear-jammed packings possess
a nonzero stress anisotropy? and 2) Are there substantive
differences between MS packings generated via isotropic
compression versus shear?

Our recent work has shown that mechanically stable
packings of frictionless spherical particles at jamming on-
set can be obtained via either simple shear or isotropic
compression and that the probability for a particular
packing depends on the packing-generation protocol [9].
The average shear strain required to jam an originally
unjammed configuration can be written in terms of the
basin volume, density of jammed packings, and path in
configuration space from the initial condition to the fi-
nal MS packing. This previous work focused mainly on
the shear strain γJ needed to jam an initially unjammed
configuration and how the shear strain γJ depends on the
packing fraction. In the current article, we instead focus
on the shear stress anisotropy in MS packings generated

by isotropic compression versus pure and simple shear.
Our computational studies yield several key results,

which form a more complete picture of shear jamming
in packings of frictionless spherical particles. First, we
identify relationships between the stress anisotropy and
the packing fraction and its derivative with respect to
strain (dilatancy) for MS packings generated via simple
and pure shear. These relationships allow us to calculate
the stress anisotropy, which includes contributions from
both the shear stress and normal stress difference, for
MS packings by only knowing how the jammed packing
fraction varies with strain.

Second, we confirm that the distribution of the stress
anisotropy for isotropically compressed packings is a
Gaussian centered on zero with a width that decreases as
a power-law with increasing system size N [15]. In con-
trast, the stress anisotropy distribution is a convolution
of strain-dependent Weibull distributions with a finite
average and standard deviation in the large-system limit
for shear-jammed MS packings [16]. Third, using the
relation between stress anisotropy and local dilatancy,
we predict the stress anisotropy distribution for shear-
jammed packings using that for MS packings generated
via isotropic compression. We also calculate the fabric
tensor for packings generated via isotropic compression
and shear jamming. We show that the principal com-
ponents of the fabric and stress tensors are uniformly
distributed for packings generated via isotropic compres-
sion, whereas they are oriented along the compressive
and dilational directions for shear jammed packings.

The remainder of the article includes four sections and
four appendices, which provide additional details to sup-
port the conclusions in the main text. In Sec. II, we
describe the two main protocols that we use to generate
MS packings and provide definitions of the stress tensor
and stress anisotropy. Sec. III includes five subsections,
which introduce the concept of geometrical families, de-
rive the relationships between the stress tensor compo-
nents and local dilatancy, describe the analysis of the fab-
ric tensor for isotropically compressed and shear-jammed
packings, develop a framework for calculating the shear
stress distribution for shear-jammed packings in terms of
the shear stress distribution for isotropically compressed
packings, and show the system-size scaling of the stress
anisotropy. In Sec. IV, we give our conclusions, as well
as describe interesting future computational studies on
shear-jammed packings of non-spherical particles, such
as circulo-polygons [17], and frictional particles [5], where
we can apply the techniques developed in the present ar-
ticle.

II. METHODS

Our computational studies focus on systems in two
spatial dimensions containing N frictionless bidisperse
disks that interact via the purely repulsive linear spring
potential given by V (rij) = ε

2 (1−rij/σij)2Θ(1−rij/σij),



3

where ε is the strength of the repulsive interactions, rij
is the separation between the centers of disks i and j,
σij = (σi + σj)/2, σi is the diameter of disk i, and
Θ(.) is the Heaviside step function that prevents non-
overlapping particles from interacting. The system in-
cludes half large disks and half small disks with di-
ameter ratio r = 1.4. The disks are confined within
an undeformed square simulation cell with side lengths,
Lx = Ly = 1, in the x- and y-directions, respectively,
and periodic boundary conditions. Isotropic compres-
sion is implemented by changing the cell lengths accord-
ing to L′x = Lx(1 − dφ/2φ) and L′y = Ly(1 − dφ/2φ)
and corresponding affine shifts in the particle positions,
where dφ < 10−4 is the change in packing fraction. Sim-
ple shear strain with amplitude γ is implemented using
Lees-Edwards periodic boundary conditions, where the
top (bottom) images of the central cell are shifted to
the right (left) by γLy with corresponding affine shifts
of the particle positions [18]. Pure shear is implemented
by compressing the simulation cell along the y-direction
and expanding it along the x-direction with correspond-
ing affine shifts of the particle positions. The system area
is kept constant (i.e. A = L′xL

′
y = LxLy) and the pure

shear strain is defined as γ = ln(L′x/L
′
y).

As shown in Fig. 2, we employ two main protocols to
generate MS packings in the packing fraction φ and shear
strain γ plane. For protocol 1, we first place the disks at
random initial positions in the simulation cell, and apply
successive simple shear strain steps dγ < 10−4 to total
strain γt at fixed small packing fraction φi = 0.1. We
then isotropically compress the system in small packing
fraction increments dφ to jamming onset φJ at fixed sim-
ple shear strain γ = γt. For protocol 2, we first place the
disks at random initial positions and then isotropically
compress the system to a target packing fraction φt < φJ
at simple shear strain γ = 0. We then apply simple shear
to the system in small strain steps dγ until the system
jams at γJ . For protocol 2, the target volume fraction φt
varies from φm, below which no shear-jammed packings
can be found in the range 0 < γ < 1 to φJ obtained from
isotropic compression at γ = 0. In Appendix A, we also
include results for a packing-generation protocol similar
to protocol 2, except we apply pure instead of simple
shear strain.

The total potential energy per particle U = U ′/Nε,
where U ′ =

∑
i>j V (rij), is minimized using the conju-

gate gradient technique after each compression or shear
step. Minimization is terminated when the potential
energy difference between successive conjugate gradient
steps satisfies ∆U/U < 10−16. We define jamming on-
set when the total potential energy per particle obeys
Umax < U < 2Umax, with Umax = 10−16. This method
for identifying jamming onset is similar to that used in
our previous studies [9].

The systems are decompressed (for protocol 1) or
sheared in the negative strain direction (for protocol 2)
when U at a local minimum is nonzero, i.e., there are fi-
nite particle overlaps. If the potential energy is zero (i.e.

FIG. 2. Schematic of the packing fraction φ and simple shear
strain γ plane that illustrates the two main protocols used
to generate MS disk packings at jamming onset. As shown in
Fig. 3 (e), the jammed regions are bounded by quasi-parabolic
segments. In protocol 1, the system is first deformed to simple
shear strain γt at small initial packing fraction φi ≈ 0 (point
b) and then isotropically compressed to jamming onset at φt
(point c). In protocol 2, the system is first compressed to φt
below jamming onset (point d) at γ = 0 and then sheared to
jamming onset at simple shear strain γt (point e). Points (c)
and (e) correspond to the same total deformation, and thus
the two protocols can yield the same MS packing. Note that
for each system size N , there are many distinct parabolas
that occur over a range of strain and packing fraction. As
the system size increases, the typical parabolic segment size
decreases as 1/N and the range of packing fraction over which
the parabolic segments occur shrinks to zero.

U < 10−16), the system is compressed (for protocol 1)
or sheared in the positive strain direction (for protocol
2). For protocol 1, the increment by which the packing
fraction is changed at each compression or decompression
step is halved each time U switches from zero to nonzero
or vice versa. Similarly, for protocol 2, the increment by
which the shear strain is changed at each strain step is
halved each time U switches from zero to nonzero or vice
versa. These packing-generation protocols yield mechan-
ically stable packings (with a full-spectrum of nonzero
frequencies of the dynamical matrix [19]) at jamming on-
set. In addition, all of the MS disk packings generated
via protocols 1 and 2 are isostatic, where the number
of contacts matches the number of degrees of freedom,
Nc = N0

c , with N0
c = 2N ′ − 1, N ′ = N − Nr, and Nr

is the number of rattler disks with fewer than three con-
tacts [20].

For each MS packing, we calculate the stress tensor:

Σβδ =
1

A

∑
i6=j

fijβrijδ, (1)

where A = LxLy is the system area, fijβ is the β-



4

component of the interparticle force on particle i due
to particle j, rijδ is the δ-component of the separation
vector from the center of particle j to that of particle i,
and β and δ = x,y. From the components of the stress
tensor, we can calculate the pressure P = (Σxx+Σyy)/2,
the normal stress difference ΣN = (Σyy − Σxx)/2, and
the shear stress −Σxy. We define the normalized stress

anisotropy to be τ̂ =
√

Σ̂2
N + Σ̂2

xy, where Σ̂N = ΣN/P

and Σ̂xy = −Σxy/P . τ̂ includes contributions from both
the shear stress and the normal stress difference. We
will show below that the shear stress (normal stress dif-
ference) is the dominant contribution to τ̂ for MS pack-
ings generated via simple shear (pure shear) in the large-

system limit. Therefore, we will focus on Σ̂xy when we

study packings generated via simple shear and on Σ̂N
when we study packings generated via pure shear. See
Appendix A for most of the results on pure shear. We cal-
culate mean values and standard deviations of the stress
tensor components over between 103 and 105 distinct MS
packings.

III. RESULTS

A. Geometrical families

As background, we review the structure of geometri-
cal families during shear deformation [9, 21]. In Fig. 3
(a), we illustrate that MS packings occur as geometri-
cal families in the jammed packing fraction φ and shear
strain γ plane. MS packings in the same geometrical fam-
ily have the same interparticle contact network and form
continuous quas-parabolic segments in the φ-γ plane. In
panel (a), the N = 6 MS packings were generated using
isotropic compression (protocol 1) from a single random
initial condition. In Fig. 3 (c) and (d), we highlight two
MS packings near the beginning and end of the geomet-
rical family indicated by the filled triangles in (a). The
system switches from one geometrical family to another
when the interparticle contact network becomes unsta-
ble. The beginning and end of each geometrical family
can be identified by finding changes in the interparticle
contact network or discontinuous changes in φ(γ) or the
slope dφ/dγ.

We assume that each geometrical family of MS pack-
ings forms a parabolic segment in the φ-γ plane described
by φ(γ) = A(γ − γ0)2 + φ0, where A, γ0, and φ0 give the
curvature, strain offset, and packing fraction offset for
each family. The curvature satisfies A > 0 for all geo-
metrical families of MS disk packings. In Fig. 3 (e) and
(f), we show that the data collapse onto a parabolic form
when we plot (φ− φ0)/A versus γ − γ0 for all geometric
families we found using protocols 1 and 2, respectively,
with more than 105 initial conditions.

For protocol 1, we obtain families with both dφ/dγ > 0
and dφ/dγ < 0, and thus the rescaled φ(γ) in Fig. 3 (e)
includes both sides of a parabola. However, for proto-

col 2, the geometrical families only possess dφ/dγ < 0.
This result is non-trivial since MS packings generated
via quasistatic simple shear at near zero pressure can
possess both dφ/dγ < 0 and dφ/dγ > 0. (See Appendix
B.) To understand the result that shear-jammed packings
posses dφ/dγ < 0, first assume that a system with pack-
ing fraction φ is unjammed at shear strain γ and that
the system becomes jammed after the next applied shear
strain step γ+dγ. The jamming threshold for the system
at γ, φJ(γ), must be larger than the packing fraction of
the system, φ. Since the jamming threshold at γ + dγ,
φJ(γ + dγ) is equal to φ, we have φJ(γ + dγ) < φJ(γ),
which indicates that dφ/dγ < 0 along each geometrical
family for protocol 2.

For protocol 1, the systems approach the jammed re-
gion from below, and thus they can reach both sides of
the parabolas with dφ/dγ < 0 and dφ/dγ > 0. For proto-
col 2, the systems approach the jammed region from the
left, and thus they jam when they reach the left sides of
the parabolas with dφ/dγ < 0. Note the key difference in
the signs of the slope, dφ/dγ, between the jamming phase
diagrams in Figs. 1 (b) and 3 (f). The schematic jam-
ming phase diagram in Fig. 1 (b) is missing the portion
of the parabola with dφ/dγ < 0.

The geometrical family structure can also be seen in
the shear stress versus strain as shown in Fig. 3 (b). In

this case, the shear stress |Σ̂xy| varies quasi-linearly with
γ. For MS packings within a given geometrical family,
we find that |Σ̂xy| increases with φ and |Σ̂xy| ≈ 0 when

φ(γ) is near a local minimum or maximum (i.e., ∂φ∂γ = 0).

Although we illustrated these results for a small system,
we showed in previous studies [9] that the geometrical
family structure persists with increasing system size. In
the large-system limit, the family structure occurs over a
narrow range of φ near φJ ≈ 0.84, and the system only
needs to be sheared by an infinitesimal strain to switch
from one family to another.

B. Stress-dilatancy relation

The relationship between the stress anisotropy and di-
latancy has been studied extensively for quasistatically
sheared packings of frictional spherical particles [22–25].
Here, we focus on the stress-dilatancy relation for MS
packings of frictionless disks at jamming onset. As shown
in Fig. 3 (a) and (b), we find that (1) |Σ̂xy| increases
when φ increases and decreases when φ decreases and
(2) |Σ̂xy| ≈ 0 when φ reaches a local minimum. Here, we
derive relationships between the components of the stress
tensor (i.e. the shear stress Σ̂xy and normal stress dif-

ference Σ̂N ) and the local dilatancy [25–28], −dφ/φ, for
MS packings generated via protocols 1 and 2. Packings
belonging to the same geometrical family have identical
contact networks and exist at jamming onset with total
potential energy per particle U ≈ 0. Thus, the change in
potential energy due to a change in shear strain dγ and
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FIG. 3. (a) Packing fraction φ at jamming onset as a func-
tion of simple shear strain γ for MS packings with N = 6
generated via isotropic compression (protocol 1) and (b) the

corresponding magnitude of the shear stress
∣∣∣Σ̂xy∣∣∣ versus γ.

The data in (a) and (b) were obtained using the same single
set of random initial conditions. Panels (c) and (d) show the
MS packings near the start and end of a geometrical family,
indicated by the filled triangles in (a). Each geometrical fam-
ily in (a), as well as the families obtained from other random
initial conditions, can be described by parabolic segments,
φ = A(γ−γ0)2+φ0, in the φ-γ plane, where A > 0, φ0, and γ0
are the curvature, packing fraction offset, and strain offset for
each geometrical family. Panels (e) and (f) show the normal-
ized coordinates, (φ−φ0)/A versus γ−γ0, for all MS packings
with N = 6 generated via protocols 1 and 2, respectively. Pro-
tocol 1 generates packings with both signs of dφ/dγ, whereas
protocol 2 only generates packings with dφ/dγ < 0. The
jammed and unjammed regions of the (φ− φ0)/A and γ − γ0
plane are indicated.

a decompression step that changes the area by dA along
a geometrical family is zero, or −PdA−ΣxyAdγ = 0 for
simple shear and −PdA − ΣyyL

′
xdL

′
y − ΣxxL

′
ydL

′
x = 0

for pure shear. Using dA/A = −dφ/φ, we find

Σ̂ = − 1

φ

dφ

dγ
, (2)

where Σ̂ = Σ̂xy for simple shear and Σ̂N for pure shear

deformations. Thus, the shear stress Σ̂xy (normal stress

difference Σ̂N ) along a geometrical family is proportional
to the local dilatancy, −dφ/φ, during a simple (pure)
shear deformation step dγ. As we mentioned above,
macroscopic systems only need to be sheared by an in-
finitesimal strain to switch from one geometric family to

another. However, the stress-dilatancy relation in Eq.
(2) is still valid in the large-system limit. Previous stud-
ies of frictional spherical particles undergoing continu-
ous shear have found similar results, where the stress
is related to the dilatancy and macroscopic friction an-
gle [22, 29].

For the case of applied simple shear strain, if we rotate
the stress tensor Σβδ by 45◦, the directions of the com-
presssion and dilation deformations are aligned with the
normal directions of the stress tensor after rotation Σ′βδ.

The normal stresses for Σ′βδ can be caclulated from the
components of Σβδ as follows:

Σ′xx =
Σxx + Σyy

2
+Σxy, Σ′yy =

Σxx + Σyy
2

−Σxy. (3)

The scaled normal stress difference for the rotated stress
tensor Σ̂′N is Σ̂xy. Thus, the stress anisotropies induced
by simple and pure shear are similar. From Eqs. 2 and 3,
we conclude that a MS packing with given contact net-
work will dilate (φJ will decrease) if the compressive (di-
lational) deformation is applied along the direction with
the larger (smaller) normal stress.

In Fig. 4 (a) and (b), we compare the results from the
calculations of the shear stress and normal stress differ-
ence using the stress tensor (Eq. 1) to those using Eq. 2
for N = 6 MS packings generated using protocol 1 with a
single initial condition. We find strong agreement for this
initial condition as well as all others. In Fig. 4 (c) and
(d), we further compare the two methods for calculating

the stress tensor components by plotting Σ̂xy or Σ̂N from
the stress tensor versus the right side of Eq. 2 for several
system sizes and protocols 1 and 2. The data collapse
onto a line with unit slope and zero vertical intercept.
Data points that deviate from the straight line collapse
onto the line when dγ is decreased to 2 × 10−4. Thus,
the proposed stress-dilatancy relation is valid for all MS
packings of frictionless particles at jamming onset.

C. Fabric tensor of MS packings at jamming onset

In this section, we describe the fabric anisotropy of
the contact networks for MS packings at jamming onset
generated via protocols 1 and 2. The fabric tensor is
given by

Rβδ =
1

N ′

∑
i 6=j

rijβrijδ
|rij |2

, (4)

where rijβ is the β component of the center-to-center
separation vector between particle i and j. Similar
to the definition of the stress anisotropy, we define

the fabric anisotropy as F̂ =
√
R̂2
N + R̂2

xy, which in-

cludes contributions from the normal direction R̂N =
(Ryy − Rxx)/(Rxx + Ryy) and shear direction R̂xy =
−2Rxy/(Rxx+Ryy). In 2D, the stress and fabric tensors
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FIG. 4. (a) Shear stress Σ̂xy versus simple shear strain γ and

(b) normal stress difference Σ̂N versus pure shear strain γ for
N = 6 MS packings at jamming onset generated via isotropic
compression (protocol 1) using a single initial condition. Gray
circles are data points obtained from the components of the
stress tensor and blue dots are obtained by finding all of the
geometrical families and calculating Σ̂xy and Σ̂N from Eq. 2

along each family. Panels (c) and (d) show plots of Σ̂xy and

Σ̂N calculated using the stress tensor versus the results from
Eq. 2 for MS packings with N = 6 (circles), 10 (diamond), 16
(squares), and 32 (upward triangles). Open (solid) symbols
indicate MS packings generated via protocol 1 (protocol 2).
The solid line has unit slope and zero vertical intercept.

have principal components, whose driections are given by

tan 2ΘS =
Σ̂xy

Σ̂N
(5)

tan 2ΘF =
R̂xy

R̂N
, (6)

where ΘS and ΘF are defined relative to the original
x- and y-axes [30]. We calculate 2ΘS and 2ΘF using a
four quadrant arctangent function from the components
of the stress and fabric tensors, respectively, and plot the
distributions in Fig. 5 (a) and (d). For MS packings gen-
erated via isotropic comression, the principal directions
of the stress and fabric tensors are uniformly distributed
in the 2D plane. In contrast, for shear-jammed packings,
2ΘS and 2ΘF are preferentially aligned along 90◦, indi-
cating that the principal components of the stress and
fabric tensors are preferentially aligned with the axes of
the applied deformation (i.e. 45◦ and 135◦ for simple
shear).

The correlation between the angles of the principal
components of the stress and fabric tensors can be
quantified using the joint probability density function
P (2ΘS , 2ΘF ). As shown in Fig. 5 (b) and (e), ΘS and

ΘF are positively correlated for MS packings generated
via both protocols 1 and 2. The correlation coefficients
are c ∼ 0.42 for protocol 1 and ∼ 0.50 for protocol 2.
No obvious system size dependence in the correlations
between ΘS and ΘF is observed as N increases from 64
to 512.

In addition to ΘS and ΘF , we also investigate the dis-
tribution of the normalized off-diagonal elements of the
fabric tensor, R̂xy, which quantifies the magnitude of the

fabric anisotropy. In Fig. 5 (c) and (f), we plot R̂xy and

Σ̂xy for MS packings generated via protocols 1 and 2.
The data is scattered around lines with slope 0.30 for
protocol 1 and 0.43 for protocol 2. As the system size N
increases, the scatter in the data narrows.

We can rotate the fabric tensor Rβδ by 45◦, so that the
principal components of the fabric tensor after rotation
R′βδ are aligned with the directions of the compression

and dilation deformations. The components of R′βδ will
have the same form as the stress components in Eq. 3.
A packing will have more (less) contacts in the direction
with a larger (smaller) diagonal component of the rotated
fabric tensor. In Fig. 5 (c), we show that for packings

with negative Σ̂xy (i.e. positive dφ/dγ), the off-diagonal

component of the fabric tensor R̂xy is more likely to be
negative, which indicates that R′yy (component in the
compression direction) after rotation is smaller than R′xx
(component in the dilation direction). This result sug-
gests that packings with positive (negative) dφ/dγ have
a higher probability to possess more contacts in the dila-
tancy (compression) direction.

As shown above, the principal components of the stress
and fabric tensors are uniformly distributed for packings
generated via isotropic compression and they are pref-
erentially aligned with the axes of the applied deforma-
tion for shear-jammed packings. For both protocols, the
directions of the principal components and off-diagonal
elements of the stress and fabric tensor are strongly cor-
related. Therefore, below we focus on the magnitude of
the stress anisotropy Σ̂xy. We measure the probability

distribution and system size dependence of Σ̂xy for pack-
ings generated via both protocols.

D. Distributions of the shear stress and normal
stress difference for protocols 1 and 2

In the inset of Fig. 6 (a), we show the probability dis-
tributions for the shear stress and normal stress differ-
ence, P (Σ̂xy) and P (Σ̂N ), for MS packings generated

via isotropic compression (protocol 1) and P (Σ̂N ) for
MS packings generated via protocol 2 with simple shear.
When scaled by the standard deviation S, these distri-
butions collapse onto a Gaussian curve centered at zero
with unit standard deviation. As shown in Fig. 6 (b), the
standard deviations for all three distributions scale with
system size as

S1(N) = S0
1N
−ω1 , (7)
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FIG. 5. (a) and (d): Distribution of 2ΘS (blue solid lines) and 2ΘF (red dotted lines) for MS packings at jamming onset with
N = 128. ΘS and ΘF are the angles that the principal components of the stress and fabric tensors make with the x- and
y-axes. (b) and (e): Joint probability density function of 2ΘS and 2ΘF for MS packings with N = 128. (c) and (f): Correlation

between the xy component of the normalized stress and frabric anisotropies, Σ̂xy and R̂xy, for N = 128 (blue), 256 (red), and
512 (yellow). The solid lines in (c) and (f) have slopes 0.30 and 0.43 and zero vertical intercepts. Panels (a)-(c) show MS
packings generated via isotropic compression and panels (d)-(f) show shear-jammed packings.

where S0
1 ≈ 0.61 and ω1 ≈ 0.48. Thus, the stress ten-

sor is isotropic in the large system-limit for MS packings
generated via isotropic compression (protocol 1). In addi-
tion, the normal stress difference is zero for MS packings
generated via protocol 2 with simple shear.

TABLE I. Means (〈.〉) and standard deviations (S) of the

shear stress Σ̂xy and normal stress difference Σ̂N distributions
in the large-system limit for protocols 1 and 2.

Protocol 〈Σ̂xy〉∞ 〈Σ̂N 〉∞ Sxy∞ SN∞
Protocol 1 0 0 0 0
Protocol 2
simple shear 0.060 0 0.015 0
protocol 2
pure shear 0 0.055 0 0.016

In the main panel of Fig. 6 (a), we show the prob-

ability distribution of the shear stress P (Σ̂xy) for MS
packings generated via protocol 2 with simple shear. We
note that Σ̂xy > 0 and P (Σ̂xy) is non-Gaussian for pro-
tocol 2. In contrast to the behavior of the average shear
stress 〈Σ̂xy〉 for MS packings generated via isotropic com-

pression (protocol 1), 〈Σ̂xy〉 approaches a nonzero value
in the large-system limit for MS packings generated via
protocol 2 with simple shear. As shown in Fig. 6 (b),

〈Σ̂xy〉(N) = Σ̂0N
−Ω + Σ̂∞, (8)

where Σ̂0 ≈ 0.54, Ω ≈ 0.42, and Σ̂∞ ≈ 0.060. Simi-
larly, we find that the standard deviation of P (Σ̂xy) for
MS packings generated via protocol 2 with simple shear
approaches a nonzero value in the large-system limit:

S2(N) = S0
2N
−ω2 + S∞, (9)

where S0
2 ≈ 0.28, ω2 ≈ 0.45, and S∞ ≈ 0.015. In con-

trast, the width of the distribution of jammed packing
fractions tends to zero in the large-system limit [12].
Thus, the packing-generation protocol strongly influences
the stress anisotropy, especially in the large-system limit.
The exponents ω1, Ω, and ω2 in Eqs. (7), (8), and (9)
are all near 0.5, indicating mean-value statistics. The re-
sults for the average values and standard deviations of
the distributions P (Σ̂xy) and P (Σ̂N ) in the large-system
limit for protocols 1 and 2 (for simple and pure shear)
are summarized in Table 1.

The stress anisotropy measured here is smaller than
the value obtained in other recent work (Σ̂xy ≈
0.095) [31]. The shear-jamming protocol in this prior
work is very different than the one presented here. We
isotropically compress the system to a packing fraction
below jamming onset for each particular initial condi-
tion, and then apply quasistatic shear at fixed area until
the system first jams at strain γJ . In contrast, in these
prior studies, the authors start with jammed packings at
a given pressure P > 0 and then apply quasistatic shear
at fixed P to a total strain γ = 10. Thus, the system
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FIG. 6. (a) The probability distributions of the shear stress

P (Σ̂xy) for MS packings generated via protocol 2 with sim-
ple shear for N = 32 (circles), 64 (squares), 128 (crosses),
256 (triangles), and 512 (diamonds). The solid lines are pre-
dictions from Eq. 17. In the inset, we show three types of
probability distributions scaled by their standard deviations
S: P (Σ̂xy) (same symbols as main panel) and P (Σ̂N ) (same
symbols as main panel, but in red) for MS packings generated

via isotropic compression (protocol 1) and P (Σ̂N ) for proto-
col 2 with simple shear (same symbols as main panel, but in
gray). The solid black line is a Gaussian distribution with
zero mean and unit standard deviation. (b) System-size de-

pendence of 〈Σ̂xy〉 (circles) and standard deviations of P (Σ̂xy)

(triangles) and P (Σ̂N ) (squares) for MS packings generated
via protocol 2 with simple shear and the standard deviations
of P (Σ̂xy) (crosses) and P (Σ̂N ) (diamonds) for MS packings
generated via protocol 1. The dashed, solid, and dash-dotted
lines are fits to Eqs. 7, 8, and 9, respectively.

can undergo rearrangements and switch from one geo-
metrical family to another. We discuss the difference in
the results for 〈Σ̂xy〉 for MS packings generated via shear
jamming and continuous quasistatic shear at fixed zero
pressure in Appendix B. Moreover, these prior studies
only quoted the stress anisotropy for a finite-sized sys-
tem (N = 1024), and did not provide an estimate for the
stress anisotropy in the large system limit.

We will now describe a framework for determining the
distribution of shear stress P (Σ̂xy) for MS packings gen-
erated via protocol 2 with simple shear from the shear
stress distribution obtained from protocol 1. We first
make an approximation in Eq. 2, Σ̂xy ≈ − 1

〈φ〉2
dφ
dγ , where

〈φ〉2 is the average packing fraction for MS packings gen-
erated using protocol 2. Now, the goal is to calculate
the distribution of the local dilatancy, which hereafter
we define as φ̇ ≡ −dφdγ .

We first consider an infinitesimal segment of a geomet-
rical family (labeled i) that starts at (γi, φi) and ends at
(γi + dγ, φi − dφ). We only need to consider segments
with negative slope, which implies that dγ > 0, dφ > 0,
and φ̇ > 0. The probability to obtain an MS packing on
segment i is proportional to (1) the volume of the ini-
tial conditions in configuration space that find segment
i [32, 33], V1,i for protocol 1 and V2,i for protocol 2, and
(2) the region of parameter space over which the seg-
ment is sampled, dγi for protocol 1 and dφi for protocol
2. Thus, P1,i ∝ V1,idγi for protocol 1 and P2,i ∝ V2,idφi
for protocol 2.

The probability distribution for the local dilatancy φ̇
can be written as:

P1,2(φ̇) =
V1,2(φ̇)∫∞

0
V1,2(φ̇)dφ̇

, (10)

where V1,2(φ̇) is the sum of the basin volumes over all of

the infinitesimal segments with slope φ̇,

V1(φ̇) =
∑
i

V1,i(φ̇)dγi (11a)

V2(φ̇) =
∑
i

V2,i(φ̇)dφi. (11b)

In the small-γ limit, γi ≈ 0, the basin volumes for each
segment i from protocols 1 and 2 satisfy V1,i ≈ V2,i. (In
Appendix C, we identify the shear strain at which this
approximation breaks down.) In this limit, the protocol

dependence of P (φ̇) is caused by the region of parameter
space over which the MS packings are sampled, dγi for
protocol 1 versus dφi for protocol 2. Thus, the distribu-
tion of local dilatancy for protocol 2 for simple shear is
given by:

P2(φ̇) =

∑
i V2,idφi∫∞

0

∑
i V2,idφidφ̇

≈
∑
i V1,idγiφ̇∫∞

0

∑
i V1,idγiφ̇dφ̇

(12a)

≈ P1(φ̇)φ̇

〈φ̇〉1
, (12b)

where we have used the relation dφi = dγiφ̇ and 〈φ̇〉1 is

the average of φ̇ for MS packings generated using protocol
1 with φ̇ > 0.

In Fig. 7 (a), we show that the local dilatancy distri-

bution P1(φ̇) for φ̇ > 0 from protocol 1 obeys a half-
Gaussian distribution,

P1(φ̇) =

√
2

S1
√
π

exp

(
− φ̇2

2S2
1

)
, (13)

with standard deviation S1. After we substitute P1(φ̇)

given by Eq. 13 and 〈φ̇〉1 =
√

2/πS1 into Eq. 12b, we
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find the following expression for the local dilatancy dis-
tribution for MS packings generated via protocol 2 with
simple shear in the small-γ limit:

P2(φ̇|γ � 1) =
k0

λ0

(
φ̇

λ0

)k0−1

exp

−( φ̇

λ0

)k0 . (14)

P2(φ̇|γ � 1) = fw(φ̇;λ0, k0) is a Weibull distribution
with shape parameter k0 = 2 and scale parameter λ0 =√

2S1. We show in Fig. 7 (b) that the prediction in Eq. 14
agrees quantitatively with the simulation results for γ <
2× 10−4 over a range of system sizes.

FIG. 7. (a) Probability distribution of the local dilatancy

P1(φ̇) for φ̇ > 0 scaled by the standard deviation S1 for MS
packings generated via protocol 1 with N = 64 (squares), 128
(circles), 256 (triangles), and 512 (crosses). The solid line
is the half-Gaussian distribution in Eq. 13. (b) Probability

distribution of the local dilatancy P (φ̇) for MS packings gen-
erated via protocol 2 with simple shear in the small strain
limit (γ < 2 × 10−4). The symbols are the same as in panel
(a). The solid line is the Weibull distribution in Eq. 14 with
shape parameter k0 = 2 and scale parameter λ0 =

√
2S1.

We will now consider the local dilatancy distribution
for MS packings generated via protocol 2 at finite shear
strains. For protocol 1 (isotropic compression), our pre-
vious studies have shown that the distribution of jammed
packing fractions is independent of the shear strain γ [9].
However, for protocol 2 (e.g. with simple shear), systems
will preferentially jam on geometrical families at small γ,
effectively blocking families at larger γ, which causes the
fraction of unjammed packings to decay exponentially
with increasing γ for protocol 2 at a given φ [9]. There-
fore, as γ increases, the assumption that V1,i ≈ V2,i is no
longer valid, as shown in Appendix C. To characterize
the γ-dependence of the local dilatancy distribution, we

partition the packings into regions of strain γ required to
jam them. We can then express the local dilatancy dis-
tribution for MS packings generated via protocol 2 with
simple shear as an integral over γ:

P2(φ̇) =

∫ ∞
0

P2(φ̇|γ)P2(γ)dγ, (15)

where P2(φ̇|γ) is the conditional probability for obtaining

φ̇ at a given γ and P2(γ) is the probability for obtain-
ing an MS packing as a function of γ, which displays
exponential decay [9]: P2(γ) = α exp(−αγ). We show

in Fig. 8 (a) that P2(φ̇|γ) obeys a Weibull distribution,

fw(φ̇;λ, k), with shape k(γ) and scale parameters λ(γ)
that depend on strain γ. k(γ) and λ(γ) decay exponen-
tially to steady-state values in the large-γ limit as shown
in Fig. 8 (b):

χ∞ − χ(γ)

χ∞ − χ0
= exp(−γ/γc), (16)

where χ = k, λ and χ0 and χ∞ are the values when γ = 0
and γ →∞, respectively.

In the final step, we combine Eqs. 14 and 15 with the
results from Eq. 16 to predict the distribution of shear
stress for MS packings generated via protocol 2 with sim-
ple shear:

P2(Σ̂xy) = 〈φ〉2
∫ ∞

0

fw(φ̇;λ(γ), k(γ))α exp (−αγ) dγ,

(17)

where Σ̂xy = φ̇/〈φ〉2 has been used to relate P2(Σ̂xy)

to P2(φ̇). The results from Eq. 17 agree quantitatively
with the distribution directly calculated from the stress
tensor components over a range of system sizes as shown
in Fig. 6 (a). Thus, these results emphasize that we are
able to calculate the distribution of shear stress for MS
packings generated via protocol 2 from the well-known
distribution of shear stress for MS packings generated
via protocol 1, plus only three parameters: αγc, k∞, and
λ∞. We will show below that 〈Σ̂xy〉 depends very weakly
on k∞.

E. System-size dependence of the average stress
anisotropy for shear-jammed packings

In Fig. 6 (b), we showed that the average shear stress

〈Σ̂xy〉 ∼ 0.06 reaches a nonzero value in the large-system
limit for MS packings generated via protocol 2 with sim-
ple shear. In this section, we investigate the system size
dependence of 〈Σ̂xy〉 using the framework (Eq. 17) for
calculating the shear stress distribution for MS packings
generated via protocol 2 using the shear stress distribu-
tion for MS packings generated via isotropic compression
(protocol 1).

〈Σ̂xy〉 for MS packings generated via protocol 2 can be
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FIG. 8. (a) The conditional probability P2(φ̇|γ) for obtaining

local dilatancy φ̇ for MS packings with N = 128 generated
via protocol 2 with simple shear for γ < 2 × 10−4 (circles),
0.012 < γ < 0.016 (triangles), 0.20 < γ < 0.22 (diamonds),
0.22 < γ < 0.24 (squares), and 0.24 < γ < 0.26 (crosses). The

solid lines are Weibull distributions fw(φ̇, λ(γ), k(γ)). (b) The
γ-dependence of the shape parameter χ = k (open symbols)

and scale parameter χ = λ (solid symbols) for fits of P2(φ̇|γ)
to Weibull distributions for N = 128 (circles), 256 (triangles),
and 512 (diamonds). χ0 and χ∞ give the values of k and λ
at γ = 0 and in the γ → ∞ limit, respectively. The solid
lines are fits to an exponential decay, ∼ exp(−γ/γc), where
γc = 0.027, 0.026, and 0.021 for N = 128, 256, and 512,
respectively.

calculated from the probability distribution P2(Σ̂xy):

〈Σ̂xy〉 =

∫ ∞
0

Σ̂xyP2(Σ̂xy)dΣ̂xy

≈
∫ ∞

0

φ̇

〈φ〉2
(〈φ〉2P2(φ̇))

dφ̇

〈φ〉2
=

1

〈φ〉2

∫ ∞
0

φ̇P2(φ̇)dφ̇.

(18)
After substituting Eq. 15 into Eq. 18, we have

〈Σ̂xy〉=
1

〈φ〉2

∫ ∞
0

φ̇

(∫ ∞
0

fw(φ̇;λ(γ), k(γ))αexp (−αγ) dγ

)
dφ̇

=
1

〈φ〉2

∫ ∞
0

〈φ̇〉γα exp (−αγ) dγ,

(19)

where 〈φ̇〉γ = λ(γ)Γ(1 + 1/k(γ)) is the average of φ̇ at
strain γ. The shape parameter k(0) = 2 and increases
with γ, and thus 0.886 . Γ(1 + 1/k(γ)) < 1. Therefore,

〈φ̇〉γ can be approximated as

〈φ̇〉γ≈λ(γ)=λ∞[1−exp(−γ/γc)]+λ0 exp(−γ/γc). (20)

FIG. 9. The system-size dependence of 〈Σ̂xy〉 ≈ (λ∞ +
λ0αγc)/[〈φ〉2(αγc + 1)] (circles) from Eq. 21. The best fit
to Eq. 22 is given by the solid line. The shear stress in the
large-system limit 〈Σ̂xy〉∞ ≈ 0.060 is indicated by the dashed
line.

After substituting Eq. 20 into Eq. 19, we find

〈Σ̂xy〉 ≈
λ∞ + λ0αγc
〈φ〉2(αγc + 1)

, (21)

which is plotted versus system size in Fig. 9. We fit the
system-size dependence to following form:

〈Σ̂xy〉(N) = Σ̂0N
−Ω + Σ̂∞, (22)

where Σ̂0 ≈ 0.62, Ω ≈ 0.41, and Σ̂∞ ≈ 0.060, which
are similar to the values found directly using the data in
Fig. 6.

IV. CONCLUSIONS AND FUTURE
DIRECTIONS

In this article, we carried out computer simulations
of frictionless, purely repulsive disks to investigate the
development of stress anisotropy in mechanically stable
(MS) packings prepared using two protocols. Protocol
1 involves shearing the system quasistatically to a given
strain at low packing fraction and then compressing the
system quasistatically to jamming onset at fixed strain.
Protocol 2 involves compressing the system quasistati-
cally at γ = 0 to a packing fraction below jamming onset,
and then shearing the system quasistatically to achieve
jamming onset.

We find several important results. We find that the
stress anisotropy distribution for MS packings generated
via protocol 1 is a Gaussian with zero mean and a stan-
dard deviation that scales to zero in the large-system
limit. In contrast, MS packings prepared using protocol 2
have a nonzero stress anisotropy τ̂∞ ≈ 0.06 and standard
deviation S∞ ≈ 0.015 in the large-system limit. We also
find correlations between the stress and fabric tensors,
which are stronger for shear-jammed packings than for
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isotropically compressed packings. We derive relation-
ships between the components of the stress tensor (shear
stress and normal stress difference) and local dilatancy
dφ/dγ. Using these relations, we develop a statistical
framework to calculate the stress anisotropy distribution
for shear-jammed packings in terms of the well-known
stress anisotropy distribution for isotropically prepared
packings. We show that the stress anisotropy distribution
for shear-jammed packings can be described by a convo-
lution of Weibull distributions with shape and scale pa-
rameters that depend on strain. The results for the stress
anisotropy distribution from the statistical framework
agree quantitatively with the direct measurements of the
stress tensor for MS packings generated using protocol
2. These results emphasize that the packing-generation
protocol can dramatically influence the probabilities with
which MS packings occur, and thus change the average
macroscopic quantities that are measured for a given pro-
tocol.

There are several interesting directions for future re-
search investigating the development of stress anisotropy
in jammed systems that can employ the techniques devel-
oped in the present manuscript. First, how does the pres-
ence of frictional interparticle forces affect this picture?
Recent computational studies have shown that the shear
modulus displays a discontinuous jump with increasing
strain for static packings of frictional spheres [34]. Can
the discontinuity in the shear modulus be explained using
the statistical framework for the shear stress distribution
that we developed here? Moreover, there are still open
questions about whether pure/simple shear and isotropic
compression can give rise to fundamentally different en-
sembles of MS packings of frictional particles. For exam-
ple, consider the Cundall-Strack model for static friction
between contacting grains [35]. In this model, the tan-
gential force, which is proportional to the relative tan-
gential displacement between contacting grains can grow
until the ratio of the magnitude of the tangential to nor-
mal force reaches the static friction coefficient µ. If the
ratio exceeds µ, the particle slips and the relative tan-
gential displacement is reset. Two packings with iden-
tical particle positions can possess different numbers of
near-slipping contacts. It is thus possible that different
packing-generation protocols will lead to nearly identi-
cal MS packings with different numbers of near-slipping
contacts, which would give rise to different values for the
stress anisotropy. The presence of interparticle adhesion
also strongly affects the structural and mechanical prop-
erties of MS packings [36–38]. For example, extremely
loose packings can form with strong interparticle adhe-
sion [10]. An interesting future direction will involve un-
derstanding shear jamming of adhesive loose packings.

Second, how does non-spherical particle shape affect
the geometrical families φ(γ)? In preliminary studies, we
have shown that the geometrical families for MS packings
of circulo-polygons at jamming onset occur as parabolic
segments that are both concave up and concave down.
(See Appendix D.) In future studies, we will generate

packings of circulo-polygons using protocol 2 to connect
the statistics of the geometrical families φ(γ) to the devel-
opment of nonzero stress anisotropy in the large-system
limit for MS packings of non-spherical particles.

APPENDIX A: NORMAL STRESS DIFFERENCE
Σ̂N FOR MS PACKINGS GENERATED VIA

PROTOCOL 2 WITH PURE SHEAR

In Fig. 6, we presented the probability distributions for
the shear stress Σ̂xy and normal stress difference Σ̂N for
MS disk packings generated via protocols 1 and 2 with
simple shear. In this Appendix, we show the results for
the probability distributions P (Σ̂xy) and P (Σ̂N ) for MS
disk packings generated via protocol 2 with pure shear.

Pure shear strain couples to the normal stress differ-
ence, not to the shear stress. Thus, as shown in Fig. 10
(a), the probability distributions P (Σ̂N ) for MS pack-
ings generated via protocol 2 with pure shear are quali-
tatively the same as P (Σ̂xy) for MS packings generated
via protocol 2 with simple shear. The predictions from
the statistical model in Eq. 17 again agree quantitatively
with the distribution directly calculated from the stress
tensor components. The probability distributions P (Σ̂N )

and P (Σ̂xy) for MS packings generated via protocol 1 and

P (Σ̂xy) for MS packings generated via protocol 2 (with
pure shear) are Gaussian with zero mean and standard
deviations that scale to zero with increasing system size.
(See Eq. 7.)

The average of P (Σ̂N ) for MS packings generated via
protocol 2 with pure shear decreases as N increases, but
reaches a nonzero value in the large-system limit:

〈Σ̂N 〉(N) = Σ̂0N
−Ω + Σ̂∞, (23)

where Σ̂0 ≈ 0.49, Ω ≈ 0.40, and Σ̂∞ ≈ 0.055. Similarly,
the standard deviation of P (Σ̂N ) also reaches a nonzero
value in the large-system limit:

S2(N) = S0
2N
−ω2 + S∞, (24)

where S0
2 ≈ 0.30, ω2 ≈ 0.50, and S∞ ≈ 0.016. The

results for MS packings generated via protocol 2 with
pure shear are analogous to those observed for MS pack-
ings generated via protocol 2 with simple shear. (See
Table 1.)

MS packings generated via protocol 2 for pure shear
obey the same stress-dilatancy relationship (Eq. 2) as
that for simple shear. Thus, we can apply the statisti-
cal model in Sec. III D to predict the stress anisotropy
distribution for MS packings generated via pure shear.
As shown in Fig. 11 (a) and (b), the distribution for
the local dilatancy of shear-jammed packings at small
γ limit obeys a Weibull distribution, which can be pre-
dicted from the half-Gaussian distribution for MS pack-
ings obtained via protocol 1. (See Eqs. 13 and 14.)

The conditional probability, P2(φ̇|γ), for obtaining φ̇ at
a given γ is shown in Fig. 11 (c) and fit to a Weibull
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FIG. 10. (a) The probability distribution P (Σ̂N ) of the nor-
mal stress difference for MS packings generated via protocol
2 with pure shear for N = 32 (circles), 64 (squares), 128
(crosses), and 256 (triangles). The solid lines are predictions

from Eq. 17. The inset shows the distributions for Σ̂N (same

symbols as in main panel) and Σ̂xy (same symbols as in main
panel, but in red) for MS packings generated via protocol 1,

and Σ̂xy for MS packings generated via protocol 2 using pure
shear (same symbols as in main panel, but in gray). The solid
black line is a Gaussian distribution with a zero mean and unit
standard deviation. (b) System-size dependence of 1) the av-

erage (circles) and standard deviation (triangles) of P (Σ̂N )
for MS packings generated via protocol 2 with pure shear,
2) standard deviation of P (Σ̂xy) (squares) for MS packings
generated via protocol 2 with pure shear, and 3) standard de-

viations of P (Σ̂N ) (crosses) and P (Σ̂xy) (diamonds) for MS
packings generated via protocol 1. The dashed, solid, and
dash-dotted lines are fits to Eqs. 7, 23, and 24, respectively.

distribution fw(φ̇; γ, k). In Fig. 11 (d), we plot the γ
dependence of the shape k(γ) and scale λ(γ) parameters.
Both parameters decay exponentially to steady-state val-
ues in the large-γ limit. (See Eq. 16.) These results are
similar to those for the simple shear case described in the
main text.

APPENDIX B: COMPARISION BETWEEN
SHEAR-JAMMED PACKINGS AND PACKINGS

GENERATED VIA QUASISTATIC SIMPLE
SHEAR AT ZERO PRESSURE

In this Appendix, we compare the properties of shear-
jammed packings to MS packings generated via continu-
ous quasistatic simple shear at near zero pressure [26, 31].
To realize continuous quasistatic simple shear, we first
compress the system to jamming onset at zero sim-
ple shear strain. The pressure of the packings obeys
P0 < P < 1.01P0, with P0 = 10−7. We then succes-
sively apply simple shear strain in steps dγ = 10−4 to
the packings, followed by energy minimization. Before
applying the next simple shear strain step, we compress
or expand the system to meet the pressure criterion.

In Fig. 12 (a), we show the stress anisotropy Σ̂xy(γ)
for MS packings generated via protocol 2 and continuous
quasistatic simple shear at near zero pressure, starting
from the same initial configuration at γ = 0. Key dif-
ferences in Σ̂xy(γ) can be observed. For example, Σ̂xy
is strictly positive for shear-jammed packings. In con-
trast, continuously sheared packings can possess Σ̂xy > 0

and Σ̂xy < 0. This result suggests that during continu-
ous simple shear as the jammed packing moves along a
given geometric family or during a rearrangement, the
system can reach a region of a parabolic segment with
dφ/dγ > 0. In Fig. 12 (b), we compare the proba-

bility distribution of stress anisotropy Σ̂xy for packings
generated via protocol 2 and continuous shear at near
zero pressure. For continuously sheared MS packings in
steady state, the stress anisotropy obeys a Gaussian dis-
tribution that is shifted toward γ > 0. In contrast, the
stress anisotropy distribution is a convolution of strain-
dependent Weibull distributions for shear-jammed pack-
ings.

APPENDIX C: PROTOCOL DEPENDENCE OF
THE VOLUME OF THE BASIN OF
ATTRACTION FOR MS PACKINGS

In the description of the statistical framework
(Sec. III D) for calculating the distribution of dilatancy
for MS packings generated via protocol 2 with simple
shear from those generated via protocol 1, we first as-
sumed that the volumes of the basins of attraction were
the same (i.e. V1,i ≈ V2,i) for protocols 1 and 2. In
this Appendix, we illustrate that this assumption breaks
down for sufficiently large simple shear strains.

We illustrate the basin volume for an N = 6 MS pack-
ing, which is a four-dimensional quantity, by projecting it
into two dimensions. We consider a particular N = 6 MS
packing at shear strain γ and packing fraction φ that can
be generated readily via protocol 1 and protocol 2 with
simple shear. We identify a point (r1, r2, . . . , r6) within
the basin of attraction of the MS packing and constrain
the positions of particles 2 through 6. The initial posi-
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FIG. 11. (a) Probability distribution of the dilatancy P1(φ̇) for φ̇ > 0 scaled by the standard deviation S1 for MS packings
generated via protocol 1 and pure shear with N = 64 (squares), 128 (circles), 256 (triangles), and 512 (crosses). The solid line

is the half-Gaussian distribution in Eq. 13. (b) Probability distribution of the dilatancy P (φ̇) for MS packings generated via
protocol 2 with pure shear in the small strain limit (γ < 2× 10−4). The symbols are the same as in panel (a). The solid line is
the Weibull distribution in Eq. 14 with shape parameter k0 = 2 and scale parameter λ0 =

√
2S1. (c) The conditional probability

P2(φ̇|γ) for obtaining dilatancy φ̇ for MS packings with N = 128 generated via protocol 2 with pure shear for γ < 2 × 10−4

(circles), 0.010 < γ < 0.0105 (triangles), 0.18 < γ < 0.20 (diamonds), 0.20 < γ < 0.22 (squares), and 0.24 < γ < 0.26 (crosses).

The solid lines are Weibull distributions fw(φ̇, λ(γ), k(γ)). (d) The γ-dependence of the shape parameter χ = k (open symbols)

and scale parameter χ = λ (solid symbols) for fits of P2(φ̇|γ) to Weibull distributions for N = 128 (circles) and 512 (diamonds).
χ0 and χ∞ give the values of k and λ at γ = 0 and in the γ →∞ limit, respectively. The solid lines are fits to an exponential
decay, ∼ exp(−γ/γc), where γc = 0.029 and 0.021 for N = 128 and 512, respectively.

tion of particle 1 is allowed to vary in the x-y plane. The
pixels in each panel of Fig. 13 represent the initial posi-
tions of particle 1 and they are colored blue if the initial
configuration at (x,y) maps to the position of particle 1
in the particular MS packing that we selected. The area
of the blue region gives the projected area of the basin of
attraction for that particular MS packing.

In Fig. 13 (a) and (b), we show the basins of attraction
for a particular MS packing at a small shear strain, γ =
2×10−3, for protocols 1 and 2, respectively. The areas of
the blue regions are nearly the same, which suggests that
V1,i ≈ V2,i. However, at larger shear strains, the basin
volumes for the two protocols deviate. For example, in
Fig. 13 (c) and (d) at shear strain γ = 0.02, the projected
area for protocol 1 is much larger than that for protocol
2, which implies that V1,i 6= V2,i.

APPENDIX D: SIMPLE SHEAR OF
CIRCULO-TRIANGLE PACKINGS

In this Appendix, we show that MS packings of
non-spherical particles, specifically circulo-triangles, also
form geometrical families in the packing fraction φ and
shear strain γ plane. We considered bidisperse mixtures
of circulo-triangles, half large and half small with area

ratio ra = 1.42 and interior angles of 33◦, 62◦, and 85◦

for each triangle. We fixed the asphericity parameter
A = p2/4πa = 1.1, where p and a are the perimeter
and area of the circulo-triangles, respectively. At this
asphericity, the packings can be either isostatic or hypo-
static [17]. A typical configuration is shown in Fig. 14
(a).

As is the case for circular disks, we find that the geo-
metrical families for MS packings of circulo-triangles gen-
erated via protocol 1 with simple shear form parabolic
segments in the φ-γ plane, satisfying φ(γ) = A(γ−γ0)2 +
φ0 (as shown in Fig. 14 (b)). However, we find that the
curvature of the parabolas can be both concave up and
concave down (A > 0 and A < 0) for MS packings of
circulo-triangles. In contrast, A > 0 for MS disk pack-
ings. A < 0 implies strain-induced compaction, which
may be caused by the alignment of the circulo-triangles
during shear. Preliminary results indicate that the stress
anisotropy for shear jammed packings of circulo-triangles
is finite (and larger than that for frictionless disks) in the
large system limit.
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FIG. 12. (a) Stress anisotropy for shear-jammed packings
(protocol 2) (circles) and packings generated via quasistatic
simple shear at zero pressure (squares) starting from the same
initial configuration at γ = 0. The system size is N = 64. (b)

Probability distributions of the stress anisotropy P (Σ̂xy) for
shear-jammed packings (circles) and packings generated via
quasistatic simple shear (squares) with N = 64. The red
dashed line is a guide to the eye and the blue solid line is a
Gaussian distribution. The distribution of stress anisotropy
for MS packings generated via quasistatic simple shear is ob-
tained in steady state.
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FIG. 14. (a) An MS packing of N = 6 of bidisperse circulo-
triangles with asphericity parameter A = 1.1. (b) Packing
fraction φ at jamming onset as a function of simple shear
strain γ for N = 6 MS packings of circulo-triangles generated
via protocol 1. The packing in panel (a) corresponds to the
filled red triangle. The solid lines are fits of two particular
parabolic regions (shaded gray) to φ(γ) = A(γ−γ0)2+φ0. (c)
(φ−φ0)/|A| versus γ− γ0, for N = 6 MS packings of circulo-
triangles generated via protocol 2 with simple shear. These
packings populate the parabolic regions with dφ/dγ < 0 on
segments with both A > 0 and A < 0. The jammed and
unjammed regions of the (φ − φ0)/|A| and γ − γ0 plane are
indicated.


