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Abstract

Characteristic diffusion in a Lorentz Gas system and its extensions are typically described

through a scale-free order parameter. The relative validity of possible order parameters for the

diffusion of a thick tracer rod through spherical scatterers in two and three dimensions as a function

of the rod length L and scatterer density ρ has been examined by simulation. We find that the

often-used two-dimensional order parameter, ρL2, is accurate. However, its naive generalization

to three dimensions, changing the exponent according to dimensionality, does not fit the observed

results. A revised order parameter can be generated through a theory based on the behavior of

the mean free path of the tracer. We find that this generalized order parameter captures the

multidimensional diffusive behavior.
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I. INTRODUCTION

Characterization of the diffusion of prolate particles through a solvent is layered in com-

plexity. The asymmetry of the particle structure can lead to asymmetry in its diffusion if

the solvent is not uniformly distributed at some characteristic length scale shorter than that

of the particle. The nontrivial rotations of the particle about its secondary axes contributes

to the dynamics in ways that could lead to asymmetric transport. The nature of the com-

plex solvent can also significantly affect the dynamics of the particle. For example, it could

be structured or dissipative in ways that alter its relative rotation, libration, motion along

the primary axis direction, and motion across the secondary axes directions. Unraveling

this problem does not simply address an interesting theoretical model because, for example,

small cylindrical particles are common nanomaterials that have unique electronic properties

that are affected by their relative structure and assembly. They often exhibit interesting

surface plasmon resonances that can be used for a variety of applications, including lasers

and catalysts.[1, 2]

We, and others, have used the Lorentz gas (LG) model to describe the solvent as a

set of fixed scatterers.[3–8] The LG model was originally introduced by Lorentz in 1905 to

model the transport of electrons in a metal and from which he derived a linear Boltzmann

equation.[9] The model was used to elaborate the diffusion of light fast particles —the

wind— across heavy immovable particles —the trees— so to rigorously construct correlation

functions for the corresponding kinetic gas systems.[10] Since then, the LG model has served

as a useful benchmark system for kinetic and dynamical theories.[11] The model is simple

enough that it is often analytically tractable, if not exactly solvable, and simulations of

it are computationally inexpensive. In the context of this work, the LG model describes

the environment for the motion of a prolate cylindrical particle through a sea of heavy

immobile scatterers organized in either a periodic or aperiodic fashion. The dynamics of the

tracer particle in the LG system exhibits surprisingly complex transport behavior. It was

discovered early on that the transport coefficients for the LG model system are non-analytic

functions of the density, and that any density expansion would diverge in the Dth term

where D is the system dimensionality.[12]

For equilibrium structural properties, this model system scales according to a single order

parameter, n∗ = ρσD, where σ is the radius of the scatterers and ρ is the density.[12–15]
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Extensions addressing rods with more complex geometries and self-propulsion have also

been explored and is of current interest because of recent advances in the characterization of

active matter.[7, 16–20] The spherical-tracer order parameter is typically extended for a rod

in spheres to 2 and 3 dimensions as n∗ = ρLD where L is the length of the tracer rod.[21]

In this article, we aim to characterize the dynamics of such structured particles within the

LG model and test the hypothesis that this or a new modified order parameter provides the

appropriate scaled dynamics.

In earlier work by Tucker and Hernandez,[7] the possibility of excluded volume effects

on the dynamics of the diffusing particle was introduced into the model by extending the

representation of the particle or scatterers from points to spheres, preserving the spheri-

cal symmetry of the point particle, but giving it a width. The possibility of effects due

to nonspherical structure in the scatter can be introduced by allowing the particle to be

a rod with zero radius. One might expect translational diffusion to be a monotonically

decreasing function of the density. However, when the motion of a rod-like particle was

investigated by Franosch and coworkers[6, 22] an enhanced diffusion regime was discovered

in a rod moving through an LG model with point particle scatterers. In this enhanced dif-

fusion regime, increasing the scatterer density leads to increased translational diffusion.[6]

An enhanced diffusion regime was also seen for a dense solution of infinitely thin rods due

to confinement,[23] though absent in the case of thick scatterers.[8]

Moreno and Kob[3, 4] addressed a thick rod LG model with thick (and non-overlapping)

spheres that led to glassy dynamics with increasing density. Tucker and Hernandez[7] ad-

dressed a thick rod with point scatterers in two dimensions; finding that both enhanced

diffusion and glassy regimes were accessible. In attempting to generalize to higher dimen-

sions, however, we found that the order parameter n∗ is no longer satisfactory.

In Sec. II, we summarize the LG model for a rod diffusing through spheres, the structure

of its transport coefficients, and the order parameters that have been used to characterize

it. The framework and parameters of our simulations are presented in Sec. III. We report

the simulation data in Sec. IV, and introduce a correction to the order parameter to correct

for the differences in the mean free path that we found in three dimensions rather than two.

This, in turn, leads to a hypothesis for a useful order parameter in three dimensions which

is a central result of this article.
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II. THEORY

A. The LG Model

The LG model in this work consists of a mobile tracer and a sea of immovable scatterers.

The tracer moves ballistically between scatterers until it comes into contact with a scatterer

and experiences a hard collision. Over time, the tracer experiences diffusive motion through

the scatterer background, giving rise to a well-defined diffusion constant.

The tracer is described by a cylinder of length L and radius σt with end caps made of

hemispheres of the same radius σt. It has a total massM and uniform density. The scatterers

are a sea of immobile spherical particles with radius σs. They are placed randomly in the box

at homogeneous density ρ, and are allowed to overlap. The tracer dynamics is either that of

ballistic motion between collisions or hard elastic collision upon contact with a scatterer. In

the simulations, a finite size D-dimensional box with sides of length Lbox satisfying periodic

boundary conditions is used to represent the infinite extent of the formal system. Simulations

with varying Lbox confirmed that there were no finite size effects. The tracer is placed in a

random position and orientation within the periodic box. If that selection overlaps with a

scatterer, the tracer is removed and placed randomly again. After 10,000 attempts to find a

non-overlapped position, the scatterer background was re-created, and the iteration to place

the tracer was re-initiated. Such reboots of the scatterer positions were rarely needed to

find an initial tracer position even at the largest scatterer densities considered here.

The tracer is given a random translational and rotational velocity taken from independent

Maxwellian distributions with temperature T . It can then be propagated by the classical

equation of motion with the only interactions arising from the hard collisions—either head-on

or glancing—between the rod and the scatterers.

B. Transport Coefficients

The transport coefficients for tracers diffusing across a random LG model can be derived

analytically in certain limiting cases. For a random scatterer background, the analytic form

of the diffusion constant has been computed in 2D for the low density case.[3] Specifically,

Moreno and Kob[3] obtained the low-density diffusion limit from kinetic theory and mode

coupling theory for a 2D medium with point obstacles following approach similar to Ref. 14.
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They also added a correction factor for moderate densities, resulting in the reduced diffusion

constant,

Dcom/D
0
com = 1 + (32/9π)ρ∗lnρ∗ (1)

where

Dcom =
3〈v〉

16ρR
(2)

p∗ = ρR2 (3)

R = (LKob + (π − 1)σ)/π (4)

In their model, the rigid rod was represented by N point-wise beads of mass m placed in

a straight line with intervals spacings of 2σ. The length of the rigid rod is consequently

described by LKob ≡ 2(N − 1)σ. They set the size of their scatterers to zero without loss of

generality by way of renormalizing the effective length of the rod as R = (LKob+(π−1)σ)/π.

The model of Moreno and Kob can be mapped to the thick rod and LG scatterers dis-

cussed here through the following set of transformations:

L = LKob + πσ (5)

n∗ =
ρ(LKob + πσ)

π2
, (6)

where L and σ are the length and radius of the thick rod. Note that, unlike in our LG

systems, their scatterers are not allowed to overlap. Our 2D results are compared to these

theoretical values in Sec. IV, and the agreement is generally good at lower densities. The

theory fails to have agreement at higher scatterer densities where both the differing nature

of the scatterers and the excluded volume of the particle play an important role.

C. Order Parameters

In general, the reduced diffusion constant scales as

Dred ∝ vλ (7)

where v is the average velocity of the center of mass of the rod and λ is its mean free path

obtained for sufficiently long trajectories. The mean free path is inversely proportional to
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the product of the density of scatterers and the tracer-scatterer collision cross-section. For

a 2D needle with length L moving though a sea of point scatterers, the mean free path is

proportional to 1
ρL
, where ρ is the density of scatterers. The cross-section is the length of

the tracer. Insertion of the mean free path into Eq. 7 and division by vL results in a reduced

diffusion constant which scales as

Dred ∝
1

ρL2
(8)

∝
1

n∗
(9)

This suggests that n∗ is a good order parameter for the system in 2D.

In three dimensions, the situation is different. The mean free path of a needle with length

L and thickness σ though a sea of point scatterers is given by 1
ρLσ

because the cross-section is

proportional to the areas of the rectangle Lσ. Applying the same transformations as before

to obtain the reduced diffusion constant gives:

Dred ∝
1

ρL2σ
(10)

∝
1

σ
L
n∗

(11)

This implies that σ
L
n∗ would make a good order parameter for 3D. We take the ratio σ

L
to

be a correction factor γ on the reduced diffusion n∗ to create a new order parameter: γn∗.

We show in Sec. IV that this new order parameter provides the desired invariance in our

test simulations.

III. NUMERICAL METHODS

A. Numerical Integration and Propagation

The integration algorithm for the evolution of the tracer under the classical equation of

motions is simplified by the fact that the motion is ballistic as long as there is no collision.

The algorithm used here is time-step based, evolving the system forward in time in succes-

sive steps at constant velocity and correcting those steps which involved a scatterer-tracer

collision through a careful accounting of the collision event.[7, 8] Even at the highest densi-

ties explored in this work, the frequency of these collisions, relative to our time step, were

sufficiently low that the calculations could be performed in reasonable time.
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FIG. 1. A typical MSD (blue and red dots) for a 2D simulation as a function of displacement time

∆t. Specifically, the parameters are: n∗ = 0.1, L = 14.142 Å, σs = 0.5Å, σt = 0.5Å. The blue

points are those excluded from the fitting due to not being in the linear regime. The black line is

the linear fit of the red points with a slope of 1769.02 ± 0.24 ps.

Although an event-driven molecular dynamics integrator can be more efficient then a

time step based integrator [24], we want to be able to sample data at shorter time scales

then the collision time scale; and, as such need discrete time steps independent from the

collision rate. Once a collision has been detected, the tracer’s motion is reversed until it

has reached the point of contact, where the equations for a hard collision are applied. After

a set amount of time the position and velocity of the tracer is recorded for data collection

and analysis. After a set number of time steps, which corresponds to a given amount of

real time, another scatterer background is generated, the tracer’s position and velocity is

regenerated, and a new trajectory is started. After all of the trajectories are complete, the

relevant correlation functions are calculated and the transport coefficients are extracted.

The numerical integration of trajectories and averaging of the correlation functions are done

with in-house Fortran code; the fitting and plotting with in-house Python code.

Each of the trajectories reported here were integrated on the first-generation XSEDE

Stampede CPU nodes (2.7 GHz Xeon E5-2680 8-core Sandy Bridge processors with the

Intel Xeon Phi SE10P KNC MIC coprocessor), and completed on one core in less then 24

hours of processing and analysis time.
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FIG. 2. A typical velocity autocorrelation function (red dots) for a 2D simulation as a function

of displacement time ∆t at the same parameters as in Fig. 1 The black line is the exponential fit

with a decay time of 25.615 ± 0.009 ps.

B. Algorithms for Determining Transport Coefficients

The translational diffusion constant Dcom is extracted via three different methods: (i)

using a linear fit of the long time mean square displacement (MSD) as illustrated in Fig. 1

for a particular set of parameters, (ii) using a two variable power law fit of the long time

MSD, and (iii) through integration of the velocity autocorrelation function.

In the first and second method, we take advantage of the relationship between the diffusion

constant and the MSD given by the Brown-Einstein-Smolouchowski relation,

Dcom =
1

2D
lim

∆t→∞

d

d(∆t)
〈(~r(t+∆t)− ~r(t))2〉t (12)

where D is the dimensionality of the system. Note that 〈...〉t is an average over all time

t. The use of ∆t for several prior t’s instead of the fixed starting point at t = 0 allows for

enhanced averaging.

Dcom can then be extracted numerically from the mean-square displacement. In the first

method, we fit the long time MSD to a line whose slope is 2DDcom. In the second method,

we account for the possibility that the finite size of the data can cause convergence errors

leading to apparent anomalous diffusion. The corresponding assumption of a power law form

—with m and α as the prefactor and exponent, respectively— for the position correlation
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function in Eq. 12 leads to an intermediate time approximation of the diffusion constant,

Dcom =
1

2D

d

d∆t
(m∆tα)

∣

∣

∣

∣

∣

∆t≈t∗

(13)

where t∗ is a characteristic time associated with the intermediate region where the power law

is fit to the data, and we approximate it as the median of the times in the fitting window.

After simple algebra, we find that the diffusion constant is

Dcom ≈ Dα(t
∗)α−1 (14)

where Dα ≡ αm
2D

. For a Brownian (or any nonanomalous) system, as t∗ → ∞ then α → 1.

Consequently, Eq. 14 reduces to Dcom = Dα, which is the expected limiting behavior.

A typical fit of the velocity autocorrelation data is shown in Fig. 2. The relationship

between the velocity autocorrelation function (VAC) and Dcom is given by the following

Green-Kubo relation:

Dcom =
1

D

∫

∞

0
〈~v(t+∆t)~v(t)〉td(∆t) (15)

where D is the dimensionality of the system. The use of the integrand as an average over t

for each given ∆t is not formally necessary, but it is numerically useful as it allows for more

points to contribute to the numerical integral.

C. Numerics in Determination of Diffusion Coefficients

The diffusion constant can be obtained from numerically determined MSDs such as that

shown in Fig. 1. At intermediate times —beyond the initial inertial regime and before the

end of the trajectories,— the system exhibits diffusive behavior and satisfies a form linear

in time.
〈

(~r(t +∆t)− ~r(t))2
〉

≈ v0∆t. Insertion into Eq. 12 yields the diffusion constant,

Dcom =
v0
2D

(16)

For example, the slope v0 of the MSD in Fig. 1 is 1769.0 ± 0.2 Å/ps. Consequently, the

diffusion rate obtained from the linear MSD plot is 442.25 ± 0.06 Å2

ps
.

Alternatively, the fits can be performed on a log-log representation of the data. From the

data shown in Fig. 1, such a log-log fit led to the optimized parameters: t∗ = 1.67 µs, α =

1.230 ± 0.006, and Dα = 16.6 Å2

ps
1

psα
. Use of Eq. 14 yields the diffusion constant, Dcom =

444.66 ± 39.0 Å2

ps
. Note that these error bars are much larger than the error for the linear
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fit, since the linear fit assumes the exponent α is exactly 1, so error in the determination of

this exponent is not propagated.

Alternatively, the diffusion constant can be obtained from the VAC function. We approx-

imate it as a single exponential 〈v2〉e−t/τ where τ is the decay time. The diffusion constant

of Eq. 15 then reduces to:

Dcom =
〈v2〉

Dv0
=

2kTτ

Dm
(17)

The values of the fitting parameters for the same case as in Fig. 1 are: 〈v2〉 = 32.680 ±

0.008, and τ = 25.615 ± 0.009 with the effective dimensionality of the system set to 2. As

such, one recovers a diffusion constant equal to 418.54 ± 0.04 Å2

ps
.

The values of the diffusion constants obtained from the linear MSD and VAC fits are

much larger than the width of the error bars. However, the diffusion constant obtained

from the VAC is on the order of the error seen in the log MSD fit. This is due to the

linear MSD and VAC error calculations not accounting for convergence error. We take the

variance for all of our averages when computing the MSDs and VAC. We then use these

variances to judge the error in the fit for the MSD and VAC fitting. This method works

well for estimating noise in the fitting itself. However, to compute the diffusion exactly, we

would need to take averages at infinitely long time with infinitely fast velocity sampling.

Since our samples are of finite size, there is convergence error in the diffusion constant that

is not represented in the variance of the individual data points in the linear MSD and VAC.

An illustration of the convergence with increasing number of scatterers is shown in Fig. 3

for two representative cases in 2D and 3D. We thus extract the diffusion constant via the

three approaches in order to obtain an estimate of the relative accuracy of the numbers in

a way that would not be represented by the apparent convergence of a given approach, and

report the numbers accordingly.

IV. RESULTS

A. Tracer in Two Dimensions

The reduced diffusion constant at constant n∗ for three different n∗ and three different

cases of the characteristic lengths L0 of the diffusing rod is shown in Fig.4. The values L0,

noted in the figure caption, are characteristic in the sense that they represent the regime
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FIG. 3. The 2D and 3D diffusion constants obtained on a periodic box with increasing size and

corresponding increasing number of scatterers. The tracer length is held fixed at L = 31.623Åand

21.544 Åin 2D and 3D, respectively. The number of scatterers in the largest finite box is N0 equal

to 1960 and 3375 in 2D and 3D, respectively. In all cases, the box size and N satisfy the condition

that the scatterer density is 0.001, and n∗ = 1.0.

(at sufficiently large lengths) when the diffusion constant has plateaued for each given n∗.

The observed reduced diffusion at constant n∗ exhibits similar behavior over a wide range of

densities, including in the enhanced diffusion regime. In particular, they exhibit a horizontal

asymptote for values with a constant diffusion constant at large tracer length. This is

consistent with the hypothesis that n∗ is a good order parameter for the system in this

regime, since the reduced diffusion is a function of n∗ alone.

However, n∗ is not a good order parameter at low L as indicated by the depression in the

curve towards zero at zero L. At constant n∗, a decrease in L implies an increase in number

density, but a decrease in collision cross section such that the overall reduced diffusion in

unchanged. For a system with space filling rods and scatterers, L is not the only variable

that determines the cross section. At zero L, the tracer is a sphere of radius σt, surrounded

by spheres of radius σs. In this limit, the diffusion goes to zero. To fix this, σt and σs must

change to hold the cross section constant as L decreases. We create a new effective L such

that:

Leff = L+ 2σs + 2σt (18)
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FIG. 4. The 2D reduced diffusion constant as a function of tracer length at three different constant

values of n∗ scaled by a characteristic length L0 = 28.3, 63.2 and 200 in each panel from top to

bottom, respectively. Notice that the reduced diffusion is a good order parameter at large tracer

length (low density at constant n∗) because the curves are flat in this region, and hence Dcom is a

constant with respect to L.

and from this create an effective n∗:

n∗

eff = ρLD
eff (19)

As shown in Fig. 5, This n∗

eff is a good order parameter in 2D, as it correctly accounts for

the cross section of the tracer when it is not dominated by L alone.
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FIG. 5. The dependence of the 2D translational diffusion constant of the tracer on the effective

length Leff at constant n∗

eff. In this case n∗

eff = 1.0, σs = σt = 0.5. The blue line is the linear fit,

and the black line is a constant fit. The constant fit is within the error bars of the power law fit,

Dcom

vLeff
∼ .003 Leff, which is within 1.5 σ from zero.

B. Tracer in Three Dimensions

The reduced diffusion constant in 3D for three values of n∗ is plotted in Fig. 6. The

L0 values refer to the largest lengths of the tracer considered here for three-dimensional

scatterers at a particular n∗. Their values were chosen to correspond to the two dimensional

cases of the previous subsection. The most obvious difference to the trends seen in 2D is

that there is only one regime, and it is linear. This implies that in three dimensions, n∗ is

not a good order parameter in any limit because it cannot uniquely predict the diffusion

constant. Correcting for excluded volume does not help the situation either. When the

excluded volume is accounted for, the diffusion is still a strong function of the scatterer

length at constant n∗

eff, as shown in Fig. 7.

A simple fix would be to attempt to find a length scale that is proportional to L. However,

this would not lead to a flat curve. The linearity could only be reduced to a constant via

division by L if the y-intercept of the linear fit were zero. This is not the case for any of the

n∗ observed.
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FIG. 6. The 3D reduced diffusion constant as a function of tracer length at constant values of n∗

—as also displayed for the 2D case in Fig. 4— scaled by a characteristic length L0 = 7.0, 29.2,

63.0 from top to bottom, respectively. The dashed line is a linear fit to the data, with R2 values

> 0.999 for all plots. Note that the reduced diffusion is nowhere a good order parameter in 3D.

V. DISCUSSION

A new order parameter γn∗ for the diffusion of rods through scatterers in three dimensions

was constructed in Sec. II. The need for this scaling law lies in its use to surmise and predict

the behavior of these systems with a minimum number of characteristic degrees of freedom

in the parameter space. These considerations, and their relevance to experiment, are our

primary motivation for its construction and elaboration.

To numerically confirm that γn∗ is indeed a good order parameter, the diffusion constant

was determined or various values of L, σ, and ρ and summarized in Fig. 8. A surface was
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FIG. 7. The 3D translational diffusion constant of the tracer as a function of the effective tracer

length Leff at constant n∗

eff. The parameters are n∗

eff = 1.0, σs = σt = 0.5. The black line is the

linear fit, Dcom

vLeff
∼ .24 Leff, with a slope that is about 100 times that in the 2D case.

FIG. 8. The 3D reduced diffusion constant is displayed as contour and 3D-surface plots over the

two-dimensional domain of γn∗ and scatterer and tracer radius σ−1. The black lines on the surface

indicate constant L as indicated, and also correspond to the values of γn∗ on the bottom left axis.

The vertices of the lines on the upper surface are explicitly computed to which the surface has

been fitted. The dashed contour lines represent lines of constant reduced diffusion and potential

order parameters.
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extrapolated over the set of resultant reduced diffusion points. The surface is indeed nearly

constant over domains with constant values of γn∗ suggesting that this quantity is a good

order parameter across most of these three-dimensional systems.

These models are applicable to the classical diffusion of rod-like molecules on surfaces.

For example, Fichthorn and coworkers found that the dynamics of dimers on medal surfaces

can be complex and highly dependent on the relative shape and size of the dimer and

geometry of the underlying surface. [25–27] While the present work does not explicitly

consider inhomogeneities due to an an underlying surface in the 2D case, it does consider

the inhomogeneities in the plane of the surface are represented by the scatterers. Perhaps not

surprisingly, we found similar complexity, but have added the possibility of corresponding

behavior as captured though the scaling law.

The diffusion of a rod in an environment with controlled scatterer density is experimen-

tally realizable, and its existence has motivated, in part, much of the work by other groups

and us. For instance, Roichman et al[28] follow the dynamics of a single silver nanowire

confined to two dimensions as it diffuses through a set of randomly generated repelling

focused laser beams or polymer pillars. Their rods experience viscous and hydrodynamic

effects that are not included in the simple models of this work. Indeed, these effects lead

to a breakdown of the scaling laws that we have found here, thereby illustrating the need

for including such effects. Similarly, Composto and coworkers[29] observed the diffusion of

a titanium dioxide nanorod though a polystyrene melt where the length and thickness of

the nanorod is comparable to the radius of gyration of the polymer melt. They found that

the translational diffusion of the nanorod can be up to three orders of magnitude faster

than what would be expected from a uniformly distributed environment in which the rod

diameter is smaller than the entanglement mesh size. Recognizing that their nanorods are

constrained by the polymer in a similar way to how our rods are constrained by scatterers,

this is evidence for the enhanced diffusion our group[7] observed earlier. Moreover the 3

dimensional nature of the confinement of the polymer network allows for enhanced diffusion

to persist even in three dimensions when a disconnected network of scatterers does not lead

to it.[8] Once again, this analysis is clearer because of the differences observed in systems

with putative corresponding order parameters that break down because of the additional

complexities of the actually system. Thus, the current findings afford us a new way to better

characterize the nonadditive effects that emerge from increased complexity in the diffusing
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medium or the scatterer network.

Finally, the scatterers in this work were arranged in the periodic box using a homoge-

neous random selection that permits naive overlaps. One possible concern is how a different

selection of the scatterers would affect the results and the associated scaling law. The place-

ment of the scatterers clearly presents the possibility for different dynamics. For example,

if the scatterers were so heterogeneously placed so as to leave large and simply connected

regions free of scatterers, the rod would diffuse ballistically within said regions deterred

only slightly by a search through the interconnections, and thus diffuse faster. The scaling

behavior found here may still be relevant in selected regimes, but proving this would require

additional effort beyond the scope of this work.

VI. CONCLUSIONS

In this article, we have determined how the reduced diffusion constants for a particle

moving through an isotropic random LG scatterers differ between two and three dimen-

sions. We have summarized the features necessary for identifying good order parameters as

previously used to describe related systems, and obtained the corresponding order parame-

ters for a spherocylinder solvated in a Lorentz gas of spherical particles. In two dimensions,

the reduced density makes a good order parameter so long as excluded volume is properly ac-

counted for. However, in three dimensions, the naive extension of the two-dimensional order

parameter is insufficient to characterize the system. An approach accounting for excluded

volume effects does not lead to an appropriate order parameter with invariant properties.

We found that this is due to the failure of the two-dimensional order parameter to include

the effects of the changes in the mean free path of the tracer in three dimensions. We derived

and benchmarked the corrected 3D order parameter by extending the 2D order parameter

using the correct scaling behavior of the mean free path with dimensionality.

The existence of an appropriate order parameter for these systems in two and three

dimensions does more than provide a reduced variable with which to characterize them. It

also suggests a mechanism by which the cylindrical tracer generally diffuses through the

scatterers. In two dimensions, the motion of the rod tangentially to its parallel axis is

confined by its length L whereas in 3 dimensions a small perturbation above or below the

scatterer allows it to go freely past a would-be scatterer. Such different physics results in the

17



rather different order parameters that we have observed here for two- and three-dimensions.
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