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We develop a stochastic kinetic model of a pre-formed attachment of a microtubule (MT)
with a cell cortex, in which the MT is tethered to the cell by a group of active motor proteins.
Such an attachment is a particularly unique case of ligand-receptor bonds: The MT ligand
changes its length (and thus binding sites) with time by polymerization-depolymerization kinetics,
while multiple motor receptors tend to walk actively along the MT length. These processes,
combined with force-mediated unbinding of the motors, result in an elaborate behavior of
the MT connection to the cell cortex. A fundamental challenge in this context is to
understand how such a pre-formed attachment maintains its integrity long enough
in spite of the ongoing turnover of the MT subunits from its depolymerizing plus
end and withstands potentially disruptive effects arising from enhanced rates of
detachment of the tethering motors because of external tensions. We present results for
the strength and lifetime of the system through the well-established force-clamp and force-ramp
protocols when external tension is applied to the MT. The simulation results reveal that the MT-cell
attachment behaves as a catch-bond or slip-bond depending on system parameters. We provide ana-
lytical approximations of the lifetime and discuss implications of our results on in-vitro experiments.
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I. INTRODUCTION

In eukaryotic cells, sister chromatids are segregated
by a complex multi-component machine known as the
mitotic spindle [1–3]. During the morphogenesis of the
spindle [4, 5], microtubules (MT) play a critical part as
dynamic tethers between the centrosomes and other ma-
jor components of the cell, such as the cell cortex and
the kinetochores [6, 7]. As such, the biophysical prop-
erties of MTs have attracted investigation recently[8, 9]
due to their indispensable role in the timely and accurate
segregation of chromosomes — a process essential to cell
survival.

Understanding the adhesion physics of a single astral
MT with the cortex is the first step in ultimately under-
standing how intracellular forces collectively determine
the position and orientation of the spindle [10–15]. The
theory of oscillations of the mitotic spindle, arising ef-
fectively from the collective dynamics of all the astral
MTs tethered to the cortex by attaching/detaching mo-
tors, has been reported earlier [16, 17]. Here we consider
the behavior of a single MT-cortex connection, which is
amenable to experimental investigation by way of (single-
) molecule force spectroscopy (MFS) [18].

The MT-cortex interaction is viewed as an analog of a
‘ligand-receptor bond’ [19, 20] where the end of the MT
filament (ligand) adheres to the specific binding partners
(receptor) that link it with the cortex. However, unlike
common ligands, a MT exhibits unique polymerization-
depolymerization kinetics [21]. Furthermore, the corre-
sponding receptor proteins are ‘active’ in the sense that
they consume chemical fuel for their mechanical function.

The transient molecular joints formed by the
plus ends of MTs with the kinetochores and cell

cortex must survive long enough so that the func-
tion of the mitotic spindle is not disrupted by pre-
mature rupture of these attachments. How the
integrity of these attachments are maintained in
spite of the ongoing turnover of the MT subunits
from its depolymerizing plus ends is itself a chal-
lenging question. Moreover, the molecular joints
should be able to withstand the potentially dis-
ruptive effects of tensions exerted by other com-
ponents of the spindle. In the specific case of the
MT-cortex attachments, the unbinding of the mo-
tor heads from the MT during each of their AT-
Pase cycles can further hasten the rupture of the
attachment unless compensated by fresh binding
of other motors, or rapid rebinding of the same
motor, to the MT.

The aim of this paper is to develop a minimal math-
ematical model of an attachment formed by a single as-
tral MT with the cell cortex by capturing the essential
roles of only the key components identified experimen-
tally till now. In spite of the simplicity of the system,
our analysis reveals the cooperative effects of multiple
motors that give rise to the emergent collective proper-
ties of the attachment. Such collective phenomena are of
general interest in several branches of physics and biology
[22–27]. These theoretical predictions can, in principle,
be tested by corresponding single-molecule experiments
in-vitro [28].
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FIG. 1. (a) In the cartoon of a MT-cortex attachment formed
by dyneins, each dynein is permanently attached to the cell
cortex by a spring-like elastic element. External Force F is
applied on the orange cylinder from which MTs are generated.
(b) The 3D cylindrical MT is ‘unwrapped’ into a 2D sheet
consisting of 13 mutually parallel protofilaments each of which
consists of identical subunits of length 8nm and can bind with
the cortical dyneins. (c) The 2D sheet of (b) is ‘projected’
onto an effectively 1D model in which the effective dimer size
becomes 8/13 nm (the relative sizes of the dimers in (b) and
the effective dimers in (c) are not drawn to scale). But, as the
step size of a dynein motor is 8 nm, a motor’s head can hop
to the next δ = 13th site on this 1D model. xM represents the
distance of MT tip from wall. The mid-points of the pair of
heads of two distinct motors are shown at distances xm1 and
xm2 from the wall. The spring constant of the elastic element
connecting a motor with the cortex is k and its rest length is
xm0 while ∆x denotes the extension of the spring caused by
the external force F .

II. MODEL AND METHOD

A. The model

Microtubules are cylindrical hollow tubes of approx-
imately 25 nm diameter, nominally assembled from 13
parallel protofilaments. Each protofilament is assembled
by globular protein hetero-dimers consisting of α and β
tubulins. The length of each α-β dimer is about 8 nm.
The MT is a polar filament distinguished by a plus end,
which is linked to the cell cortex by dynein motor pro-
teins and a minus end anchored in the centrosome [29].

Dynein are motors that specifically bind to equispaced
binding sites on the surface of a MT, with a tendency to
actively walk towards the minus end of the MT [23, 24].

A cartoon of a MT-cortex attachment formed by corti-
cal dyneins with a single MT is drawn in Fig.1(a). To re-
duce the full 3D system to an effective 1D model, we first
imagine splitting the cylindrical tubule open into a two-
dimensional sheet, as depicted schematically in Fig.1(b).
In this 2D representation, the 13 protofilaments of the
MT are arranged side-by-side parallel to each other. We
then project the two-dimensional sheet onto a line result-
ing in a strictly one-dimensional lattice with the lattice
constant 8/13 nm (shown in Fig.1(c)) [30–34]. As with
the dynein motor, the molecular motors in our model are
minus-end directed. Since the step size of a dynein motor
is 8 nm, on this 1D representation of the MT a motor’s
head can hop from the j-th site to the to the next j + δ-
th site where δ = 13. We represent the cortex by a rigid
wall which coincides with the origin of the 1D coordinate
system. The X-axis is chosen to be perpendicular to the
wall and +X direction is oriented towards right so that
x increases from left to right. The plus end of the MT is
oriented along the -X direction.

In what follows, we use the above one-dimensional
model of the dynein-mediated MT-cortex attachment im-
plementing conditions that mimic the protocols of MFS
[35–38]. We assume a pre-formed attachment as the ini-
tial condition where all the motors are attached to ran-
domly selected positions on the MT. In our MFS in-silico,
we treat the two common experimental protocols: force-
clamp, which measures the bond lifetime under constant
tension, and force ramp, the force at which the bond rup-
tures under linearly increasing tension [19].

Each motor can either attach or detach from the MT,
and walk in either direction along the MT. The tail of
each dynein motor is an elastic element permanently an-
chored on the face of the rigid wall. Thus extension of a
motor away from the wall is modeled as a Hookean spring
of spring constant k and rest length xm0. With respect
to the origin, xmi(t) denotes the position of the midpoint
of ith molecular motor at time t while xM (t) denotes the
corresponding position the MT tip (see Fig.1(c)).

Let Nd be the total number of dynein motors that can
simultaneously attach to the MT whereas n(t) denotes
the number of motors attached at time t (i.e., n(t) ≤ Nd).
For an unbound motor, Kon denotes the rate of binding
of its head to the MT. Therefore, the rate at which any
unbound motor binds to the MT is [39]

kon(n) = (Nd − n)Kon (1)

Applying a tensile force, F , to the MT minus-end will
move all n motors by a distance ∆x (Fig. 1(c)). The dis-
placement of a motor caused by the external force and
that due to the directed walking of the motor towards the
minus end of the MT are both captured by xmi. Thus,
the force experienced by the ith motor is given by the
corresponding force of the elastic linkage at that exten-



3

sion,

Fi = k(xmi − xm0) (2)

where xm0 is the rest length of the spring.
Following Kramers (or Bell) theory, [40, 41], we assume

that the instantaneous rate of unbinding one of the n
motors from the MT is approximately [39]

ku(Fi, n) = nku0e
|Fi|/Fd (3)

where ku0 denotes the rate of unbinding of a single motor
in the absence of load force. The characteristic ‘detach-
ment force’ Fd can be expressed as Fd = kBT/xd where
xd is the distance from the energy minimum to maximum
for the motor/MT interaction potential.

Similarly, the effective rate of forward stepping of a
motor is given by

kf (Fi) = kf0e
−Fiγ/F

?
sp (4)

Based on experimental observations, we assume that a
motor can also step towards the positive end of the MT

[42–44]; thus we model stepping in the ‘reverse’ direction
by

kr(Fi) = kr0e
Fi(1−γ)/F?

sp (5)

where the constant parameter γ (0 < γ < 1) is the frac-
tion of the path ` over which work is done and the char-
acteristic force F ?sp can be expressed as kBT/` where ` is
the length of a single MT subunit. The rate kr0 of step-
ping of a motor towards the plus end of the MT in the
absence of load force is very small (kr0 << kf0) because
the natural direction of these motors is the minus end of
MT.

The rates of polymerization and de-polymerization of
a MT tip are given by α and β, respectively. The rate
of depolymerization of MT is suppressed by externally
applied tension [45]. We assume that the MT-bound
minus-end directed motors at the tip (plus-end) of the
MT prevents MT protofilaments from curling outwards,
thereby slowing down or speeding up depolymerization
rate depending upon the position of the MT tip [11]:

β = β0exp

(
−

n∑
i=1

Fi(xmi)[H(xmi − xM )−H(xmi − xM − δl)]/F?
)

(6)

where F? is the characteristic load force at which the MT
depolymerization rate is an exponentially small fraction
of β0. H(xmi) is the standard Heaviside theta function
which ensures that the force affects the depolymerization
rate β only if the motor is bound between xM and xM+δl.

The overdamped Langevin equation that governs the
kinetics of the MT in the aqueous medium has the stan-
dard form

dxM (t)

dt
=
F −

∑n
i=1 Fi(xmi)

Γ
+ (β − α)`+

η(t)

Γ
(7)

where η(t) is a Gaussian white noise, Γ is the effective
viscous drag coefficient of the MT along with the motor
and `, the length of each subunit of MT is also the spacing
between the successive motor-binding sites on the MT.

B. Simulation method

The simulations based on our theoretical model were
carried out using the Gillespie algorithm [56]. In our
simulation we discretized our system so that movement
of the motor along with the motion of the MT is discrete.
In each time step ∆t, eight types of events are possible,
namely, binding/ unbinding, forward/backward hopping
of any motor, polymerization and depolymerization of
MT tip and forward/backward movement of the whole
MT body.

TABLE I. Numerical values of the parameters used in simu-
lation

Parameter Values
Spacing between binding sites on MT `[46–48] 8

13
nm

Rate of MT polymerization α [46–49] 30 s−1

Rate of load-free MT depolymerization β0 [46–49] 350 s−1

Rate of motor binding to MT kon [50, 51] 1.6 s−1

Rate of motor unbinding from MT ku0 [51, 52] 0.27 s−1

Rate of motor forward stepping kf0 [50, 53] 81.25 s−1

Rate of motor backward stepping kr0 [39] 9.0 s−1

Characteristic depolymerization force F? 0.1 pN
Characteristic detachment force Fd [54] 0.67 pN
Characterstic spring force of motor F ?

sp 1 pN
Rest length of elastic linkage xm0 12.3nm
Linkage spring constant k 0.1pN/nm
Stepping parameter γ 0.5
Effective drag coefficient Γ [46–48, 55] 6pNs/µm

As stated before, initially, all the motors are attached
to randomly selected positions on the MT. The MT tip
is also placed adjacent to the wall. Rate constants are
then determined based on each motor position. A motor
can unbind from its occupied site with the unbinding rate
given by eq.3. Similarly, a motor can jump forward or
backward with the transition rates given by eq.4 and eq.5
respectively, provided the next δth site is empty. Finally,
we assume that a depolymerization event, governed by
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eq.6, can carry away a motor if it is concurrently located
at the MT tip xM .

At equilibrium, unbound motors are spatially dis-
tributed in 1D by the Boltzmann-weighted energy of their
tethering springs:

P (x) =

√
k

2πkBT
exp(−k(x− xm0)2

2kBT
) (8)

This distribution will be truncated as the x < 0 is not
allowed here and also dynamics of the MT will put con-
straint on the motor head as they only can bind to MT.
In our simulation, we have used truncated normal dis-
tribution with k = 0.1 pN/nm the standard deviation of
unbound motor fluctuations is only σ = 12.3 nm. That
is, rarely would the spring naturally stretch more than
±2σ = ±24.6 nm. A suitable location for binding is
drawn from the cumulative distribution

∫∞
xM

P (x) by in-

verse transform sampling, and checked if the chosen site
is empty. In this way, the position for binding is selected.

By the equation of motion (7), the polymerization
and depolymerization rates control xM by changing the
length of the MT with xM + ` or xM − ` discretely de-
pending upon the events. But external forces influence
movement of the whole MT by the resultant force acting
on it, i.e. F −

∑n
i=1 Fi(xmi). To treat movement of the

whole MT within our discretized system, we define the

corresponding rate constant by w =
F−

∑n
i=1 Fi(xmi)

Γ` . The
sign of the expression w decides the movement of MT in
forward (positive) or backward (negative) directions.

The time evolution of the motor-MT attachment is
monitored until, for the first time, all the motors are
detached from the MT. This first passage time [57–60] is
identified as the lifetime of the attachment for both the
force clamp and force ramp conditions. We have gener-
ated trajectories of up to 106 time steps which were then
averaged to arrive at the results of interest. The com-
mon parameter values used in the simulation are listed
in table I.

We now summarize the simplifying assumptions made
in formulating the model MT-cortex attachment:
(i) Although there are some indications that, occasion-
ally, a dynein motor can step on to protofilaments on its
left or right, we ignore such possibilities. Instead, we as-
sume that, once attached to a particular protofilament,
a dynein motor will step longitudinally only along that
protofilament till it finally detaches thereby losing the
memory of the protofilament on which it walked.
(ii) The elastic element that connects each individual
dynein to the cortex is assumed to be a Hookean spring.
(iii) So far as the binding of unbound dynein motors to
the MT is concerned, all the unbound motors are equally
likely to bind, as expressed by eq.(1), while the actual lo-
cation of binding of a motor is probabilistically decided
by the eq.(8).
(iv) In principle, more than one dynein can walk along
the same protofilament simultaneously. Since none of the
dynein-binding sites can accommodate more than one
dynein motor head at a time, in principle, the mutual

TABLE II. Values of all the coefficients of Eq.12 used in
Fig.3(b)

F? (pN) a (s) b (s) c (s)
0.05 5.51 × 10−2 1.57 × 10−3 4.52 × 10−5

0.2 6.55 × 10−2 2.6 × 10−3 9.23 × 10−5

1 9.09 × 10−2 5.5 × 10−3 2.24 × 10−4

10 8.94 × 10−2 5.78 × 10−3 2.23 × 10−4

exclusion of the motor heads should be taken into ac-
count while a motor tends to step along a protofilament.
However, for simplicity, we do not check for such mutual
exclusion in our model.
(v) We represent the cell cortex by a rigid wall; the me-
chanical softness of the cortex as well as its dynamic
structure and molecular composition are ignored by this
approximation.
(vi) Each MT that interacts with the cell cortex can, in
principle, bend in such a way that a segment of its plus
end can become approximately parallel to the cortex it-
self before curving away from it; for simplicity, we ignore
such possibilities and assume the MT to remain perpen-
dicular to the cortex.
(vii) In principle, diffusion of the actin layer in the cell
cortex can dynamically alter the motor density; however,
in our model, we do not consider any time dependence
of the total number Nd of the dynein motors that can
attach to the MT.
(viii) We assume that a depolymerization event carries
away a motor if it is concurrently located at the MT
tip. In principle, one can envisage an alternative scenario
where a motor located at the MT tip can stay attached
to the newly exposed tip, instead of getting carried away
with the departing unit during depolymerization of the
MT. The possible consequences of this alternative sce-
nario may be explored in the future.

III. RESULTS AND DISCUSSION

A. Force clamp condition

Figure 2(a)(red circle) shows that the mean lifetime
initially increases then decreases with external tension F ;
such non-monotonic variation of the lifetime represents
catch-bond-like behavior of cortical dynein-MT attach-
ment. This can be explained by the two pathways which
lead to removing a motor from the MT: i) By breaking
the motor/MT bond, or ii) by depolymerization of a tip
subunit when a motor is bound to it. Depolymerization
in the absence of a motor at the tip is much faster than
the forward walking rate of a motor. Thus periods in
which depolymerization is not force-dependent are neg-
ligible. Therefore detachment of motors are governed by
one pathway that is enhanced by force (ku ∼ eF/Fd) and
another that is suppressed by force (β ∼ e−F/F?). Figure
2(a) also shows how the catch-bond behavior diminishes
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with increasing characteristic depolymerization force F?.
This agrees with the idea of F? as an inverse sensitivity
factor, and hence increasing F? decreases the sensitivity
of depolymerization to force, leading to purely slip bond
behavior. But for low forces close to the F = 0 region,
the dynein motors are more likely to continue their walk
towards the minus end of the MT thereby stretching the
elastic element and exerting a pull on the MT towards
the wall. Consequently, in this regime, the tip of the MT
comes closer to the wall and the depolymerization rate is
enhanced by F , according to β ∼ eF/F? . So, increasing
F? increases the lifetime of the attachment by decreasing
depolymerization rate.

Based on these heuristic arguments we fit the data in
Fig. 2(a) with the function

τ(F ) =
1

κ(F )
=

1

k1e
− F

F1 + k2e
F
F2

(9)

where the best fit to the F? = 0.1 pN data (Fig. 2(a))
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FIG. 2. (a) Mean lifetime τ of the attachment against
the applied external tension F for three different F? =
0.1, 0.3, 0.5pN and fixed Nd = 10. The solid black line has
been obtained by fitting eq.(9) to the data. Mean lifetime τ
vs spring stiffness k for fixed F = 0.1pN is shown in the log-log
plot in the inset of (a). (b) Survival probabilities are shown
for three different external forces, F = 0.1pN (red circle), F =
1.5pN (blue square) and F = 4pN (green triangle). The solid
lines in color have been obtained from eq.(10). In the inset of
(b) the lifetime distributions are shown for the same forces;
the solid lines, in corresponding colors, have been obtained
by evaluating derivative of the eq.(10).

corresponds to k1 = 1.81s−1, F1 ' 0.68pN and k2 =
1.25s−1 , F2 ' 2.96pN .

We also plot the survival probability S(t), the proba-
bility that till time t the MT-motor attachment survives,
in the Fig:2(b) the survival probability of the MT-motor
attachment is plotted for different values of external ten-
sion F . The attachment survives longer at intermediate
forces (for example, at F = 1.5pN (blue square)) than
at high and low forces. Each of the survival probabili-
ties shown in Fig:2(b), for which F has a fixed value, has
been calculated using [36, 61],

S(t) = exp

(
−κ(F )t

)
(10)

where κ(F ) is calculated using Eq.9. In the inset of
Fig.2(b) the corresponding distributions of the lifetimes
of the attachments are shown. Here also the distribution
is broader at intermediate force F = 1.5pN (blue square)
than at high and low forces. The lines are plotted by
taking −dS(t)/dt using Eq.10. At low and intermediate
force region, the fitted line matches with our simulated
data points but at high force, it does not match properly.
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FIG. 3. (a) Mean lifetime τ of the attachment against the the
number of motors Nd is shown for three different forces for
F = 1, 5 and 10 pN keeping F? = 0.1 pN fixed (solid lines are
best fits to data with eq. (11)). (b) Mean lifetime τ of the
attachment against the the number of motors Nd is shown for
four different F? = 0.05, 0.2, 1 and 10 pN keeping F = 1 pN
fixed. The four solid lines in (b) have been obtained as best
fits with eq. (12) for distinct sets of the parameters a, b, c
given in tableII.



6

We generate the fitted line by substituting Eq.9 in Eq.10
but as Eq.9 does not fit properly at high force (Fig:2(a))
so the green line in Fig:2(b) deviates from simulated data
points at high force.

In Fig.3 we show the dependence of the mean time τ
on the total number Nd of the motors. In Fig.3(a) we
plot mean time τ as a function of Nd for three different
values of force F , at a fixed value F? = 0.1 pN. The data
in this figure fit well with the form

τF ∝ Nν
d , (11)

with the value ν ' 0.91 of the fitting parameter ν. In
Fig.3(b) we show the variation of the mean time τ with
the total number Nd of the motors for four different val-
ues of the parameter F? at a fixed force F = 1 pN. The
data fit well with the polynomial

τF?
= aNd − bN2

d + cN3
d , (12)

the values of all the fitting parameters a, b, c for the best
fit to Eq.12 in Fig.3(b) are given in table II.

1. Presence of catch-bond at dynein head

In an in vitro experiment Kunwar et al. [62] observed
catch-bond-like behavior where the unbinding rate of a
single dynein motor decreases with increasing force be-
cause of a conformational change at the bounded head of
the dynein motor (see also [63] and references therein).
In a very recent study Nair et al. [54] proposes a thresh-
old force bond deformation (TFBD) model to explain the
catch-bond behavior of dynein. According to the TFBD
model force-induced deformation of the bond between
the dynein head and MT causes the catch-bond behav-
ior [64]. The deformation energy for the ith motor is
given by Edef (Fi) = φ[1 − exp(−|Fi|/fdef )], where the
deformation energy is given by φ and fdef is the char-
acteristic deformation force. As the catch-bond behavior
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FIG. 4. Mean lifetime τ of the attachment against the applied
external tension F for three different F? = 0.1, 0.3, 0.5pN and
fixed Nd = 10 in the presence of catch-bond at the bounded
dynein head. Parameters are taken from TFBD model [54]
φ = 68 kBT , fm = 1.4pN and fdef = 40.7pN and rest of the
parameters are given in Table:I.

is observed [62] above a threshold force Fi > fm then
according to TFBD model deformation energy is

Edef (Fi) = H(|Fi| − fm)φ[1− exp(−(|Fi| − fm)/fdef )]
(13)

Then the effective unbinding rate is given by

ku(Fi, n) = nku0e
[−Edef (Fi)+|Fi|/Fd] (14)

To study the effect of bounded head deformation in
the presence of external force, instead of using the un-
binding rate given by eq.3, we have used eq.14 given by
the TFBD model and calculated the mean lifetime of the
attachment. In Fig.4 we have shown the mean lifetime
as a function of external force. Here the maximum life-
time is 7 times larger and catch-bond like behavior be-
comes clearly distinguishable when compared to Fig.2(a).
Here we also see that increasing F? decreases the sensitiv-
ity of depolymerization to force but the non-monotonic
variation in unbinding rate (eq.14) is responsible for the
catch-bond-like behavior, even for high F?. In Fig.4 for
F? = 0.5pN in the small force (0 < F < 1.5 pN) region,
lifetime decreases slightly because of the effect of β sim-
ilar to Fig.2(a). But as the F increases (2 < F < 5pN)
the catch-bond-like behavior of unbinding rate increases
the lifetime of the attachment because in that force range
decreasing the unbinding rate (eq.14) enables the motors
to remain bound to the MT for longer time. Around F
' 11pN a small bump is present because of change in
slope in the force in eq.14.

B. Force ramp condition

Here we present results of our simulation under the
common force spectroscopy protocol of measuring the
rupture force of the attachment when increasing force
with time F (t) = rt, and repeating over a range of load-
ing rates, r. In Fig: 5 and Fig: 6(a) the probability
distribution of rupture force ρ(F ) and survival probabil-
ity S(F ) are shown for the same range of loading rates.
It is important to note that at low loading rate the most
probable rupture force is not zero, but instead is peaked
around 0.2 pN (Fig. 5, r = 1 pNs−1). This indicates
a near-equilibrium regime in which the wall-MT attach-
ment is stabilized by the rebinding rate kon. As load-
ing rate increases, the rupture transitions from a near-
equilibrium to a kinetic regime as a second peak emerges
at high rupture force and becomes prominent (Fig. 5,
r = 50 pNs−1).

The colored lines in Figs. 5 and 6(a) are the fitting of
simulation data using the function [36, 61],

S(F ) = exp

[
−1

r

∫ F

0

κ(F ′)dF ′
]

(15)

We compare the approximation for the lifetime in Eq.9
against the simulated data through calculating the sur-
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FIG. 5. Probability density of rupture force of cortical dynein-MT attachment with Nd = 10 are shown for four different
loading rates, namely, r = 1pNs−1 (magenta star),r = 5pNs−1 (blue triangle), r = 10pNs−1 (green square) and r = 50pNs−1

(red circle) (solid lines have been obtained from Eq. (16)).

vival probability and corresponding probability distribu-
tion as [36, 61],

ρ(F ) = −dS(F )

dF
=
κ(F )

r
exp

[
−1

r

∫ F

0

κ(F ′)dF ′
]

(16)

Equation 16 coincides with the general form of the simu-
lated data at high forces (red line in the Fig. 5), but dis-
agree at low forces. This can be expected since eqs. 15,16
assume a first-passage process and does not account for
binding reversibility at low loading rate and low force. In
the Fig. 6(a) the survival probabilities are plotted at the
same loading rates for which the rupture force distribu-
tions have been shown in the Fig. 5. Here at high loading
rate, r = 50 pNs−1 (red circle in Fig. 6(a)) probability
of survival remain high upto a high force F = 6pN. But
lower the loading rates survival probability drops more
sharply. In the Fig. 6(b) the mean rupture force with
loading rate shows the familiar behavior of a force spec-
trum where mean rupture force increases with increasing
loading rate. In the irreversible approximation the mean
rupture force, f , is given by [36, 61]

f =

∫ ∞
0

Fρ(F )dF (17)

We substitute κ(F ) from Eq.(9) into Eq.(16) to calculate
mean rupture force f from (17). We find good agree-
ment at both low and intermediate loading rates (black
line in the Fig:6(b)). At large loading rates the data be-
comes non-linear with log-loading rate, growing to larger

rupture forces than the prediction of Eq. (17). This is
likely explained by considering that faster loading rates
allow less time for the dissociation and depolymerization
processes to remove bound motors, ultimately leading to
rupture of more motor-MT bonds.

IV. CONCLUSIONS

Extending the earlier generalizations [20] of the con-
cept of a ligand, we have treated a microtubule (MT) as
a ‘ligand’ that is tethered to a ‘receptor’ wall by a group
of minus-end directed molecular motors [23]. The tails of
the motors are permanently anchored on the wall while
their motor heads can bind to- and unbind from the MT.
This model of MT-wall attachment captures only a few
key ingredients of the MT-cortex attachments in eukary-
otic cells, particularly those formed during chromosome
segregation. This minimal model incorporates the poly-
merization and depolymerization kinetics of MT. But,
for the sake of simplicity, it does not include the pro-
cesses of ‘catastrophe’ and ‘rescue’ that are caused by the
‘dynamic instability of MT filaments [21] although these
can be captured in an extended version of this model [65].
We consider a pre-formed MT-wall attachment and carry
out computer simulations to study statistical properties
of its rupture under conditions that mimic the proto-
cols of force-clamp and force-ramp experiments in-vitro
[35, 36]. The simulation results that we report are inter-
preted in the light of the theory of single-molecule force
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spectroscopy, popularized by Bell [40] and some of its
later generalizations [36].

This work is not aimed at an understanding of the
mechanism of catch-/slip-bond formed by a single dynein
motor head with its binding site on a MT. Instead, the
phenomenon of our interest here is the collective dynam-
ics of a system consisting of Nd cortex-anchored dyneins
that bind to-/unbind from- the plus-end region of a sin-
gle MT. The non-monotonic variation of the lifetime
of the entire attachment system is its emergent collec-
tive mechanical property which can be interpreted as a
catch-bond. The data presented in Fig.2(a) unambigu-
ously establish this collective catch-bond-like emergent
behaviour even when none of the dyneins individually
possesses a catch-bond at its MT-binding head. A com-
parison of Fig.2(a) with Fig.4 also shows that the col-
lective lifetime of the attachment merely becomes longer
if the MT-binding head of each individual dynein has
a catch-bond. The nontrivial dependence of these col-
lective properties on the number Nd of the dyneins are
shown by the data in Fig.3 (and also some related data
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FIG. 6. (a) Survival probability for different loading rates;
same symbols in Fig: 5 and (a) correspond to same set of
parameters values. (solid lines are from Eq. (15)) (b) Mean
rupture force for fixed Nd = 10 is plotted against loading rate
in a logarithmic scale. The dependence of the mean rupture
force f on the number of motors Nd for fixed loading rate
r = 1pNs−1 is displayed as log-log in the inset (magenta
circles). The black solid line has been obtained evaluating
the right hand side of Eq. (17)) by numerical integration.

TABLE III. Experimentally measurable quantities

Protocols Measurable quantity
Force Clamp Distribution of lifetimes at different F
F=Clamped force Variation of mean lifetime with F

Survival probability at different F
Variation of mean lifetime with Nd

Force Ramp Distribution of rupture forces at different r
r = Loading rate Variation of mean rupture force with r

Survival probability at different r
Variation of mean rupture force with Nd

in Fig.6).
The quantities that we have computed are listed in the

table III; in principle, these quantities can be measured,
in molecular force spectroscopic measurements in-vitro.
In-vitro experiments have been designed which remark-
ably resemble the conceptual model depicted in Fig.1(a),
albeit without application of a controlled force. Laan et
al. [11] used a microfabricated vertical barrier that mim-
ics the cell cortex. Dynein motors were anchored on the
barrier and captured the MT that grew from a centro-
some which was fixed on a horizontal glass surface. A
slightly different experimental set up was used by Hen-
dricks et al. [66] in which a dynein coated bead was used
to mimic the cell cortex. These authors demonstrated
the stabilization of the MT within the broader context
of the role of MT-cortex interaction in positioning of the
mitotic spindle [11, 66]. However, the possibility of con-
trolling the force on the MT by an Atomic Force Micro-
scope or Optical Trap should motivate extending these
experimental setups to test the results of our theoretical
model in the near future.

The phenomenon of “bond rupture” studied here can
be viewed from a broader perspective because of its close
relation with many other similar phenomena. Both ther-
mally activated (spontaneous) and force induced peeling
off, or depinning of, a filament bound to another filament
or to a surface by weak non-covalent bond or by passive
linker molecules have been studied extensively in the last
two decades [67–72]. In more recent times, the forced
peeling of a filament tethered to a surface by active link-
ers (e.g., a MT tethered to a surface by dynein motors)
have begun to receive attention [73]. This system is also
analogous to in-vitro gliding assays where MTs glide by
the action of the strokes of ATP-consuming motors that
have their tail end immobilized on a flat surface. In the
latter situation, in the absence of external force, the fila-
ment glides remaining approximately parallel to the sur-
face. In contrast, in our model, the motors make end-on
attachment with the MT that is oriented perpendicular
to the surface on which the tail ends of the motors are
immobilized. However, often the plus end of the astral
MTs bend whereby a segment of it makes lateral contact
with the cortex linked by the dynein motors. This bent
segment, which is similar to the MTs in a gliding assay,
can be incorporated in an extended version of our model
in near future.
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By analyzing a simple theoretical model in-silico, using
the protocols of MFS, we elucidate a mechanism by which
the strength and stability of MT-cortex attachment, that
emerge as collective emergent properties, can be regu-
lated by external tension. Our analysis confirms that the
competing kinetics of polymerization and depolymeriza-
tion of MTs, coupled with force-induced strong suppres-
sion of depolymerization rate, leads to overall lifetimes
of the attachments that show a non-monotonic behavior
akin to catch-bonds. The same force-induced suppres-
sion of MT depolymerization is also known to give rise to
the catch-bond-like behavior of MT-kinetochore attach-
ments [74]. Thus, our work here reveals that a common
mechanism (namely, tension-induced suppression of MT
depolymerization) can give rise to catch-bond-like collec-
tive behavior of two altogether different types of attach-
ments, in spite of all the differences between their com-
position, structure and dynamics. Therefore, our work,
reported here, should motivate MFS of other molecular
joints formed by MTs, in search of possible occurrence
of similar catch-bond-like phenomena in even more di-
verse systems. Our observations also strongly suggest
that the tension-induced suppression of MT depolymer-
ization may be an important aspect of Nature’s principle
of design of multi-component molecular machineries. Ex-
amining this possibility in the broader context of molec-
ular evolution of the MT-based machineries for chromo-
some segregation [76–80] will also throw light on Nature’s
principles of evolutionary design.
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Appendix A: Master equations for the kinetics

The probability that (the midpoint of) a motor is lo-
cated at xmi and MT tip is at xM , while the total number
n(t) of motors are bound to the MT simultaneously at
that instant of time, is given by Pn(xmi, xM , t). Veloc-
ity of whole MT body is given by vF . Note that xM is a
continuous variable whereas n can take only non-negative
integer values. Let P (ym|xmi) be the conditional proba-
bility that, given a MT-bound motor located at site xmi,
there is another MT-bound motor at site ym on the MT
(xM < xmi, ym). Then ξ(ym|xmi) = 1−P (ym|xmi) is the
conditional probability that, given a motor at site xmi,
the site ym is empty. Let ξ(xmi) be the probability that
site xmi is not occupied by any motor, irrespective of the
state of occupation of any other site.

Under mean field approximation (MFA), the equations
governing the time evolution of Pn(xmi, xM t) is given by

dPn(xmi, xM , t)

dt
= kf (Fi)Pn(xmi − δ, xM , t)ξ(xmi|xmi − δ)− kf (Fi)Pn(xmi, xM , t)ξ(xmi + δ|xmi)︸ ︷︷ ︸

Forward stepping of the motor if target site is empty

+ kr(Fi)Pn(xmi + δ, xM , t)ξ(xmi|xmi + δ)− kr(Fi)Pn(xmi, xM , t)ξ(xmi − δ|xmi)︸ ︷︷ ︸
Reverse stepping of the motor if target site is empty

+ kon(n− 1)(1− Pn−1(xmi, xM , t))− kon(n)(1− Pn(xmi, xM , t))︸ ︷︷ ︸
Binding of motor to an empty site on MT

+ ku(Fi, n+ 1)Pn+1(xmi, xM , t)− ku(Fi, n)Pn(xmi, xM , t)︸ ︷︷ ︸
Unbinding of motor from an occupied site on MT

− vF
∂Pn(xmi, xM , t)

∂xM︸ ︷︷ ︸
Drift velocity of whole MT body

(A1)

where

vF =
F −

∑n
i=1 Fi(xmi)

Γ
(A2)
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