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We report our measurements of the dynamics of H-NS proteins, which interact with both proteins7

and DNA simultaneously, in live E. coli bacteria. The dynamics turn out to differ significantly from8

other molecules reported previously. A new power-law distribution was observed for the diffusion9

coefficients of individual H-NS proteins. In addition, we observed a new distribution of displace-10

ments, which does not follow the Gaussian, Cauchy, or Laplace distributions, but the Pearson Type11

VII distribution. Furthermore, we experimentally measured, for the first time, the time/frequency12

dependence of the complex modulus of the bacterial cytoplasm, which deviates from the viscoelas-13

ticity of homogeneous protein solutions and shows a glass-liquid transition. Lastly, we observed that14

the dynamics of H-NS protein is cell-length/cell-age dependent. The findings are expected to fun-15

damentally change the current views on bacterial cytoplasm and diffusional dynamics of molecules16

in bacteria.17

I. INTRODUCTION18

Dynamic diffusion of molecules inside cytoplasm is vi-19

tal for bacteria, as transport and mixing of cytoplasmic20

molecules and resources primarily rely on diffusion, due21

to the small size of bacteria and lack of active transport22

mechanisms [1]. Although the diffusion of particles and23

molecules in various solutions and environments has been24

extensively studied both theoretically and experimen-25

tally, quantitative knowledge on the dynamic diffusion of26

biological molecules inside live bacteria remains relatively27

limited [2]. Single-particle tracking (SPT) has become a28

standard method for studying the dynamics of molecules29

in live bacteria and cells [1–5]; furthermore, the recent30

development of super-resolution fluorescence microscopy31

[6–10] in combination with SPT has allowed tracking in-32

dividual molecules at high densities (commonly termed33

as sptPALM [11]), opening a new avenue. This tech-34

nique has been applied to several biological molecules,35

such as RNA polymerases, ribosomes, antimicrobial pep-36

tides, and transcription factors [12–15], providing new37

quantitative clues on the relevant fundamental processes38

in live systems as well as the interactions between the39

molecules and the intracellular environment.40

Despite the exciting progresses, a gap exists towards41

a full understanding of the dynamics of molecules in live42

systems. The molecules examined in the previous studies43

include standalone proteins or DNA/RNA molecules, and44

proteins that interact with DNA or RNA [1, 3–5, 12–15];45

however, there are many molecules in the cells interacting46

with both proteins and DNA (and other cellular com-47

ponents) simultaneously. One example is the ParMRC48

system for plasmid segregation [16]. Another example is49

the histone-like nucleoid-structuring protein (H-NS) [17].50

H-NS, one of the nucleoid associated proteins in bacteria,51
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regulates (mostly negatively) 5% of the bacterial genome52

[18]. It consists of a DNA binding domain, an oligomer-53

ization domain, and a linker connecting the two domains54

[17]. Therefore, H-NS not only binds to (and unbinds55

from) DNA, but also interacts with themselves to form56

polymers as well as DNA-bridging structures (Fig. 1A)57

[17]. It has been shown that both oligomerization and58

DNA binding are crucial for the biological activities of59

H-NS proteins [17].60

In this work, we present our results on the dynamics61

of H-NS proteins in live Escherichia coli (E. coli) bac-62

teria, which shows unique behaviors compared to other63

molecules reported previously. We observed a new power-64

law distribution of the diffusion coefficients of individual65

H-NS proteins and a new distribution of displacements66

that does not follow the Gaussian, Cauchy, or Laplace67

distributions, but the Pearson Type VII distribution.68

More importantly, for the first time, we experimentally69

measured the time/frequency dependence of the complex70

modulus of the bacterial cytoplasm, which deviates from71

the viscoelasticity of homogeneous protein solutions and72

shows a glass-liquid transition. Finally, we found that73

the dynamics of H-NS protein is dependent on cell-age.74

The findings are expected to fundamentally change the75

current views on bacterial cytoplasm and diffusional dy-76

namics of molecules in bacteria.77

II. METHODS AND MATERIALS78

A. Bacterial strain, growth, and sample79

preparation80

A K12-derived E. coli strain (a gift from [19]) was81

used in this study. This strain expresses H-NS proteins82

fused to mEos3.2 fluorescent proteins [19, 20]. The bac-83

terial strain was grown at 37◦C overnight in defined M984

minimal medium, supplemented with 1% glucose, 0.1%85

casamino acids, 0.01% thiamine and appropriate antibi-86
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otics (kanamycin + chloramphenicol) [21]. On the sec-87

ond day, the overnight culture was diluted by 50 to 10088

times into fresh medium so that the OD600 was 0.05.89

The fresh cultures were again grown at 37◦C. When the90

OD600 reaches ∼0.3, 10 µL of the bacteria were trans-91

ferred to a 5mm × 5mm agarose pad (3% in the growth92

medium). The sample was left at room temperature for93

20–30 minutes, allowing the bacterial cells absorbed into94

the agarose pad. The agarose pad was then flipped and95

attached to a clean coverslip (cleaned with sonication in96

1M NaOH, 100% ethanol, and ultra-pure water sequen-97

tially). A chamber was then constructed by sandwiching98

a rubber o-ring between the coverslip and a microscope99

slide. The chamber was sealed using epoxy glue and in-100

cubated at room temperature for ∼1 hours in dark before101

imaging, to prevent water evaporation and shrinkage of102

the agarose pad during data acquisition.103

B. Super-resolution fluorescence imaging and104

single-particle tracking (sptPALM)105

The super-resolution fluorescence microscope was106

home-built on an Olympus IX-73 inverted microscope107

with an Olympus TIRF 100X N.A.=1.49 oil immersion108

objective. The microscope and data acquisition were con-109

trolled by Micro-Manager [22]. A 405 nm laser and a 532110

nm laser from a multilaser system (iChrome MLE, TOP-111

TICA Photonics, NY) were used to “activate” and ex-112

cite mEos3.2-HNS fusion proteins in bacteria. Emissions113

from the fluorescent proteins were collected by the ob-114

jective and imaged on an EMCCD camera (Andor, MA)115

with an exposure time of 30 ms. The effective pixel size116

of acquired images was 160 nm; and the actual interval117

between frames was 45 ms.118

The resulting movies (20,000 frames) were analyzed119

with RapidStorm [23], generating x/y positions, x/y120

widths, intensity, and background for each detected fluo-121

rescent spot. Spots with localization precisions >40 nm122

were rejected. The positions r(t) from the same molecule123

in adjacent frames were linked by standard algorithms124

with a memory of one frame and a maximum step size125

of 0.48 µm [11, 12, 24], from which the trajectories of126

individual molecules r(t) were obtained.127

III. RESULTS AND DISCUSSIONS128

A. Anomalous and heterogeneous diffusion of129

H-NS proteins130

SptPALM was used to track the motion of H-NS pro-131

teins in live E. coli, as illustrated in Fig. 1B and de-132

scribed in “Methods and Materials”. Reconstructing133

super-resolved images from the positions r of the acti-134

vated, fluorescent proteins showed that H-NS proteins135

formed small clusters (Fig. 1C), consistent with previ-136

ous results [19, 25]. The positions of H-NS proteins were137

linked as described and examples of H-NS proteins’ tra-138

jectories in individual bacteria in an area of 8 × 8 µm2
139

were shown in Fig. 1D. Large heterogeneity was observed140

(Fig. 1E): some H-NS proteins were confined in small re-141

gions (red curves) while some showed large displacements142

(green curves).143
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FIG. 1. (A) Illustration of H-NS proteins’ key activities. H-
NS is a DNA-binding protein, consisting of a DNA-binding
domain, a linker, and an oligomerization domain, which allows
H-NS to form polymers and DNA brdiging. (B) SptPALM
for tracking H-NS proteins in live E. coli. (C) An example of
super-resolved images of H-NS proteins in individual E. coli.
(D) Examples of trajectories of H-NS proteins in the same
area of (C). (E) Examples of individual trajectories.

From the trajectories, the mean-square-displacements144

(MSD) were calculated 〈∆r2(τ)〉 = 〈(r(t+ τ)− r(t))
2〉.145

The ensemble-averaged MSD from 38,796 trajectories146

with a minimum length of 10 frames (from 933 bac-147

teria) was shown in Fig. 2A, where the error bars148

(smaller than the symbols) represented the standard er-149

ror of the mean (SEM). The ensemble-averaged MSD150

bent down, clearly deviating from a straight line and151

indicating the sub-diffusive motion of H-NS proteins.152

Such anomalous diffusion of proteins and DNA inside153

bacteria [4, 12, 13], as well as proteins and lipids on154

the membranes of bacteria and cells (reviewed in [26]),155

have been observed previously. Fitting the MSD with156

〈∆r2〉 = 4Dτα gave the generalized apparent diffusion157

coefficient D = (8.0± 0.3)× 103 nm2/sα and the anoma-158

lous scaling exponent α = 0.57 ± 0.02. It is noted that159

the unit of the generalized apparent diffusion coefficient160

D contains the anomalous scaling exponent α. Alterna-161

tively, one can fit the MSD in short-time scale with a162
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simple line, 〈∆r2〉 = 4Dsτ , where Ds has the same unit163

of standard diffusion coefficients (m2/s). Fitting the first164

three data points in the MSD curve in Fig. 2A gave165

Ds = (24 ± 7) × 103 nm2/s, three times larger than the166

numerical value of the generalized diffusion coefficient.167

This is expected for sub-diffusive motion as the MSD168

curve bends down. The apparent short-time diffusion co-169

efficient of H-NS proteins (Ds ≈ 0.024 µm2/s), is much170

lower than that of RNA polymerases (0.24 µm2/s [12] or171

RelA proteins (0.03 − 3 µm2/s [14]) in live E. coli, but172

similar to that of ribosomes (0.04 µm2/s [13]). Inter-173

estingly, the value of the generalized diffusion coefficient174

D ≈ 0.008 µm2/s0.6 is in the same order as the chro-175

mosomal DNA of E. coli (∼0.002 µm2/s0.4 [4]). This176

is expected because most, if not all, H-NS proteins are177

likely to bind to, and move together with, the chromo-178

somal DNA. The anomalous scaling exponent α ≈ 0.6 of179

the H-NS proteins is different from that for the monomers180

of the chromosomal DNA (∼0.35) or the center of mass181

(∼0.7) [4, 27]. These differences in both D and α suggest182

that the motion of H-NS proteins is, although highly re-183

lated to, different from the motion of the chromosomal184

DNA in bacteria.185
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FIG. 2. (A) Ensemble-averaged MSD (◦) from 38,796 trajec-
tories (error bar: SEM). Fitting the data via MSD = 4Dτα

gives D = (8.0 ± 0.3) × 103 nm2/s and α = 0.57 ± 0.02 (red
dashed line). Inset: log-log plot of the same data. (B) MSD of
2,000 individual trajectories (gray lines) in log-log scale, over-
lapped with the fitted ensemble-average (red dashed line). (C)
Distribution of the anomalous exponent α. (D) Distribution
of the generalized apparent diffusion coefficients fitted with
P (D) ∝ D−(β+1) (red dashed line, β = 0.97 ± 0.07). Left-
bottom inset: distribution of the short-time apparent diffu-
sion coefficients, P (Ds). Right-top inset: distribution of the
number of proteins per cluster fitted with P (n) ∝ pn (red
dashed line, p = 0.952± 0.004).

The heterogeneity in the dynamic diffusion of H-NS186

proteins was further investigated: in addition to the187

ensemble-averaged MSD, we examined the time-averaged188

MSD for each trajectory. Examples of MSD curves from189

2000 trajectories are shown in log-log scale in Fig. 2B190

(gray lines), where the ensemble-averaged MSD is also191

shown (red dashed line). Each MSD curve was fitted,192

giving the fitted α and D values, whose distributions are193

shown in Fig. 2C and 2D. To minimize the effect of sta-194

tistical and fitting errors, only the first half of the MSD195

was used for fitting, and only the ones with a good fitting196

(R2 > 0.95) were selected for analysis. It was observed197

that the distribution of α is broad and peaked at 0.6,198

indicating that the most probable value is close to the199

ensemble average. However, the mean (∼ 0.71, with a200

standard deviation of 0.37) is slightly higher than the en-201

semble average, possibly indicating weak non-ergodicity,202

a phenomenon reported previously for live systems [3].203

In addition, we note that the distribution of α shows a204

population with α > 1 (Fig. 2C). We speculate that205

this population is due to several possible reasons: 1) un-206

certainties in our experimental measurements, i.e., the207

finite precision in localizing the H-NS molecules, 2) fit-208

ting errors when obtaining D and α from individual MSD209

curves, and 3) possible active bacterial processes that re-210

sult in actual super-diffusive motions. The existence of211

active motion of H-NS proteins was verified in two ways.212

First, we checked the individual MSD curves that gave213

α > 1, and found that some of these curves are long and214

clean (Fig. S1A), in which fitting errors are likely very215

small. Second, we treated the bacteria in the exponential216

growth phase by 3.7% formaldehyde (HCHO) and pro-217

duced (partially) dead and fixed bacteria. As expected,218

the HCHO treated bacteria displayed slower ensemble-219

averaged diffusion and lower anomalous scaling exponent220

(Fig. S1B). In addition, compared to the untreated ones,221

the distribution of α clearly shifted to the left (Fig. S1C)222

for the HCHO treated bacteria. We also quantified that223

the fraction of the α > 1 population (ψα>1) decreased224

from 20% to 12% (Fig. S1C) after HCHO-treatment.225

More interestingly, the distribution of the numerical226

values of the generalized diffusion coefficients D is not227

peak-shaped; instead, it follows a power law, P (D) ∼228

D−(β+1), while fitting the data yields β = 0.94 ± 0.07.229

The observed power-law forD is different from the behav-230

ior of Kaede proteins, RNA polymerases and ribosomes231

[12, 13, 28, 29]. For example, the RNA polymerase (an-232

other DNA binding protein) showed two peaks in the233

distribution of D, corresponding to the bound and un-234

bound populations [12]. A note to make is that direct235

comparison and statistics on the generalized diffusion co-236

efficient D is not stringent because 1) the unit of D con-237

tains the anomalous exponent α, and 2) the fitted α is238

different for different individual MSD curves. To address239

this concern, we calculated the short-time apparent dif-240

fusion coefficient Ds, which has a unit of nm2/s and thus241

is good for direct comparison and statistics. We verified242

that Ds also showed a power-law distribution (Fig. 2D,243

left-bottom inset), indicating that the power-law distri-244

bution of H-NS proteins’ diffusion coefficients is robust.245

We speculated that the power-law distribution of D for246

H-NS proteins originates from their polymerization. As-247
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suming the polymerization of H-NS proteins is a process248

of adding monomers (i.e., the step-growth polymeriza-249

tion), then the probability of having a polymer of H-NS250

with a size of n is P (n) ∝ pn where p is proportional to251

the concentration of monomers [30–33]. Evidence sup-252

porting this assumption came from experimentally ex-253

amining the clustering of H-NS proteins. Briefly, the254

bacteria were fixed and imaged using super-resolution255

fluorescence microscope [19], followed by clustering anal-256

ysis [34] and counting the number of H-NS proteins per257

cluster Np/cl. Data from this simple analysis supported258

that Np/cl follows the assumed distribution, P (n) ∝ pn259

(right-top inset of Fig. 2D, p = 0.952 ± 0.004). How-260

ever, we point out that further experiments are required261

to verify our assumption of the polymerization kinetics262

of H-NS proteins. It is expected that the polymerization263

of H-NS proteins slows down their diffusion; for exam-264

ple, ideal-chain polymers in ideal simple solutions show265

D ∼ n−1/2 because the diffusion coefficient is propor-266

tional to the inverse of the hydrodynamic size a (Stokes-267

Einstein equation), which is in turn proportional to
√
n268

[35]. In general, we expect that D(n) = D1n
−1/β where269

D1 and β are two constants. Following this path, the cu-270

mulative probability for the diffusion coefficient can be271

obtained by272

F (D(n) ≤ D) = F (D1n
−1/β ≤ D) (1)273

= 1− F
(
n ≤ (D1/D)β

)
(2)274

With F (n) obtained from P (n) with proper normaliza-275

tion, we have F (n ≤ N) = 1− pN , and thus, F (D(n) ≤276

D) = p(D1/D)β . As p was measured to be around 1, we277

can expand F (D(n) ≤ D) around q = 1 − p ≈ 0 and278

ignore higher order terms,279

F (D(n) ≤ D) ≈ 1− (1− p) · (D1/D)β (3)280

Therefore, the expected probability for D would be281

P (D) = F ′(D) ≈ (1− p)βDβ
1 ·D−(β+1) ∝ D−(β+1) (4)282

, which predicts the experimental results (Fig. 2D). The283

measured exponent β deviated from 2, indicating that284

the H-NS polymers behave far from ideal chains and/or285

the environment of H-NS polymers is not an ideal simple286

fluid.287

B. Unexpected distribution of displacement in288

H-NS proteins’ diffusion289

The dynamic diffusion of H-NS proteins is non-290

Brownian and anomalous (Fig. 2); more interestingly,291

it is non-Gaussian, non-Laplacian, and non-Cauchy. We292

calculated the displacements from the trajectories, ∆x =293

x(ti+1) − x(ti) and ∆y = y(ti+1) − y(ti), and the corre-294

sponding distributions, P (∆x) and P (∆y) are shown in295

Fig. 3A and 3B (black circles), respectively. Compared296

to the Gaussian distribution (red dot dashed lines), the297

measured distributions show heavy tails at larger dis-298

placements. In addition, our data from H-NS proteins299

cannot be fitted with the Laplace distribution (brown300

dotted lines), which has been successfully applied to the301

motion of protein-bound RNA molecules in live E. coli302

and yeast [5]. We note that the heavy tails are unlikely303

caused by measurement errors: when restricting the cal-304

culations on trajectories showing 0.3 ≤ α ≤ 0.7, the305

same distributions were observed and the heavy tails were306

present. The heavy tails are reminiscent of the (Mandel-307

brot) Levy flights, which shows a Cauchy distribution for308

displacments [36]. However, the displacement distribu-309

tions for H-NS proteins do not follow the Cauchy distri-310

bution (magenta dashed line). Instead, the distribution311

of H-NS displacement can be fitted well with the Pear-312

son Type VII distribution (green solid line), P (∆x) ∝313 (
1 + ∆x2/w2

)−m
, which is a rarely used generalization of314

the Gaussian distribution and Cauchy distribution [37].315

To confirm that the Pearson Type VII distribution is316

indeed the best fit to the data among the four aforemen-317

tioned distributions, we calculated the fitting errors using318

δ =
∑
i
| log(fi)−log(mi)|

log(mi)
and χ2 =

∑
i
(log(fi)−log(mi))2

log(mi)
,319

where fi are the fitted values and mi the measurements.320

It is noted that, to be consistent with the logarithm scale321

of the y-axis in Fig. 3A and 3B, log(fi) and log(mi) were322

used for estimating the fitting errors. It was confirmed323

that the Pearson Type VII distribution yielded the lowest324

δ and χ2 for both ∆x and ∆y, as shown in Fig. 3C.325

It was suggested that the velocity/displacement distri-326

bution of motor proteins follow the Pearson Type VII327

distribution in the presence of detachment events [38],328

indicating that the observed displacement distributions329

of H-NS proteins might be related to the dynamic bind-330

ing/unbinding of H-NS proteins on DNA. To pursue this331

concept, we modeled that the molecules display a slower332

motion in the DNA-bound state (B) and a faster motion333

in the unbound state (U) as shown in the inset of Fig.334

3D and ran Monte Carlo simulations. The diffusion co-335

efficients of the H-NS molecules used in the simulations336

were Du = 2.4 × 105 nm2/s and Db = 2.4 × 104 nm2/s337

for the unbound and bound states, respectively. In each338

state, the displacements of the molecules were from the339

Brownian motion, i.e., ∆x =
√

2 D dt · ξ where D = Du340

or Db, dt = 45 ms, and ξ is a random variable follow-341

ing the standard normal distribution. In addition, the342

molecules switch states dynamically, with probabilities343

of pbu (from the bound state to the unbound state) and344

pub (from the unbound state to the bound state), respec-345

tively. As the events with large displacements are rare346

in Fig. 3A and 3B, it is expected that pub is high but347

pbu is low. Therefore, we used pub = 0.96 and pbu = 0.02348

for the Monte Carlo simulations. We repeated 100 sim-349

ulations, and each simulation consisted of 1000 trajecto-350

ries with lengths of randomly 4 – 100 steps. From all351

the simulations, the distribution of the displacement ∆x352

was calculated. As shown in Fig. 3D, the simulated re-353

sults (blue triangles) overlap well with the experimental354
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FIG. 3. (A, B) Distribution of displacements (A: ∆x, B: ∆y).
The experimental data (black circles) cannot be fitted with
the Gaussian (red dot-dashed line), Cauchy (magenta dashed
line), or Laplace (brown dotted line) distributions. Instead,
the Pearson Type VII distribution (green solid line) fits the
data very well. (C) Fitting errors δ from the fittings of the
data using the Gaussian (G), Cauchy (C), Laplace (L) and
Pearson Type VII (P) distributions. Inset: χ2 of the fit-
tings. (D) Distribution of displacement from Monte Carlo
simulations (blue triangles) overlapping with the experimen-
tal measurements (black circles, same data as in [A]). Inset:
the Monte Carlo simulations assume that the molecules can
switch between a bound state (B, slow diffusion) and an un-
bound state (U, fast diffusion) with rates of pub (U to B) and
pbu (B to U).

data (black circles). It is noted that the purpose of the355

current model/simulation is to explore the possibility to356

attribute the observed displacement distribution to the357

binding/unbinding of H-NS proteins on DNA. However,358

the current model is far from a complete description of359

the dynamics of H-NS proteins in live bacteria; for exam-360

ple, both the anomalous diffusion and polymerization of361

H-NS proteins have been omitted in the current model.362

More sophisticated models and simulations will be pre-363

sented in future works.364

C. Viscoelasticity of bacterial cytoplasm365

It has been reported previously that the bacterial cy-366

toplasm is viscoelastic [1, 4]. For example, Weber et al.367

examined the velocity auto-correlation of chromosomal368

loci in E. coli based on fractional Langevin equation,369

and showed that the cytoplasmic viscoelasticity causes370

negative velocity auto-correlations at short times [4, 27].371

We observed similar results from the dynamics of H-NS372

proteins: the velocity auto-correlation can be fitted very373

well by Weber’s formula [4, 27] (Fig. 4A), clearly con-374

firming the viscoelasticity of the bacterial cytoplasm. As375

the distinction between fractional Brownian motion and376

continuous-time random walk (CTRW) in cellular dy-377

namics has recently caught interests of many physicists,378

it is worthwhile to mention that our observations are379

less consistent with the CTRW process for the following380

two reasons. First, the negative velocity auto-correlation381

supports the fractional Brownian motion as opposed to382

CTRW [4, 5, 27]. Second, if it were a CTRW process,383

a second, shallower slope is expected in the MSD curve,384

which is however missing in our experimental measure-385

ments (Fig. 2A).386

1 2 4 8 16
 (s-1)

0.1

1
G

'(
),G

"(
) (

a.
u.

)

1 2 4 8 16
 (s-1)

0.5

1

2

|G
| (

a.
u.

)

1 2 4 8 16
 (s-1)

0

2

4

6

Ta
n(

)

0 0.1 0.2 0.3 0.4
 (s)

0

0.5

1

C
v (

)

(A) (B)

(C) (D)

0 0.5 1

 (s)

M
SD

FIG. 4. (A) Velocity autocorrelation of H-NS proteins is neg-
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magnitude of the complex modulus |G(ω)| of bacterial cyto-
plasm. Inset: the ensemble-averaged MSD curve with longer
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loss (blue squares) modulii, G′(ω) and G′′(ω). (D) Frequency
dependence of tanφ = G′′/G′.

We further examined the viscoelasticity of the cyto-387

plasm that H-NS proteins experienced by looking at the388

complex modulus G(ω), which is related to the mem-389

ory kernel K(t) = (2 − α)(1 − α)/|t|α in the fractional390

Langevin equation [4, 39],391

G(ω) ∝ iω
∫ +∞

−∞
K(t)e−iωtdt ∝ ωα · e−iαπ/2 (5)392

Therefore, under this assumption, the magnitude393

(|G(ω)|), the storage modulus (G′(ω) = <{G(ω)}) and394

the loss modulus (G′′(ω) = ={G(ω)}) are all expected to395

be proportional to ωα. This single-exponent power-law396

behavior has been observed experimentally for homoge-397

neous protein solutions [40], indicating that the fractional398

Langevin equation can account for the viscoelasticity of399

homogeneous protein solutions. However, we found that400

the viscoelasticity of bacterial cytoplasm is more compli-401

cated than this single-exponent power law. To see this,402

we calculated the magnitude of the complex modulus,403
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the storage and loss modulii, following Ref. [40–42],404

|G| = kBT

πa
· 1

〈∆r2(1/ω)〉Γ(1 + α(ω))
(6)405

G′ = |G| cos(πα(ω)/2) (7)406

G′′ = |G| sin(πα(ω)/2) (8)407

where408

ω = 1/τ (9)409

α(ω) =
d ln〈∆r2(τ)〉

d ln τ

∣∣∣∣
τ=1/ω

(10)410

As shown in Fig. 4B, the magnitude |G(ω)| displays at411

least two different slopes in the log-log scale. For ω > 1412

s−1, the power-law exponent is ∼ 0.5 (red solid line),413

while for low frequencies ω < 1 s−1, the slope becomes414

∼ 1.5 (blue dashed line). This transition is more obvious415

in the plots for the real and imaginary parts (G′(ω) and416

G′′(ω), Fig. 4C). The loss modulus (G′′(ω)) remained417

constant below ω = 1 s−1 while the storage modulus418

(G′(ω)) decreased quickly. In addition, we note that419

the slopes start to become different at high frequencies420

(ω & 10 s−1). Furthermore, we looked at the transi-421

tion by plotting the ratio between the loss modulus and422

the storage modulus, tanφ = G′′/G′, which has been423

used for categorize materials (� 1 for viscous liquids,424

� 1 for elastic solids, and ∼ 1 for viscoelastic materi-425

als) [43]. As shown in Fig. 4D, at low frequencies (long426

time scales), the cytoplasm of E. coli behaves more like427

viscous liquids, while at high-enough frequencies (short-428

enough time scales), the cytoplasm becomes viscoelastic,429

suggesting a possible glass-liquid transition in the fre-430

quency domain and supporting the work by Parry et al.431

[1]. In addition, the time/frequency dependence of the432

complex modulus suggests the so-called aging effect: the433

dynamics changes over time [2, 44].434

D. Age-dependence of H-NS proteins’ diffusion435

Furthermore, we attempted to probe whether the dy-436

namics of H-NS proteins is dependent on cell-age. For E.437

coli, the cell-age can be easily read from the cell-length,438

as the cell-age is nearly linear to the cell-length [45]. As439

the lengths of individual bacteria ranged from 1 µm to 6440

µm, we picked cells from three groups: < 1.2 µm, 2.8−3.0441

µm, and > 5 µm, followed by calculating the MSD for442

the trajectories in the cells in each group. As shown in443

Fig. 5A, the MSD moved up as the cell lengths increased444

(< 1.2 µm: red circles, 2.8 − 3.0 µm: magenta squares,445

> 5 µm: blue triangles). The age-dependence of H-NS446

proteins’ dynamics can also be seen from the radius of447

gyration Rg of the trajectories [1, 46], which shifted to448

higher values (Fig. 5B). In addition, by fitting the MSD449

curves, we found that cell aging caused D to increase450

(Fig. 5C), while α did not change significantly (Fig. 5D).451

We note that, to our knowledge, the observed cell-to-cell452

variability in the H-NS proteins diffusional dynamics was453

not reported previously.454
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FIG. 5. (A) Ensemble-averaged MSD for bacteria with dif-
ferent lengths (< 1.2 µm: red circles, 2.8− 3.0 µm: magenta
squares, > 5 µm: blue triangles). Error bars = SEM. (B)
Radius of gyration Rg of trajectories for the cells from the
three groups. (C) Fitted diffusion coefficients from (A). (D)
Fitted exponents α from (A). Error bars in (C) and (D) rep-
resent fitting errors. (E) Comparison of the magnitude of
the complex modulus |G(ω)| of bacterial cytoplasm between
bacteria with different lengths. (F) Comparison of the stor-
age modulus G′(ω) of bacterial cytoplasm between bacteria
with different lengths. (G) Comparison of the loss modulus
G′′(ω) of bacterial cytoplasm between bacteria with different
lengths.

The observed age-dependence is unlikely size-effect be-455

cause the cell-length is always greater than the cell-456

diameter of E. coli and the latter is expected to be the457

limiting factor. An alternative hypothesis is that the age-458

dependence of H-NS proteins’ diffusional dynamics might459

reflect the changes in the bacterial metabolism when they460

grow. This is because metabolism fluidized the bacte-461

rial cytoplasm [1], and, according to the Kleiber’s law,462

a larger body size gives higher metabolic rate [47]. To463
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test this hypothesis, the viscoelasticity of the bacterial464

cytoplasm for the cells in the three length/age groups465

was examined by calculating the complex moduli (|G(ω)|,466

G′(ω) and G′′(ω), Fig. 5E–G) for the three groups (< 1.2467

µm, 2.8 − 3.0 µm, and > 5 µm) from the MSD curves468

(Fig. 5A) as described above. We observed that the469

magnitude of the complex moduli (|G(ω)|) decreases as470

the cell length/age increases (Fig. 5E), suggesting that471

movement of proteins in longer cells is indeed easier (i.e.,472

given the same stress σ, the resultant strain ε is higher for473

smaller complex modulus, |ε| = |σ|/|G|). Therefore, this474

observation supports the hypothesis that the cytoplasm475

of longer bacteria is more fluidized than shorter ones.476

More interestingly, we found that the underlying reason477

for the cytoplasmic fluidization as the cells grow depends478

on the time-scale (i.e., the frequency ω). For example,479

differences in the storage moduli (elasticity) at higher480

frequencies (ω ≥ 3 s−1) are more prominent than at the481

lower-frequency range (Fig. 5F). In contrast, the loss482

moduli (viscosity) showed the opposite: larger changes483

were observed at lower frequencies (Fig. 5G).484

IV. CONCLUSIONS485

To conclude, we investigated the dynamics of H-NS486

proteins in live E. coli bacteria using super-resolution flu-487

orescence microscopy in combination with single-particle488

tracking. Apart from the sub-diffusive behavior, a new489

power-law distribution was observed for the diffusion co-490

efficients of individual H-NS proteins, which can be at-491

tributed to the polymerization of the proteins. It is ob-492

served that the distribution of displacements of H-NS493

proteins was non-Gaussian or non-Cauchy. In addition,494

rather than the Laplace distribution, which was applied495

successfully to other molecules in E. coli and yeast, the496

Pearson Type VII distribution is needed to fit the data497

for H-NS proteins. Furthermore, the dynamics of H-NS498

proteins reports the viscoelasticity of the bacterial cyto-499

plasm; more importantly, we experimentally measured,500

for the first time, the frequency dependence of the com-501

plex modulus of the cytoplasm of live bacteria, which502

is much more challenging than those for eukaryotic cells503

[42, 48] due to the much smaller size of bacteria. In504

addition, we found that the viscoelasticity of bacterial505

cytoplasm shows a glass-liquid transition, different from506

homogeneous protein solutions. The measured transi-507

tion also differs quantitatively from those observed for508

eukaryotic cytoplasms [42, 49]. Lastly, we examined the509

dependence of the dynamics of H-NS proteins on cell-510

length (and thus cell-age), and found that the dynam-511

ics of H-NS proteins slows down as the bacteria become512

longer. To our knowledge, this is the first observation513

of size-dependence and cell-to-cell variability in diffusion514

characteristics of proteins in live bacteria.515

Our findings are expected to fundamentally change the516

way how the bacterial cytoplasm is viewed: unlike a sim-517

ple viscous or viscoelastic fluid that current models of518

bacterial processes typically consider, the bacterial cyto-519

plasm behaves differently at different time scales in terms520

of mechanical properties, which is expected to impact521

various interactions among small molecules, proteins and522

DNA/RNA molecules inside bacteria, as well as bacterial523

interactions with other species, such as bacteriophages.524
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FIG. S1. (A) Examples of long MSD curves (> 20 frames) showing super-diffusive motions (i.e., steeper than the slope of one,
which is shown as a black dashed line). The colored portions of the curves were used for fittings to obtain the generalized
diffusion coefficient and the anomalous scaling exponent, MSD = 4Dτα. Inset: the MSD curve plotted in linear scales. (B)
Ensemble averaged MSD curves for bacteria in the exponential growth phase (or log phase, LOG) and bacteria treated with
formaldehyde (HCHO). (C) Distribution of the anomalous scaling exponent α for untreated bacteria in the exponential growth
phase (LOG) and treated bacteria with formaldehyde (HCHO).
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