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Collective behavior is observed in many physical and biological systems and has been studied
through agent-based models, including the Vicsek model which enforces aligned motion among
agents. The behaviors produced by these models are highly dependent on the type of sensing indi-
viduals use. In nature, bats successfully use a complex form of sensing, namely, active echolocation
in a relatively narrow beam and passive eavesdropping on their conspecifics’ sound over a wider vol-
ume. Inspired by this system, we investigate whether augmenting an active sensing mechanism with
passive sensing can improve the collective behavior of the group. A three-dimensional Vicsek-type
model is presented to study the effects of combining active and passive sensing on collective behavior
of a group of particles in the presence of noise. Phase transition is observed in both the presence
and absence of passive sensing, yet the range of parameters for which ordered and disordered group
states exist dramatically changes when passive sensing is implemented. Notably, we find numerous
cases of the model for which the implementation of passive sensing increases the robustness of the

collective behavior to noise.

PACS numbers: 05.65.+b, 87.18.Tt, 64.60.De

I. INTRODUCTION

When a group of individuals interacts among them-
selves using simple rules, they can exhibit complex be-
havior as a whole. This phenomenon is referred to as
collective behavior and has manifested in many physical
systems such as vibrating rods [1], nematic liquid crystal
[2], and active colloids [3]. It is also observed in living
systems such as fish schools [4], bird flocks [5], primates
[6], insects [7], cells [8], amoeba [9], bacterial colonies
[10], and human crowds [11]. Depending on the rules of
motion and interaction between individuals, the group
can show different patterns of ordered behavior such as
aligned movement or milling.

Modeling collective behavior is a problem that has
been approached by researchers from different commu-
nities. The agent-based model provided by Vicsek [12],
which is commonly referred as the Vicsek model, is one
of the most well-studied due to its ability to capture com-
plex group behaviors with a simple update rule. In this
model, each agent or particle is moving with constant
speed in a two-dimensional square with periodic bound-
ary conditions and, at each time step, the particles take
the average direction of their neighboring particles, sub-
jected to noise. The polarization, which is the averaged
linear momentum of the group, is considered as an order
parameter for aligned movement. As the intensity of the
noise increases to some critical value, the order param-
eter drops dramatically which shows a phase transition
in the group. A three-dimensional version of the Vicsek
model has been more recently published in [13]. The pa-
per published by Chaté et al. expands the Vicsek model
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by adding polarity to particles and their interaction, as
well as including the effect of an ambient fluid and cohe-
sion between nearby particles in both two and three di-
mensions [14]. Besides the Vicsek model which is based
on sensing neighbors’ direction of motion, we note that
collective behavior may be seen in models that use alter-
native sensing strategies, see for example the position-
based model in [15]. A thorough review of collective mo-
tion, its manifestation in different research areas, and
different suggested models can be found in [16].

The behavior of particles in the Vicsek model is highly
dependent on their ability to sense their environment.
Inspired by sensory limitations in biological and robotic
systems, recent models have sought to explore the role of
a so-called sensing angle. This angle defines the portion
of the circular/spherical neighborhood around an agent
that it can perceive, and thus the information it can use
for the alignment protocol. In addition to the phase tran-
sition that can be found by changing noise on alignment,
the relationship between sensing angle and polarization
is still an active area of research. Nguyen et al. demon-
strate a phase transition with changing sensing angle in
the two-dimensional Vicsek model [17], with the critical
noise value defined where polarization variance is max-
imized over different sensing angles. They report that
the critical noise increases with increasing sensing angle.
Also, they show by simulation that the critical noise con-
verges to some value as the number of agents increases
and this value is negligible for angles less than 7. There-
fore, no phase transition with respect to noise happens
for the case with sensing angle is less than 5. Durve and
Sayeed use the same model to study polarization as sens-
ing angle is varied [18]. The authors find that the phase
transition is of the first order when sensing angle is var-
ied, while it is of the second order when the radius of the
circular neighborhood around the particle is varied. In



[19], the two-dimensional deterministic Vicsek-like model
with angle restriction is considered and an optimal angle
is found which leads to the fastest alignment of parti-
cles. The three-dimensional version of this problem is
also considered in [20], however the final results are hard
to interpret since the equations may be written in two
rather than three dimensions. Decoupling the directions
of sensing and motion may also lead to significant de-
creases in the time to align, as is shown in [21].

Vicsek-like agent-based models are often used to cap-
ture collective behavior in animal groups and their engi-
neered analogs, robotic swarms. To interact with and
gather information from the environment, individuals
rely on sensing mechanisms. These mechanisms can use
different signals such as light [5], sound [22], chemicals
[23], and electrical charge [24]. Sensors can be catego-
rized in two different groups, active sensors and passive
sensors. Active sensors use energy to create a signal and
gather information about the environment from its re-
flection. Radar, sonar, and lidar are examples of active
sensors. In contrast, passive sensors analyze signals al-
ready present in the environment [25]. Cameras, micro-
phones, and thermometers are examples of passive sen-
sors. Since many animal groups rely on passive sensing,
such as vision, most models for biological systems are
designed with only passive sensing. In contrast, groups
that use active sensing may have different communica-
tion modalities since their sensing signals are broadcast
and thus interceptable by design.

Bat swarms are an example of highly successful animal
groups that use active sensing, that is, echolocation for
navigation [22]. Collective behavior using active sensing
comes with unique features, as are reported in bats. As
an example, it is known that bats use different calls with
different beam patterns to get a balance between range,
breadth, and resolution of sensing [26]. Therefore they
have the ability to control their sensing range and sens-
ing angle. Another example of a feature unique to active
sensing is the interference of the reflected signals made by
different bats in the group, sometimes referred to as jam-
ming. Bats use different strategies such changing sound
frequency [27], temporal characteristics of the sound [28],
direction of the sound [29] or even flying without echolo-
cating [30]. A summary of the research done on bats and
whale echolocation can be found in [26].

The silent flight of bats observed in [30], which the
authors suggest may prevent jamming, raises the ques-
tion of how bats can maneuver and avoid obstacles dur-
ing their silent flight. One possible answer to this ques-
tion is that they interact with the environment through
eavesdropping on the sound made by other bats. In
other words, bats are able to combine passive listening,
i.e. sound source localization, with active echolocation.
Given the fact that bats can also change the sensing an-
gle of their active sensing, we may ask how can changing
the sensing angle and using passive sensing impact the
collective behavior of the group.

Inspired by bats’ sensing, this study seeks to investi-

gate whether augmenting an active sensing mechanism
with passive sensing can improve the collective behav-
ior of the group. We study the collective behavior of a
group of particles using both active and passive sensing in
the presence of noise through a three-dimensional agent-
based model in the spirit of Vicsek. Using polarization as
an order parameter, we study phase transitions evidenc-
ing collective behavior as noise magnitude and sensing
angle change.

II. SELF-PROPELLED PARTICLE MODEL

The self-propelled particle model consists of N parti-
cles moving in a three-dimensional cubic domain of length
L with constant speed vg. The boundary condition of
the cube is assumed to be periodic. Each particle has
a spherical sensing space with radius R. This sensing
space is split up into an active sensing region, i.e. points
inside a cone with opening angle 26, and a passive sens-
ing region which covers all the points outside the active
sensing cone. All the particles within distance R of a
specific particle, including the particle itself, are called
its neighbors. Whether a neighbor is located inside the
cone of active sensing or outside of it can be used to di-
vide the neighbors into two disjoint sets which we call
active neighbors and passive neighbors, respectively. The
particle itself is considered to be an active neighbor. This
geometric partitioning of neighbors is inspired by the an-
gular limitation of active sonar, which occurs in a fairly
narrow beam, while passive sonar can be performed om-
nidirectionally.

Particle 4 at time step k has position vector x; (k) and
heading vector v; (k), which is a unit vector defining the
direction of motion of the particle. At time step k + 1,
this particle assumes the following heading vector:
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where n, and n, are the number of active and passive
neighbors, respectively, and N (u) = u/||ul| returns a
unit vector in the direction of vector u. Finally, v(k +
1) and vP(k 4+ 1) model the contribution of the active
and passive neighbors’ headings in the particle’s heading
direction, which are calculated as follows:
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where A2(k) and AY (k) are index sets of active and pas-
sive neighbors, respectively. The noise vectors &, (k)
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FIG. 1: A schematic of a particle and its active and
passive neighbors. Blue and yellow dashed vectors show
the average heading of active and passive neighbors,
respectively, and the calculated heading of the particle
at next time step is shown as a black vector.

and &, (k) are random vectors uniformly distributed over
spheres with radii 77, and 7, respectively.

According to equation (1), each particle assumes a
weighted average of the heading of its neighboring par-
ticles as its new heading direction. In other words, each
particle calculates the heading of its neighbors using ac-
tive and passive sensing separately, disturbed by a noise.
The particle then computes the heading direction for the
next time step by assigning a weight to each direction
based on the number of active and passive neighbors. A
schematic of the heading direction update is depicted in
figure 1.

The average heading vectors of active and passive
neighbors are disturbed by noises &, (k) and &, (k), respec-
tively. These noise vectors, that we call active noise and
passive noise, are assumed to be uniformly distributed
over spheres of radii 7, and 7, respectively. The two
noises are used to model incapability of the particle to
head exactly toward the average heading vector of the
active or passive neighbors due to muscle or actuation
resolution. This randomness can also be seen as the par-
ticle’s free will to deviate from the average heading of
the neighbors based on the particle’s trust in its neigh-
bors or in the accuracy of its sensing. Since the particle
interacts with active and passive neighbors via different
sensing approaches, it is rational to consider different val-
ues for active noise and passive noise to model different
levels of trust in these approaches.

The modeling selection of differentiating between ac-
tive and passive sensing through the separate, randomly

perturbed updates in equations (2) and (3) seeks to cap-
ture behavioral responses inspired by bats’ use of echolo-
cation and eavesdropping. These two types of sensing
result in information which is known to be more or less
accurate by design. The physics of active and passive
sensing is incorporated into the choice of geometry for
the sensing regions. The relative trust in the accuracy
of information from active and passive sensing is incor-
porated into the noises &, and ,. However, the model
is not intended to capture the physics and biology gov-
erning active or passive sensing, instead focusing on the
relationship between individual and collective behavior
in groups of particles.

Once the heading vector of particle ¢ in the next time
step is calculated, the updated position of this particle
can be found as

It should be noted here that since each particle is as-
sumed to be its own active neighbor, n, is at least one and
therefore, equation (1) is well defined. Also, in the spe-
cial case when 6 = 7, all the neighbors are active and the
model is reduced to the three-dimensional version of the
Vicsek model with noise strength 7,. When 6 = 0, how-
ever, this model will not recover the Vicsek model since
the particle itself is an active neighbor and the noise term
in equation (2) will be added to that in equation (3), and
the resulting noise will not be uniformly distributed over
a sphere.

To study the collective behavior of the group, we con-
sider the order parameter of polarization, which is the
magnitude of the averaged group linear momentum. Po-
larization of a group of particles can be defined as

N
> i)

Polarization is a real number between zero and one,
where larger values indicate higher alignment in the
group. When the value of polarization is equal to one,
it is associated with a perfectly aligned group, while
polarization close to zero shows that the particles are
performing random walks.

PR = (5)

III. SIMULATIONS

After defining the model, numerical simulation is used
to investigate the effect of active sensing noise amplitude
1., sensing angle 6, and passive sensing noise amplitude
Np on the polarization. The model considers particles
moving in three dimensions inside a cube with length
L = 15. All particles have a sensing range of R = 1 and
are moving with constant speed vy = 0.03. The average
density, which is equal to the number of particles per unit
volume, is set to be equal to one. We vary two control pa-
rameters, 1, and ¢, for different values of n,. Simulations



are done for 5 different cases: 7, = {0,0.6,1.2,1.8} and
no passive sensing, which refers to the case when parti-
cles use only active sensing, i.e. v;(k+ 1) = v2(k + 1).
The sensing angle 8 changes from zero to w, with incre-
ment of 7/36, and n, takes values between 0 and 1.8,
with increment of 0.2. For each simulation, the model is
iterated in time until it reaches to a stationary condition.
Rigorously, we consider the polarization to be stationary
if it satisfies the first-order weak stationarity condition,
in which the first moment of polarization remains con-
stant [31]. After omitting 30,000 time steps to capture
the transient, the polarization is averaged over moving
windows of length 30,000 time steps which proceed with
an increment of 100 time steps. To test whether the aver-
age polarization over the moving windows is constant, we
compute the coefficient of variation of these values. This
quantity does not exceed 7% for all considered simulation
parameters, which we take to satisfy the qualitative def-
inition of stationarity above. Simulation parameters are
condensed in table I. For the analysis below, we report
the mean polarization averaged over all time steps after
the omitted transient for each set of simulation parame-
ters.

Variable Symbol | Value

Cubic domain side length L 15

Density of particles p 1

Number of particles N 3375

Particle speed Vo 0.03

Sensing range (linear) R 1

Sensing angle 0 [0, 7]

Passive sensing noise amplitude |7, {0,0.6,1.2,1.8}
and None

Active sensing noise amplitude |7, {0,0.2,...,1.8}

Total simulation time steps K 300,000

Time steps omitted as transient |- 30,000

TABLE I: Simulation parameters

IV. RESULTS AND DISCUSSION

The averaged polarization of the group is shown in
figure 2 as a function of sensing angle and active noise
magnitude for different conditions of passive sensing. In
all considered cases of passive sensing, when the sensing
angle is 7, the trend of the model is consistent with the
three-dimensional Vicsek model. Namely, the polariza-
tion is high for small values of 7,, and decreases to zero
with increasing noise. Also, at any fixed sensing angle
and passive sensing condition, the polarization decreases
monotonically as 7, increases. Moreover, when the sens-
ing angle is fixed, at any active noise magnitude, the
polarization decreases as the magnitude of passive noise
increases. As either noise is increased beyond a critical
value, the polarization appears to approach a limit.

The four plots in figure 2 show the effects of adding pas-
sive sensing with different n, to the active sensing with
restricted angle. In contrast to the effect of passive noise,
there are some values of 7, for which polarization shows a
maximum with increasing 6. This occurs when the active
noise does not dominate passive noise, that is, when 7, is
either less than or approximately equal to n,. The white
circles show the locations of maxima in polarization for
fixed values of 7, as 6 is varied. For sets of simulations
with fixed n, where no averaged polarization was above
one standard deviation of all other simulations in the set,
we did not report the maximum. These cases generally
referred to averaged polarizations that were constant or
changed monotonically as theta increased.

Figure 3 shows the case with no passive sensing. When
the sensing angle is less than a threshold, approximately
equal to 7/2, the ordered phase exists only at very small
values of n,. This is similar to results reported by [17]
in which they show that in the two-dimensional Vicsek
model with variable sensing angle, for angles smaller than
7 /2, the critical noise is very small and the ordered phase
does not practically exist. As the sensing angle increases
above this threshold, the range of active noise magnitude
where the ordered phase exists (P « 1) dramatically in-
creases. In other words, if the magnitude of noise is not
too large, there is a sharp phase transition as the sens-
ing angle increases. This sharp phase transition is also
reported for two-dimensional model in [18]. Moreover,
the phase transition as the sensing angle increases in the
presence of passive sensing (figure 2) appears more grad-
ual in comparison to the phase transition when particles
only use active sensing in figure 3. Moreover, the range
of active noise in which the ordered phase exists is not
monotonically increasing with # and shows some optimal
sensing angle. In other words, the optimal sensing angle
is associated with a system whose order is more robust
to the introduction of active noise. This is similar to the
results reported in [19] for the two-dimensional Vicsek
model, except they defined optimality based on how fast
polarization reaches to 1 when there is no noise in the
model. For small values of active noise magnitude, e.g.
72 < 0.6, phase transition occurs with respect to increas-
ing 6, while for larger values of active noise magnitude,
the phase transition is absent since the ordered phase is
never reached.

In the presence of passive noise, however, the polariza-
tion does not monotonically increase as the sensing angle
increases for all value of active noise magnitude. When
particles use passive sensing and active sensing together,
depending on the relative values of active noise magni-
tude and passive noise magnitude, the collective behav-
ior can be divided into three different cases: n, >> 1,,
Mp 2 Na, and 1, << 7,. In the first case, when the sensing
angle is large, the behavior of the system is similar to the
case with no passive sensing since the number of passive
neighbors is negligible comparing to the number of ac-
tive neighbors. At smaller sensing angles, however, espe-
cially when the active noise is not close to zero, exploiting
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FIG. 2: Averaged polarization as a function of sensing angle and active noise amplitude for different values of
passive noise amplitude. The white circles shows the maximum value of polarization for fixed 7,.

passive sensing improves polarization of the group com-
pared to the no-passive-sensing case. For example, the
polarization when 7, = 0.4 and § = 7/4 is 0.7776 when
7p = 0.6 and 0.0748 when no passive sensing is allowed.
This order-of-magnitude improvement to system order
is due to extra information that is ignored when using
only active sensing. It is notable that this boost occurs
even though the extra information from passive sensing
is noisy compared to its active counterpart.

For the second case When active noise magnitude and
passive noise magnitude are close to each other, accord-
ing to equations (1)-(3), the effective noise acting on
the system is the sum of two zero-mean noises which
are uniformly distributed over the sphere and therefore,
their summed effect has a smaller magnitude compared
to those of the original summands. As a result, the

maximum polarization occurs at more restricted angles
compared to the no passive sensing case. This effect of
averaging zero-mean noises can be seen by considering
the line plots in figure 4, which uses 7, = 1.2 and cap-
tures vertical slices of figure 2(c¢) at n, = 0.8,1, 1.2, and
1.4. The maxima of polarization occur at approximately
0 = 2.182,1.658,1.309 and 1.047 rad respectively. This
behavior is expected since, as the particle’s trust of its ac-
tive neighbors decreases, it relies more on passive neigh-
bors to get more information necessary for alignment,
which is achieved by reducing the sensing angle.

For the third case when passive noise is much smaller
than active noise, the interpretation of the noises as
trust of the sensing process means that passive sensing
is trusted dominantly over active sensing by the parti-
cle. Therefore, the polarization increases as the sensing
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FIG. 3: Averaged polarization as a function of sensing
angle and active noise amplitude when only active
sensing is implemented.

FIG. 4: Averaged polarization at different active noise
amplitude as a function of sensing angle when n, = 1.2

angle decreases, and more neighbors are passive neigh-
bors than active. The level curves of polarization in this
case are interesting. As it can be seen in figure 2(a),
the larger sensing angle with smaller active noise has the
same polarization as smaller sensing angle with larger ac-
tive noise. It can be interpreted as a trade off between
using too many active neighbors with moderate active
noise versus a group of less active neighbors with strong
noise condition and a group of passive neighbors with
small noise. Moreover, it seems that as active noise mag-
nitude increases, the polarization approaches a limit at
each sensing angle. This occurs because, when the active
noise magnitude is high, the sum of the direction of the
active neighbors will be negligible compared to the active
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FIG. 5: Time series of the instantaneous polarization
near critical sensing angle at n, = 0.4 for 150 different
values of sensing angle with resolution 0.0035 radians.

noise vector. In other words, the information gathered
by active neighbors is so corrupted by noise that it is
effectively just random with no useful information.

As an interesting side note, comparison between polar-
ization in the no passive sensing case of figure 3 and all
the cases fusing active and passive sensing in figures 2a-
2d suggests that, in presence of passive sensing, the phase
transition is happening more gradually as the sensing
angle changes compared to the no passive sensing case.
One explanation for this difference could be that the ex-
tra information gathered with the additional use of pas-
sive sensing requires particles to perform more averaging,
which makes the phase transition from disorder to order
emerge more smoothly. However, due to finite size of the
domain for the simulated system, determining the loca-
tion and nature of phase transition is difficult. A common
tool to rigorously investigate this matter is finite size scal-
ing analysis [32]. However, its implementation requires a
large domain size to be simulated over a long period of
time. Since our model is three dimensional, the number
of particles is proportional to L?, which makes employ-
ing finite size analysis infeasible due to computational
demands. In [18], the nature of the phase transition as
the sensing angle changes is detected as first-order in the
two-dimensional case, however, for the three-dimensional
model, a through investigation similar to the analysis in
[14] is required, which is beyond the scope of this work.
Being aware of the finite size effects, one can qualitatively
describe the phase transition. Figure 5 shows the polar-
ization time series for the case with no passive sensing
stacked for 150 different values of sensing angle around
the phase transition with resolution of 0.0035 radians, at
Na = 0.4. When the sensing angle is less than critical
value, polarization is uniformly low, and as this angle in-
creases above a critical value, polarization is uniformly



high. However, between these two unimodal states, the
system sometimes converges to the ordered phase and if
it does, the time it takes to reach the ordered phase is
significantly longer than the transient as defined by our
notion of stationarity. This can be a sign of the coexis-
tence of ordered and disordered states, however, we failed
to observe bimodality in contrast to what reported in
two-dimensional model in [18]. In summary, whether the
phase transition in the three-dimensional Vicsek model
with no passive sensing is first-order and whether imple-
menting passive sensing will change the nature of phase
transition requires a more thorough investigation which
will be explored in future studies of this model.

V. CONCLUSION

Inspired by bats’ active sensing and eavesdropping,
a three-dimensional Vicsek-type model is introduced to

study the effects of using active and passive sensing with
restricted sensing angle on collective behavior of a group
of individuals in the presence of noise. The range of
parameters for which the ordered phase exists changes
when passive sensing is introduced to the model. Also,
at different values of active and passive noise amplitude,
the maximum polarization happens at different sensing
angles. Moreover, while the phase transition is sharp
when only active sensing is implemented, it is noticeably
smoother when passive sensing is added to the model.
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