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Preferential attachment (PA) is a popular candidate mechanism for generating power-law net-
works. However, incoming nodes require global information about existing nodes’ connectivities be-
fore connecting, whereas such information access within real-world networks may be only anisotropic
and localized. Here we investigate how anisotropic and localized information access affect the result-
ing network topology. We find that anisotropy impacts the power-law exponent significantly, but
has only a weak influence on the clustering coefficient. By contrast, we find that locality influences
the clustering coefficient significantly but has only weak influence on the power-law exponent. We
show that this generalized network-generation mechanism is capable of generating networks with
a broad range of power-law exponents and clustering coefficients. Our findings contribute to the
debate about why so many real-world networks have degree distributions that crudely resemble
power-laws, even if this resemblance doesn’t survive strict statistical testing procedures.
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I. INTRODUCTION

Understanding the possible mechanisms that generate
networks with approximate power-law degree distribu-
tions, has been a major topic in recent years [1–3]. Al-
though real-world networks are never perfect power laws,
the fact that so many resemble a crude approximation to
a power-law – coupled to physicists’ intrinsic interest in
scale-free behavior – provides motivation for continuing
to explore minimal mechanisms that generate power-law
networks.

Among such minimal mechanisms, the so-called Pref-
erential Attachment (PA) mechanism has garnered sig-
nificant interest in connection with the growth of net-
work systems as diverse as scientific collaboration net-
works [3–8], the World Wide Web [4, 9–12], actor col-
laboration networks [11, 13, 14], social networks [15–22],
and chemical and biological networks [23–26]. Existing
mechanisms proposed to produce power-law network de-
gree distributions can crudely be divided into two cat-
egories, depending on whether the network generation
mechanism assumes a newly added node has access to
some global information about the existing nodes as in
Refs. [3, 6, 27–30] when selecting which node to con-
nect to, or it does not as in the copying models of Refs.
[24, 31–33]. Real-world scenarios would seem to favor
the latter category of models, since it is more likely in
reality that a new node only has local access to infor-
mation about existing nodes [32]. Although the topic of
how a localized PA mechanism can generate a power-law
distribution has been well studied, the question of how
anisotropic and localized access to information influence
the network topology – not only the power-law exponent,
but also other topological measures such as the clustering
coefficient – has been studied less.

In this paper, we address this question by presenting

and analyzing a network generation mechanism that fea-
tures anisotropic and localized access to information. Al-
though our model joins a large category of existing net-
work copying models, it distinguishes itself from existing
works by allowing both anisotropic and localized access
to information. In Sec. II we present our model mecha-
nism and derive the out-degree distribution for a simple
version of it. We show explicitly how the resulting power-
law exponent is related to the accessibility that nodes
have to upstream and downstream information within
the network. In Sec. III we study numerically how the
various parameters in our model influence the network
clustering coefficient. In Sec. IV we investigate the ex-
tent to which the predictions of our model are consistent
with three typical networks from different real-world do-
mains. The conclusion is given in Sec. V where we sum-
marize our main contributions, discuss the limitations of
the present work, and comment on open questions.

II. MECHANISTIC MODEL

We now introduce our model and derive the analyti-
cal expression for the out-degree distribution for a simple
version of it. We will use the concrete setting of a citation
network in order to explain our mechanistic model and
help make it intuitively easier to understand – however,
we stress that this same mechanistic model can in princi-
ple be applied to any network that has similar properties.
Imagine an author is exploring which citations to include
in his/her upcoming paper, and directly accesses (e.g.
using a search engine) a highly relevant article that has
previously been published (i.e. the article that is listed
as most relevant given their search keywords) and then
uses this to start a local exploration of articles that are
related to it. We define this highly relevant published
article (i.e. this network node) as a center, since it forms
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a center for the author’s subsequent exploration; we de-
fine the published articles (nodes) that are cited by this
center as its parents; and we define the published articles
(nodes) that subsequently cite this center as its children.
We use the convention that if node A (i.e. published pa-
per A) is cited by node B (published paper B), A is the
source node and B is the target node of a directed edge
from node A to node B in the network. We now assume
that the author does not (or cannot) access, and hence
does not cite, the complete set of all parents and chil-
dren of this center. We will refer to this situation as the
author having limited access to the parents and children.
We stress that it is irrelevant to the present work whether
this limited access is because the author has finite time,
finite resources, or both. We define a and b as the prob-
abilities that a given parent and a child can be accessed,
respectively. A center’s family can hence be defined as
a set of nodes comprising the center, its accessible par-
ents, and its accessible children. This set is illustrated in
Fig. 1 and it is obviously a small subset of the complete
network of published papers.

Our mechanistic model’s network generation mecha-
nism then proceeds as follows:

1. In the first time step, we initialize the network with
a single published article (i.e. a single node). This
initial condition could be made more realistic, for
example by initializing the network with a small
number of nodes having random citations among
them, but in the long time-limit the results are in-
sensitive to the precise choice of initial condition.

2. At every subsequent time step, we assume a new
article is published, i.e. a new node is added to the
network, and that it cites a subset of the existing
published articles (and hence forms links to existing
nodes) in the following way:

(a) With a probability ρ, the new published arti-
cle (i.e. new node) randomly selects a pub-
lished article to be a center, from the set
of previously published articles. By contrast
with a probability 1− ρ, it randomly selects a
published article to be a center from the sub-
set of previously accessed articles. This subset
of previously accessed articles comprises the
union of all families from the previous citing
processes by the new article. It mimics the
idea of an author drawing a highly relevant
article from a list of published papers that
he/she has accessed in the past, and using this
as a starting point to explore other related ar-
ticles. For the case of the first citation by the
new article, there are no previously accessed
articles and hence we choose the center ran-
domly from the previously published articles
(i.e. ρ = 1).

(b) The new published article (i.e. new node)
then randomly selects a published article to

cite from the family of this selected center.
We generate this family by a random sampling
process: each parent of the selected center has
a probability a of being accessed (i.e. becom-
ing a member of the family), while each child
of the selected center has a probability b of be-
ing accessed (i.e. becoming a member of the
family). This mimics the idea of an author
drawing citations from all papers directly re-
lated to a center paper (i.e. the center paper
itself, its citations, and the papers citing it).

We let this citing process be repeated on average
m times by the newly published article, i.e. the
in-degree of the new node and hence the number of
references of the newly published article is m on av-
erage. For technical convenience when implement-
ing the random selection of nodes, we use random
sampling with replacement (i.e. allowing repeated
citations). However, we have checked that our re-
sults are insensitive to whether we use sampling
with or without replacement, as long as we run the
simulation for a sufficiently long period.

FIG. 1. (Online in color): The family of a center node con-
sists of the nodes within the red solid rectangle, i.e. the family
comprises the center (green), its two accessible parents (blue),
and its two accessible children (yellow). The solid black ar-
rows (edges) connect nodes whose information is accessible,
while the dashed black arrows connect nodes whose informa-
tion is inaccessible.

We now derive the out-degree distribution of such a
network when ρ = 1, i.e. a center is always selected ran-
domly from the entire set of previously published articles.
The ρ = 1 case is easier to study analytically than the
ρ < 1 case, but it is sufficient for indicating how asym-
metric access to information impacts the power-law ex-
ponent. In addition, we will show in a later section that
the out-degree distribution is insensitive to ρ. Hence we
focus our analytical study here on this simpler case ρ = 1.
Let p(q, s, t) denote the probability of an article published
at time step s having q children when observed at step
t. The probability density function (PDF) of the number
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of children (i.e. the out-degree, meaning the number of
citations that an article receives) observed at time t can
then be expressed as

P (q, t) =
1

t

t∑
s=0

p(q, s, t) . (1)

Consider an article published at time s and observed at
time step t to have degree q. At every instance of the
on-average m independent citations, this article will be
cited by an article published at t+1 as either (1) a center,
(2) an accessible parent, or (3) an accessible child of a
family whose center is randomly selected. For case (1),
the probability that the article will be selected as the
center will be 1/t, and the probability that it will be
further selected as the one to be cited among the am +
bq + 1 family members, is 1/(am + bq + 1). For case
(2), the probability that it will be an accessible parent
in a randomly selected family (or equivalently, that a
randomly selected center will be its child and have access
to it) is given by aq/t, and the probability that it will be
further selected as the one to be cited among the am +
bq̄ + 1 family members, is 1/(am + bq̄ + 1). Similarly
for case (3), the probability that it will be an accessible
child in a randomly selected family (or equivalently, that
a randomly selected center will be its parent and have
access to it) is given by bm/t, and the probability that it
will be further selected as the one to be cited among the
am+ bq̄ + 1 family members, is 1/(am+ bq̄ + 1).

This citing process is repeated on average m times.
Hence the probability that this article (i.e. the one pub-
lished at s and observed at time step t to have degree q)
will be cited by an article published at t+ 1, is given by:

A(q, t) =
m

t
· 1

am+ bq + 1
+
m

t
· aq + bm

am+ bq̄ + 1
(2)

where the first term represents the probability that the
article will be cited as a center, and the second term
represents the probability that it will be cited as an ac-
cessible parent or child. q̄ is the average q which equals
m. If we assume aq+bm is much greater than 1, the first
term is then usually much smaller than the second one
when q is & q̄. This is very likely to be true in real-world
datasets. For example, the average number of citations
given by m ≡ q̄ for an article in a citation network, for
hyperlinks of a web page on the Internet, and follows for
a user in the online social network studied in this work,
are found to be around 10.5, 8.2, and 29.8 respectively.
In addition, we note that a and b cannot be both very
small: otherwise the network would approach a random
one, which is inconsistent with the observation that the
out-degrees of these real-world networks exhibit a fat-tail
distribution. For simplicity, we make the approximation
q ≡ q̄ in the first term, which then yields

A(q, t) ≈ m

t
· aq + bm+ 1

(a+ b)m+ 1
. (3)

The evolution of p(q, s, t) is given by

p(q, s, t+ 1)− p(q, s, t) =−A(q, t)p(q, s, t)

+A(q − 1, t)p(q − 1, s, t),
(4)

together with the initial condition p(q, s, s) = δq,0. Sum-
ming over s from 0 to t, and considering the long-time
limit in which we can transition to a continuous-time ap-
proximation, we obtain

∂P (q, t)

∂t
=− P (q, t)

t
−A(q, t)P (q, t)

+A(q − 1, t)P (q − 1, t) + δq,s

(5)

where P (q, t) is given by Eq. 1. Consequently, the so-
lution for the stable state (i.e. ∂P (q, t)/∂t = 0 when
t→∞) is given by

P (q) = C−1B

(
2 +

b

a
+

1

am
,
bm+ 1

a
+ q

)
. (6)

Here B is the beta function and C is the normalization
constant given by

C = 2F̃1

(
1,
bm+ 1

a
;

2a+ b+ bm+ 1

a
+

1

am
; 1

)
×B

(
2 +

b

a
+

1

am
,
bm+ 1

a

)
,

(7)

where 2F̃1 is the hypergeometric function. For large q,
this produces a power-law distribution (i.e. P (q) ∼ q−α)
with the power-law exponent

α = 2 +
b

a
+

1

am
. (8)

This tells us that increasing b will make α increase lin-
early when a is constant. By decreasing a with b con-
stant, α will increase rapidly and can reach any value
above 2. We note that in all the above, 0 < a ≤ 1 and
0 ≤ b ≤ 1.

Figure 2 shows the good agreement obtained between
our analytical result in Eq. 6 and the result of numer-
ical simulations for our mechanistic network-generating
model. We explicitly show the out-degree (i.e. number of
children) distributions of the resulting networks. We ran
each simulation until it generated a large number of nodes
(105). When plotting the analytical results, we used the
same values of the parameters a, b, and m as the ones
used in the corresponding simulations. The simulations
shown in Fig. 2 have a constant in-degree of m for all
nodes – however, we have checked that our findings are
unchanged when we allow the in-degree distributions to
vary. This makes sense since our model indicates that the
out-degree distribution is driven by the average number
of in-degrees but is insensitive to the exact form of the
in-degree distribution. This is confirmed in Fig. 3 which
compares the out-degree distributions of the simulations
for a variety of in-degree distributions: all the simula-
tions result in very similar out-degree distributions. All
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FIG. 2. (Online in color): Comparison between the analyti-
cal results (solid lines) derived from Eq. 6 for our mechanistic
model as described in Sec. II, and the simulation results (sym-
bols are same color as respective line) for different parameter
values. The quantity shown is the out-degree (i.e. number
of children) distribution of the resulting network. The agree-
ment is good. As explained in the text, a (b) is the probability
that a parent (child) is accessible, and m is the average mem-
ber of parents that a center has. For all cases here, m = 10
and ρ = 1.

other parameter values in the analytical result and simu-
lations are kept to be the same, apart from the in-degree
distribution.

As further verification of our model’s predictions (i.e.
Eq. 8), we ran simulations for different combinations of
parameters. The simulation results are shown in Table
I, and demonstrate good agreement with our analytical
results. By looking at the errors, we find that the cases
with a < b show the largest errors. This is understand-
able since the power-law exponents (α) in those cases will
be large, and hence there will be fewer data points in
the tails of the distributions as compared to other cases,
hence this will result in poorer statistics as observed.

Figure 4 shows the results from simulations in which
we vary the value of ρ, which is a measure of the non-
locality of a new node’s access to information. These
show that the out-degree distribution is similarly insen-
sitive to ρ. This also makes sense because although a new
node’s access to information is localized when ρ < 1, the
out-degree distribution is a measure that is averaged over
all nodes and we have assumed that there is no correla-
tion among the nodes (except for their temporal order).
Hence the impact of this localization effect on the out-
degree distribution, has been averaged out in the long
run.

FIG. 3. (Online in color): Simulations showing that the out-
degree distribution is insensitive to the in-degree distribution.
The three cases shown as examples are where m is a constant;
or it follows an exponential distribution; or it follows a Yule-
Simon distribution. All the other parameter values are held
at the same value. The cases when a = b = 0.5, m = 10
and ρ = 1 are shown, but our further investigations have
shown that this main result is valid for other combinations of
parameters. In addition, the analytical result (the black solid
line) is shown for comparison, with the same set of parameter
values.

III. CLUSTERING COEFFICIENTS

Our finding that the network out-degree is insensitive
to both the in-degree distribution and ρ, confirms the
well-known fact that although the out-degree distribution
is a relevant measure of a network, it is insufficient for in-
ferring the network’s detailed architecture or the process
that generated it. Hence to gain a better understanding
of the network, we need to look at some other topological
measure such as the clustering coefficient (CC). In this
section, we study numerically how the parameters in our
model influence the global CC of the network. It seems
clear that the form of the in-degree distribution should
have some influence on the CC, however in this paper
we are more interested in exploring how anisotropy and
locality influence the CC. Hence we will set the in-degree
distribution of all our simulations to be the Yule-Simon
distribution with average degree number 5. Though other
choices of distribution and of the average degree number
can of course be made, all the cases that we checked have
given the same main results. In each run, we allow a suf-
ficient amount of time to pass so that the network grows
to be large (> 104 nodes).

We find that the anisotropy, as described by the pa-
rameters a and b, has only a weak influence on the CC
(see Fig. 5(a)) but that the locality has significant im-
pact on the CC (see Fig. 5(b)-(c)). The CC increases
rapidly with the decrease of ρ, indicating that localized
access to information plays a pivotal role in the forma-
tion of clusters. This is also consistent with the case
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a 1.0 1.0 1.0 0.75 1.0 1.0 1.0 0.75
b 0.0 0.5 1.0 1.0 0.0 0.5 1.0 1.0
m 8 8 8 8 8 16 16 16
α 2.125 2.625 3.125 3.500 2.063 2.563 3.063 3.417
α∗ 2.128(2) 2.568(10) 3.060(29) 3.612(11) 2.073(1) 2.447(8) 2.962(16) 3.573(4)
%err 0.14(9)% 2.26(40)% 2.12(97)% 3.10(30)% 0.48(5)% 4.74(34)% 3.41(56)% 4.37(11)%

TABLE I. Power-law exponents for different combinations of a, b, and m: analytical (α) vs. simulation (α∗) results. Here α is
calculated according to Eq. 8. α∗ is estimated using the Maximum Likelihood Estimate scheme (MLE) (see Eq. 9) and is the
mean value since we repeated the simulation 20 times for each case. The percentage error %err = |α− α∗|/α∗ × 100%. The
standard deviations are shown in parentheses following their corresponding mean values. When doing the MLE, we fit Eq. 6
to the data from simulations to estimate a, b but with m treated as a known parameter to reduce over-fitting, and then we
used the estimated a and b to calculate α∗ according to Eq. 8. For all simulations, the total number of steps in each run is
106, and ρ is set to be 1.

FIG. 4. (Online in color): Simulations showing that the out-
degree distribution is insensitive to ρ. In all cases, we ensured
that all other parameters are kept the same (a = b = 0.5) and
that the in-degree follows a Yule-Simon distribution with an
average degree number m = 10. Other distributions could be
used, but we find that the main conclusions are unchanged.
In addition, the analytical result (black solid line) for ρ = 1
is shown for comparison.

studies in Fig. 6(a) and (c). The CCs are calculated
using the function Graph.transitivity undirected() in the
open-source Python package igraph [34], which follows
the definition of transitivity given in Ref. [35].

We also studied the influence of the average (and to-
tal) accessibility to upstream and downstream informa-
tion, by looking at the relationship between (a+b)/2 and
the CC. We found that the average accessibility is posi-
tively correlated to the CC, though the influence of it is
much weaker than ρ. This is because reduced accessibil-
ity would enhance randomness in access to information
when the in-degree (i.e. number of parents) of a new
node is given. To gain a better understanding of what is
happening, Fig. 6(b) and (d) show particular cases from
the simulation. We can see that the case of Fig. 6(d)
looks slightly more structured (i.e. less random) than

FIG. 5. (Online in color): (a) A heat map showing how
the clustering coefficient (CC) generated by our mechanis-
tic model described in Sec. II, is influenced by a and b when
ρ = 0.5 and m = 5. (b) A heat map showing how CC is
influenced by ρ and (a + b)/2 when a = b and m = 5. The
colors of the heat maps show the values of CC. (c) CC vs. ρ
when a = b = 0.5 and m = 5. (d) CC vs. (a + b)/2 when
ρ = 0.5 and m = 5. The gray bands represent a one-sigma
(i.e. one standard deviation) error spread.

Fig. 6(b).

IV. APPLICATION TO REAL-WORLD
NETWORKS

A. Anisotropy and power-law exponent

In previous sections, we found our model can produce
a broad spectrum of power-law exponents and clustering
coefficients. It is known that anisotropic and localized ac-
cess to information can be relatively common scenarios
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FIG. 6. (Online in color): Network graphs from simulations
for different ρ and (a + b)/2 values (see the labels on the
graphs). In each simulation, the number of nodes is 1500.
Only nodes with at least one edge have been shown. In (a)
and (c), a = b = 0.5 and m = 2. In (b) and (d), a = b,
m = 2, and ρ = 0.5. The size of a node is proportional to its
out-degree.

in real-world networks. Since the main focus of this work
is not to fully reproduce the topology of real-world net-
works but instead to show theoretically how anisotropic
and localized access to information influence the topol-
ogy, we now examine the extent to which our model is
able to reproduce features of the topology of real-world
networks.

To realize this comparison – which we stress has the
modest goal of exploring model consistency with real-
world networks, not proof of their generating mecha-
nisms – we compare the predictions of our model to three
real-world networks from different domains: specifically,
the citation network of the American Physical Society,
which is available at https://journals.aps.org/datasets
and will be referred to as ‘APS’; the hyperlink network of
www.stanford.edu [36] which we will refer to as ‘Stanford’;
and the relationship network of Twitter [37] which we will
refer to as ‘Twitter’. These networks have some common
features: (1) nodes and edges are gradually added to
the network (i.e. they are formed through some growing
process); (2) the mean value of their average in-degree is
finite, partly due to finite time and energy available to
a new node for adding edges; (3) their out-degrees ex-
hibit a fat-tail distribution, though we note that rigorous
power-law tests fail for all of them. Specifically, applying
the goodness-of-fit test to the tail of them [2] yields p-
values of < 0.01 for all three cases. This is not a surprise
since it is known that only a few real-world networks pass
a rigorous power-law test in which the tail is sufficiently

perfect [38, 39].
We now investigate the extent to which the analytical

result (Eq. 6) from our mechanistic model, can reproduce
the observed out-degree distributions. To achieve this, we
applied Maximum Likelihood Estimation (MLE) to esti-
mate the parameters in Eq. 6. To minimize overfitting,
we determined m directly from the data by measuring
the average number of parents of all the nodes. There are
then two parameters, a and b, to be determined. Sup-
pose there are N nodes in total and xi is the number of
children of node i in the observation. The average log
likelihood is then given by

ˆ̀(a, b;x) =
1

N

N∑
i=1

log(P (xi; a, b)) . (9)

where P (xi; a, b) = P (q = xi) is given in Eq. (6) but with
a and b adjustable and m fixed to its empirical values.
The problem then becomes one of finding the globally

optimal a and b values that maximize ˆ̀(a, b;x). This op-
timization can be done using conventional multi-variable
global optimization algorithms such as basinhopping in
the Python package scipy. We find that although over-
fitting still exists (the errors for the estimated a and b
are ∼ 35%), the ratio of b to a with r ≡ b/a converges
well to a globally optimal value. Specifically, we find
that r = 0.83± 0.06, 0.03± 0.03, and 0.27± 0.05 for the
APS, Stanford, and Twitter datasets respectively. Even
though the fluctuations and hence variance of a and b
could both be very large, their ratio remains largely un-
changed and hence the variance of the ratio would be
small. This is possible if a and b are positively corre-
lated, and hence a and b essentially increase or decrease
together. The standard deviation of r for each dataset
is obtained by repeating this optimization procedure 100
times. Figure 7 shows how these fits look of the model
compared to the real-world networks, with all repeated
runs resulting in very similar results. It is understand-
able that these best fits also fail the rigorous Kolmogorov-
Smirnov (K-S) test (p-value < 0.01 are found for all three
cases for our proposed model, i.e. Eq. 6) since real-world
networks are not in general strict power-laws [39].

Despite the limitation that the errors in the estimated
parameters are not small, the robustness and simplicity
of the analytical result (Eq. 6) suggests that it could be
useful for evaluating the levels of asymmetric access to
upstream and downstream information in these networks.
In the APS network, the best-fit value r = 0.83 suggests
that information about the citing and cited articles of a
center is almost equally accessible to an author. This is
consistent with everyday experience – for example, search
engines such as Google Scholar make it convenient to
access both the citing and the cited articles. With respect
to the Stanford network, which is a hyperlink network,
the best-fit value r = 0.03 is consistent with the notion
that a user only knows what page a selected center page
cites, and has little information about which pages have
cited this page when he/she is deciding which pages to
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FIG. 7. (Online in color): Best fit (solid lines) for the three
empirical distributions (symbols of the same color as lines)
using the analytical expression from our mechanistic model
(Eq. 6). The legend shows the values of m directly measured
from the dataset, the optimal r, and the corresponding α
value (see Eq. 8) of the best fits.

cite as part of new page creation. With respect to the
Twitter network, r = 0.27 has the reasonable implication
that when adding a new follow, users favor the follows of
the current follows over their followers. In future work,
we will try to elucidate this further and compare across
different types of social media platform.

B. Locality and clustering coefficient

We showed that our analytical result (Eq. 6) explains
well the out-degree distributions from the perspective of
anisotropic access to information. However, we also need
to check other topological details such as the clustering
coefficient CC, since these may be quite different for a
given out-degree distribution. We will perform this check
in an albeit limited way in the present study, by adopt-
ing the in-degree distributions directly from the datasets.
Since the out-degree distribution is insensitive to ρ and
(a+ b)/2 but very sensitive to the anisotropy measure r,
by fixing r we ensure that our simulations reproduce well
the out-degree distributions. Then, by adjusting ρ and
(a + b)/2 with r fixed, we can expect to reproduce well
the CCs and the out-degree distributions. Since (a+b)/2
has much weaker influence on CC than ρ, we fix it to be
1 for all three networks, and adjust only ρ. We could
set (a + b)/2 to other values, keeping it away from zero
to avoid a pure random process, but its impact is minor
compared to that of changing ρ (recall Fig. 5(b)).

The average clustering coefficients (CCs) of the APS,
the Stanford, and the Twitter networks are found to be
0.08±0.02, 0.01±0.01 and 0.18±0.02 respectively. Since
the datasets are very large, we sampled them 50 times
when calculating the average CCs and their one-sigma

FIG. 8. (Online in color): Empirical results (left) for subsets
of the three real-world networks, versus simulations of our
mechanistic model simulation (right). The size of a node is
proportional to its out-degree. When making the graphs, we
sampled 5000 nodes for the APS and Stanford networks, and
2000 nodes for the Twitter network. Only nodes with at least
one edge are included. The nodes at the center of the red
circles in (a) and (c) are outliers that cannot be reproduced
by our mechanistic model. The green dashed circles in (e) and
(f) show the approximate positions of the emerging clusters.

errors, with the size of each sample set to 104 nodes.
We found that by setting ρ near 0, 1, and 0 for the
APS, Stanford, and Twitter networks, respectively, we
are able to reproduce the observed CCs within their one-
sigma errors. For the purposes of this paper, we sim-
ply choose these specific ρ values so that they match
the results from the respective datasets reasonably well,
without carrying out any rigorous optimal fitting, or de-
riving them or inferring them from some first-principles
approach. This is because our point in this paper is not
to explain the mechanisms that generate these datasets
in some unique microscopic way, but rather to show how
these two datasets can be interpreted within the same
single model of growth. The value ρ = 0 for APS pa-
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per citations suggests that the mechanism of citing APS
papers tends toward selecting an article from all previ-
ously accessed articles (i.e. locality plays an important
role). Similarly, ρ = 0 for the Twitter network indicates
a user tends to add new friends/follows by exploring the
neighbors of the already accessed ones. By contrast, the
value of 1 for the Stanford network suggests that the lo-
cality is less relevant for a web-page creator’s decision
with regards to which web pages to cite.

Figure 8 compares sample subnetworks from these sim-
ulations to those from the empirical datasets. From Fig.
8, it can be seen that our model successfully reproduces
a crude version of the real network structures. For ex-
ample, clustering structures similar to the observational
ones emerge from the simulation of the Twitter network.
However, there are outliers in the APS and Stanford
datasets that cannot be reproduced by our current model
– specifically, the large nodes centered at the red circles
in Fig. 8(a),(c). Those nodes are rare but have unusu-
ally high out-degrees. This indicates that there could be
some mechanisms or external coordinating factors that
are missing from our current model. It also suggests that
global measures such as the out-degree distribution and
the global CC tend to overlook such rare, but probably
influential individuals with unusually high out-degrees.
The existence of these outliers is also possibly one reason
why the tails of the out-degree distributions do not pass
a rigorous power-law test.

V. CONCLUSION

We have proposed a network generation mechanism
with a focus on investigating the influence of anisotropic
and localized access to information on the topology of a
power-law network. Our model shows that anisotropy
impacts the power-law exponent significantly, but has
only a weak influence on the clustering coefficient. By
contrast, locality influences the clustering coefficient ef-

fectively but has only weak influence on the power-law
exponent. Our proposed model is capable of generating
networks spanning a broad spectrum of power-law expo-
nents and clustering coefficients, and hence could feed
into the debate about the nature of real-world networks.

As expected in any comparison between minimal mod-
els and complex real-world systems, there are several lim-
itations of this work. First, we have been unable to
uniquely determine a, b, and ρ by matching the out-
degree distributions and the clustering coefficient. This
suggests that additional network quantities should be
compared. Second, there are outliers (nodes with unusu-
ally high out-degrees) that cannot be reproduced by our
current model, which in turn suggests that there may be
additional mechanisms or real-world external factors that
need to be included in an improved version of our mech-
anistic model. For example, we assumed that all nodes
are equally attractive to a new node; however in real
world networks, such attractiveness of the nodes could
be highly inhomogeneous. In particular, a high-quality
article could be much more influential than a low-quality
one in the APS network. Likewise, the homepage of a
department or a school is more likely to cited by a newly
created page related to research or teaching; and some
people through their profession (e.g. politician) naturally
have more followers than others in the Twitter network.
We hope that this work will stimulate future discussions
to address these open issues.
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of Statistical Physics 151, 1175 (2013).

[28] F. Pammolli, D. Fu, S. V. Buldyrev, M. Riccaboni,
K. Matia, K. Yamasaki, and H. E. Stanley, The Eu-
ropean Physical Journal B-Condensed Matter and Com-
plex Systems 57, 127 (2007).

[29] C. Roth, in ISWC 4th Intl Semantic Web Confer-
ence, Workshop on Semantic Network Analysis, Vol. 171
(2005) pp. 1613–0073.

[30] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin,
arXiv preprint cond-mat/0004434 (2000).

[31] A. Vázquez, A. Flammini, A. Maritan, and A. Vespig-
nani, Complexus 1, 38 (2003).

[32] A. Vázquez, arXiv preprint cond-mat/0006132 (2000).
[33] P. L. Krapivsky and S. Redner, Physical Review E 71,

036118 (2005).
[34] G. Csardi and T. Nepusz, InterJournal Complex Sys-

tems, 1695 (2006).
[35] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and

D.-U. Hwang, Physics reports 424, 175 (2006).
[36] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Ma-

honey, Internet Mathematics 6, 29 (2009).
[37] J. Leskovec and J. J. Mcauley, in Advances in neural in-

formation processing systems (2012) pp. 539–547.
[38] A. D. Broido and A. Clauset, arXiv preprint

arXiv:1801.03400 (2018).
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