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We study the stability and bifurcation structure of spatially extended patterns arising in nonlin-
ear optical resonators with a Kerr-type nonlinearity and anomalous group velocity dispersion, as
described by the Lugiato-Lefever equation. While there exists a one-parameter family of patterns
with different wavelengths, we focus our attention on the pattern with critical wave number kc
arising from the modulational instability of the homogeneous state. We find that the branch of
solutions associated with this pattern connects to a branch of patterns with wave number 2kc. This
next branch also connects to a branch of patterns with double wave number, this time 4kc, and this
process repeats through a series of 2:1 spatial resonances. For values of the detuning parameter
approaching θ = 2 from below the critical wave number kc approaches zero and this bifurcation
structure is related to the foliated snaking bifurcation structure organizing spatially localized bright
solitons. Secondary bifurcations that these patterns undergo and the resulting temporal dynamics
are also studied.

PACS numbers: 42.65.-k, 05.45.Jn, 05.45.Vx, 05.45.Xt, 85.60.-q

I. INTRODUCTION

Since the formulation in 1987 of the Lugiato-Lefever
(LL) model describing light propagation in nonlinear op-
tical Kerr cavities [1], the existence and origin of spa-
tially extended patterned solutions has been widely stud-
ied in both temporal and spatial systems [2–7]. In the
LL model, it was shown that patterns arise through a
Turing instability, usually referred to as a modulational
instability (MI) in the optics context [8–11]. In this type
of instability a homogeneous steady state (HSS) becomes
unstable to perturbations with a given wavelength, which
then further develops into an ordered modulated struc-
ture: a pattern.

In recent years, dissipative structures arising in the
one-dimensional LL model have been studied extensively
because of their intimate connection to frequency combs
in microresonators driven by a continuous wave laser
[6, 12, 13]. Such frequency combs correspond to the fre-
quency spectrum of localized or extended light patterns
that circulate inside the cavity [14–18], and can be used
for a wide variety of applications [19]. In this work, we
study the stability and bifurcation structure of extended
patterns in the LL model,

∂tA = −(1 + iθ)A+ iν∂2
xA+ i|A|2A+ ρ, (1)

where ρ and θ are real control parameters representing
normalized energy injection and frequency detuning, re-
spectively. We focus here on the anomalous group ve-
locity dispersion (GVD) regime and therefore set ν = 1
throughout this work. We study patterns with the crit-
ical wave number kc introduced below, originating from

the modulational instability. For the parameter values
for which the patterns are subcritical, this bifurcation
also leads to the formation of localized structures. For a
detailed study of the bifurcation structure of such local-
ized states in the LL model, we refer to [20].

This paper is organized as follows. In Section II, we
perform the linear stability analysis of the HSS solution
with respect to spatially periodic perturbations. This not
only reveals the modulational instability, but more gen-
erally indicates which perturbation wave numbers lead to
instabilities and pattern formation. Next, in Section III,
we show how analytical expressions for weakly nonlin-
ear pattern solutions can be found near certain bifurca-
tions. Later, in Section IV, we numerically track those
analytical solutions to values of the pump parameter ρ
away from those bifurcation points, thus revealing the
bifurcation structure of the patterns for a fixed value of
the detuning. In Section V we study how this bifurca-
tion structure changes as the parameter space defined by
the cavity detuning θ and the pump ρ is traversed, and
present phase diagrams showing parameter regimes with
distinct pattern behavior. In Section VI a linear sta-
bility analysis of the pattern solutions is performed, and
the different secondary instabilities that these states un-
dergo are discussed. Finally, in Section VII we give some
concluding remarks.
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II. LINEAR STABILITY ANALYSIS OF THE
HOMOGENEOUS STEADY STATES

The HSS solutions A0 can be found by solving the clas-
sic cubic equation of dispersive optical bistability, namely

I3
0 − 2θI2

0 + (1 + θ2)I0 = ρ2, (2)

where I0 ≡ |A0|2. The solutions in real variables (U0 =
Re[A0], V0 = Im[A0]) are given by

[
U0

V0

]
=


ρ

1 + (I0 − θ)2

(I0 − θ)ρ
1 + (I0 − θ)2

 . (3)

For θ <
√

3, Eq. (2) is single-valued and hence the sys-

tem is monostable. In contrast, for θ >
√

3, Eq. (2) is
triple-valued. The transition between the three different
solutions occurs via a pair of saddle-node bifurcations
SNb and SNt located at

It,b ≡ |At,b|2 =
2θ

3
± 1

3

√
θ2 − 3, (4)

and these arise from a cusp or hysteresis bifurcation at
θ =
√

3. In what follows, we denote the bottom solution
branch (from I0 = 0 to Ib) by Ab

0, the middle branch
between Ib and It by Am

0 , and the top branch by At
0

(I0 > It).
A linear stability analysis of the HSS solution with

respect to spatially periodic perturbations of the form[
U
V

]
=

[
U0

V0

]
+ ε

[
u1(x, t)
v1(x, t)

]
+O(ε2), (5)

where |ε| � 1 and[
u1

v1

]
=

[
ak
bk

]
eikx+Ωt + c.c., (6)

leeds to the dispersion relation

Ω(k) = −1±
√

4I0θ − 3I2
0 − θ2 + (4I0 − 2θ)k2 − k4. (7)

Here Ω(k) is the linear growth rate of a perturbation with
wave number k.

In the linear approximation, the superposition prin-
ciple applies and therefore any pattern solution of the
problem can be written as the linear combination[

u1

v1

]
(x,t)

=
∑
k

[
ak
bk

]
eikx+Ωt + c.c., (8)

where the mode amplitudes ak, bk depend on the param-
eters θ and ρ. The growth Ω(k) will in general be positive
for wave numbers within an interval [k−, k+], where the
wave numbers k− and k+ depend on I0 and solve the
quadratic equation

k4 − (4I0 − 2θ)k2 + 3I2
0 + θ2 − 4I0θ − 1 = 0. (9)

FIG. 1: (Color online) The stable HSS (black solid line)
is destabilized at the modulational instability MI. Close

to MI (i) the unstable HSS evolves to the pattern
branch P1 (red) consisting of stationary patterns with
wave number k1 = 0.706849 ≈ kc = 0.707107. Further

away from MI (ii) the unstable HSS evolves into a
different pattern branch P2 (green), associated with

patterns with wave number
k2 = 0.824564 ≈ ku = 0.836642. Stable (unstable)
solutions are denoted by solid (dashed) lines. Here

θ = 1.5 and L = 160.

Any mode within this interval will grow, and the profile of
the pattern arising from random noise will be dominated
by the most unstable mode ku defined by the condition
Ω′(ku) ≡ dΩ

dk |ku
= 0, giving

ku =
√

2I0 − θ. (10)

The loss of stability occurs at a critical value of kc
where the growth rate first reaches zero, i.e., when con-
ditions (9) and (10) are satisfied simultaneously. This
transition is called a Turing [8–11] or modulational in-
stability (MI), and occurs at I0 = Ic, k = kc, where

Ic = 1, kc =
√

2− θ. (11)

Evidently, this transition is only found when θ < 2. The
condition I0 = Ic defines a line in the parameter space
(θ, ρ) given by

ρc =
√

1 + (1− θ)2. (12)

Figure 1 illustrates how the HSS destabilizes when the
pump parameter ρ exceeds ρ = ρc and how the pattern
state is subsequently reached. The wave number of this
pattern changes with the pump parameter as does the
most unstable wave number [see Eq. (10)]. Close to the
MI the HSS develops into a pattern that lies on a branch
of pattern solutions with wave number close to kc, orig-
inating near MI. For larger values of the pump, how-
ever, the selected pattern belongs to a pattern branch
corresponding to a wave number close to the fastest
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growing wave number ku. This observation highlights
the fact that the pattern branches form a continuum,
parametrized by the wavenumber k ∈ [k−, k+], with the
wave number selected by nonlinear processes that depend
on the system parameters. In this work we restrict at-
tention to pattern branches corresponding to the critical
wave number kc and its harmonics, and describe their bi-
furcation structure in some detail. The study of patterns
with other wave numbers is left for future work.

Before turning to the bifurcation structure of pattern
solutions, we start our analysis by studying the set of
points k− and k+ satisfying Eq. (9). These points define
the so-called marginal stability curve defined by

I±k (θ) =
2

3
(θ + k2)± 1

3

√
θ2 + k4 + 2θk2 − 3. (13)

The marginal stability curves are shown in the panels on
the left of Fig. 2 for increasing values of the detuning θ.
The HSS solutions at the corresponding values of θ are
shown in the panels on the right, with solid (dashed) lines
representing the HSS solutions that are stable (unstable)
against perturbations of the form (6). For a fixed value
of θ, and for a given wave number k′, the HSS solution
is unstable if I−k′(θ) < I0 < I+

k′(θ) and stable otherwise.
Thus, for a given wave number k = kc a pattern Pkc

bifurcates from the points I±kc
(θ) indicated in Fig. 2 and

similarly for patterns with wavenumber 2kc, 4kc, etc.
In Fig. 2(a), for θ = 1.1, the HSS is always sta-

ble against perturbations with k = 0. Furthermore, a
pattern with wavenumber kc bifurcates from the MI at
I−kc

= Ic and then reconnects with HSS again at I+
kc
> I−kc

.

Similarly, a pattern with 2kc arises initially from I−2kc
and

reconnects to HSS at I+
2kc

. The situation for all subse-
quent harmonics is similar. As the detuning θ increases,
the different instability points for modes with k = kc and
its harmonics approach each other as the whole tongue of
unstable modes shifts to lower values of k [see Fig. 2(b)].
This behavior can also be seen in Fig. 3 where we plot
the instability boundaries in the parameter space (θ, I0)
and (θ, ρ), respectively, together with the location of the
saddle-node bifurcations SNb and SNt of the HSS solu-
tion. For θ <

√
3, A0 is always stable against spatially

uniform perturbations with k = 0. In contrast, when√
3 < θ < 2, the response of the HSSs as a function of

the pump parameter ρ becomes bistable. In this case,
the bottom Ab

0 and top At
0 branches are stable with re-

spect to k = 0 perturbations, while the middle branch
Am

0 is unstable to such perturbations. However, At
0 and

Am
0 are always unstable with respect to k > 0 perturba-

tions, while Ab
0 is only destabilized above I0 = Ic. This

situation is depicted in Fig. 2(c) for θ = 1.8, where the
tongue of unstable wavenumbers now starts at k = 0.

Finally, when the detuning increases to θ = 2 from be-
low, the instability points I±nkc

, n = 1, 2, . . . , approach
one another until they all collapse at k = 0 and the
MI disappears [see Fig. 2(d)]. A similar collapse can
be seen in Fig. 3, where I+

kc
and I−2kc

, and I+
2kc

and I−4kc

collide pairwise at the codimension-two bifurcation X1

FIG. 2: (Color online) Left: Marginal instability curves
for (a) θ = 1.1, (b) θ = 1.5, (c) θ = 1.8 and (d) θ = 2.0

(d). Right: The HSS solutions corresponding to the
same values of θ. Solid (dashed) lines represent stable
(unstable) HSSs with respect to perturbations of the

form (6). The locations I±k corresponding to instabilities
with wave number k are indicated using solid circles.

The dashed line inside the marginal instability curves in
the left panels represents the most unstable mode

k = ku.

and X2 located at (θX1 , ρX1) = (1.1111, 1.4768), and
(θX2 , ρX2) = (1.4286, 4.468), respectively. The results
presented in Fig. 2 and Fig. 3 are limited to θ < 2 for
which the MI exists and takes place at I0 = Ic. When
approaching θ = 2 from below, the critical wave number
approaches zero (kc → 0), implying that the wavelength
of the nascent pattern diverges. In this context a single
peak in a periodic domain can be thought of as one wave-
length of a periodic array of peaks parametrized by the
domain period L. As the wavelength of the pattern di-
verges to infinity so does L and the distinction between
patterns and localized structures becomes blurred [20].
A detailed analysis of how the bifurcation structure of
such localized structures changes as one approaches this
critical point θ = 2 can be found in Ref. [20].

At this point we can already identify several distinct
solution regimes based on the existence of patterns and
the stability of A0:

• Region I: The HSS solution A0 is stable. This re-
gion spans the parameter space ρ < ρc.
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FIG. 3: (Color online) (a) The instability lines I±kc
and

the location of the saddle-node bifurcations of the HSSs
in the parameter space (θ, I0). (b) Same as (a) but in

the parameter space (θ, ρ). (c) Zoom of (b) showing the
main regions with distinct bifurcation behavior (see

text). The labels X1 and X2 indicate codimension-two
points. In both (a) and (c) the gray area represents

region V where the system has a bistable response in
the HSS solutions.

• Region II: The pattern Pkc
exists between MI and

I+
kc

, and A0 unstable.

• Region III: The pattern P2kc exists between I−2kc

and I+
2kc

, and A0 is unstable.

• Region IV: The pattern P4kc
exists between I−4kc

and I+
4kc

, and A0 is unstable.

• Region V: Multistability of the HSS A0. Ab
0 is sta-

ble, while At
0 and Am

0 are unstable. This region
spans the parameter region between SNb and SNt.
The patterns Pkc

and P2kc
also exist in this region

since they appear subcritically.

In the following sections we study how the different
patterns reconnect as parameters are varied, and identify
the different instabilities these patterns undergo.

III. WEAKLY NONLINEAR PATTERN
SOLUTIONS

Weakly nonlinear patterns are present in the vicinity
of the MI bifurcation at I0 = Ic and can be computed

FIG. 4: (Color online) Comparison between the
asymptotic solution (14) (blue solid line) and the

corresponding numerically exact solutions (red
diamonds) obtained using a Newton-Raphson solver (see
Section IV) for (a)-(b) a supercritical pattern at θ = 1.1,
and (c)-(d) a subcritical pattern at θ = 1.5. In (a) and

(c) the real part U is shown, while (b) and (d) show the
imaginary part V . In both cases the numerical and

analytical curves are almost indistinguishable. In both
cases L = n2π/kc, with n = 16, and |ρ− ρc| = 10−5.

using multiscale perturbation analysis. At leading order
in the expansion parameter ε, defined by the relation
ρ = ρc + ε2µ, the pattern solution is given by[

U
V

]
=

[
Uc

Vc

]
+ ε

[
u1

v1

]
+ ε2

[
U2

V2

]
, (14)

where Uc and Vc correspond to the HSS solution (3) at
ρ = ρc, U2 and V2 represent the leading order correction
to this HSS, given by[

U2

V2

]
=

µ

(θ2 − 2 θ + 2)(θ − 2)

[
θ2

−θ2 − θ + 2

]
, (15)

and the space-dependent correction is given by[
u1

v1

]
= 2

[
a
1

]
Bcos(kcx+ ϕ), (16)

where ϕ is an arbitrary phase, and

a =
θ

2− θ
. (17)

The amplitude B of the pattern state corresponds to the
constant solution of the amplitude equation

C1BXX + µC2B + C3B
3 = 0, (18)

i.e.,

B =
√
−µC2/C3. (19)

Here

C1 = −
2
(
θ2 − 2 θ + 2

)
θ − 2

, (20)
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C2 =
2
(
θ2 − 2 θ + 2

) 3
2

(θ − 2)
4 , (21)

C3 =
4
(
θ2 − 2 θ + 2

)2
(30 θ − 41)

9 (θ − 2)
6 . (22)

It follows that the pattern is supercritical for θ < 41/30
but subcritical for θ > 41/30, as already predicted in
Refs. [1, 21]. In the following we refer to this pattern
as Pkc . Details of the above calculation can be found
in Ref. [20]. We have to point out that in the weakly
subcritical regime (i.e. θ & 41/30) one may proceed to
fifth order in the calculation in order to capture larger
amplitude stable solutions. However, in our case, we are
only interested in the small amplitude periodic patterns
emerging from the MI bifurcation, which are well de-
scribed by Eq. (18). Figure 4 shows the excellent cor-
respondence between the analytical asymptotic solution
(14) (solid blue line) and the numerically exact solution
(red diamonds) of Eq. (1) obtained using numerical con-
tinuation (see Section IV) for both super- and subcritical
patterns in this regime. Panels (a)-(b) correspond to the
real and imaginary parts of a supercritical pattern at
(θ, ρ) = (1.1, 1.00499), while panels (c)-(d) correspond to
a subcritical pattern at (θ, ρ) = (1.5, 1.11802).

IV. BIFURCATION STRUCTURE OF
PATTERNS

We now present the main features of the bifurcation
structure of the pattern states for a fixed value of the de-
tuning, choosing θ = 1.5 as a representative value, leav-
ing the study of how this structure is modified as θ varies
to the following section. Starting from the analytical so-
lution (14), valid close to the MI bifurcation, we use a nu-
merical continuation algorithm to construct the bifurca-
tion diagram shown in Fig. 5, showing the intensity ||A||2
as a function of the parameter ρ. This algorithm allows us
to calculate numerically, using a Newton-Raphson solver,
not only stable, but also unstable stationary periodic pat-
terns, and to track them as a function of a suitable con-
tinuation (control) parameter [22–24]. Furthermore, the
spectrum of the linearization about these patterns gives
us information about their linear stability. Section VI is
devoted to this analysis. As in Fig. 1, the black lines in
Fig. 5 represent HSSs, while red, blue and green lines
correspond to patterned states with wave number kc,
2kc and 4kc, respectively. Furthermore, solid lines de-
note stable solutions, while dashed lines indicate unstable
ones. The solution profiles along these branches, calcu-
lated numerically with these methods, are illustrated in
panels (i)-(xii). As shown in Fig. 1, the pattern Pkc

with
wave number kc originates at the MI bifurcation.

While the MI bifurcation corresponds to the point
where the HSSs lose stability to temporal perturbations,

it is also possible to study this transition in the context
of spatial dynamics. Here, the HSS is interpreted as a
fixed point in a four-dimensional phase space [20], and
the MI corresponds to a Hamiltonian-Hopf (HH) bifur-
cation with eigenvalues λ = ±ikc of double multiplicity.
In this formulation the pattern state corresponds to a pe-
riodic orbit, and this orbit bifurcates from HSS at ρc (for
θ < 2) with initial period (wavelength) 2π/kc. Together
with this critical pattern there is a continuous family of
patterns with k ∈ [k−, k+] that bifurcates from the HSS
solution for ρ > ρc. Within the spatial dynamics frame-
work the HSS points for ρ > ρc are nonhyperbolic and the
bifurcations to P2kc

, P4kc
,. . . have no particular signa-

ture within the spatial dynamics point of view. However,
linear stability theory in the time domain shows that bi-
furcations occur whenever the spatial eigenvalues on the
imaginary axis are in resonance, k = nkc, where n is an
integer. Theory also shows that the primary bifurcation
to periodic orbits at ρc is accompanied by the simultane-
ous appearance of a pair of branches of spatially localized
structures, provided only that the periodic states bifur-
cate subcritically. As a result the localized states can be
interpreted as portions of the pattern state embedded in
a uniform background. The bifurcation structure of such
localized structures is studied in detail in Ref. [20].

As the detuning θ in Fig. 5 is larger than 41/30,
the pattern Pkc

is created subcritically and is there-
fore initially temporally unstable [see profile (i)]. Fol-
lowing this branch away from MI, the pattern grows in
amplitude and gains stability at a saddle-node bifurca-
tion SN1 [profiles (ii)-(iii)], but loses stability at a sec-
ondary finite-wavelength-Hopf (FWH1) bifurcation oc-
curring very close to the second saddle-node SN2 [profiles
(iv)-(vi)]. Such secondary instabilities are studied in de-
tail in subsequent sections. Once SN2 is passed, spatial
oscillations (SOs) start to appear in between the peaks
in the pattern profile as seen most clearly in profile (v).
These SOs correspond to the growth of the second har-
monic 2kc of the pattern wave number, and these grow in
amplitude with increasing ρ [profile (vi)] until Pkc merges
with the pattern P2kc

, a state with wave number 2kc (plus
harmonics). The merging of these two periodic orbits oc-
curs in a 2:1 spatial resonance [25–27], which in the con-
text of patterns corresponds to a finite wavelength (FW)
instability of P2kc

that doubles its wavelength, i.e., to a
(spatial) subharmonic instability.

The pattern P2kc
itself bifurcates supercritically from

HSS at I−2kc
. Since this branch inherits the unstable eigen-

value of HSS the P2kc
branch is initially unstable. The

resulting pattern likewise grows in amplitude as ρ in-
creases [profiles (vii)-(viii)]. Moreover, a region of sta-
bility appears between two new secondary bifurcations,
an Eckhaus bifurcation (EC2) and the FWH2 (see Sec-
tion VI). At SN4, the solution branch folds back and
just as for Pkc

, SOs appear between successive peaks in
the profile and the pattern terminates at a FW′ point
on the P4kc

branch with characteristic wave number 4kc
once the amplitude of the SOs reaches that of the original
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FIG. 5: (Color online) Bifurcation diagrams for patterns with wave numbers kc, 2kc, and 4kc for θ = 1.5. Solution
profiles along the different branches obtained from numerical continuation are shown in panels (i)-(xii).

peaks. This new pattern again bifurcates supercritically
from the HSS, this time at I−4kc

[profile (xi)], and is like-
wise initially unstable before terminating in yet another
2:1 spatial resonance [profile (xii)]. We have identified a
whole cascade of such bifurcations involving even higher
harmonics of kc.

Bifurcation theory sheds light on the bifurcation se-
quence described above. We imagine that the bifurca-
tions to Pkc

and P2kc
occur in close succession and so

look for solutions in the form (U, V ) ∝ z1 exp ikcx +
z2 exp 2ikcx + c.c. + h.o.t. The complex amplitudes z1,
z2 then satisfy the equations [25–27]

ż1 = αz1 + c1z̄1z2 + (e11|z1|2 + e12|z2|2)z1 + . . .

ż2 = (α− β)z2 + c2z
2
1 + (e21|z1|2 + e22|z2|2)z2 + . . .

(23)
We see that for fixed β > 0 the HSS solution (z1, z2) =
(0, 0) loses stability in succession to modes with wave
numbers kc, 2kc as α increases. We also see that the
equations admit a pure P2kc solution (0, z2) but that the
Pkc state acquires a contribution with wave number 2kc
as soon as α > 0, exactly as observed in the figure, i.e.,
the mode starting out as (z1, 0) is in fact a mixed mode
(z1, z2) as soon as α > 0. Moreover, as α increases the
contribution from the amplitude z2 grows and the mixed
mode terminates on the (0, z2) branch of pure wave num-
ber 2kc states, also as observed. The latter is a 2:1 res-
onance since at this bifurcation a pure mode with wave
number 2kc bifurcates into a mixed mode with a contri-
bution from wave number kc. We can therefore think of

this bifurcation as a subharmonic instability in space.
In the next section, we explore how the bifurcation

structure connecting Pkc
with all its harmonics is modi-

fied when the cavity detuning θ varies.

V. PATTERNS IN THE (θ, ρ) PLANE

Figure 6 shows the different bifurcation lines and dy-
namical regions introduced in the previous sections in
the (θ, ρ) parameter space. For clarity we show three
different versions of the phase diagram, with increasing
complexity going from panel (a) to (c). Diagrams (a)-(b)
show the same diagram as in Fig. 3 together with the
saddle-nodes of patterns branches Pkc

and P2kc
, and the

FW bifurcation that connects them. In (a) we shaded
in light gray the region of existence of Pkc , while in
(b) we show the region of existence of P2kc . Looking
at these two diagrams one can see a region of coexis-
tence of both patterns, indicating the complex multi-
stable nature of the system. The stability of the pat-
tern states changes not only through saddle-node bifur-
cations, but also through subsequent Eckhaus (EC) and
finite-wavelength-Hopf (FWH) instabilities, resulting in
yet more complex scenarios. These new bifurcation lines
are added in Figs. 6(c) and (d), with the latter a close-
up view of panel (c). The aim of this section is to de-
scribe the different bifurcation lines and the dynamical
regions shown in these phase diagrams while Section VI
discusses the stability of the patterns in greater detail.
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FIG. 6: (Color online) Phase diagram in the (θ, ρ) parameter space showing the main bifurcations of the HSS and
pattern states. In (a)-(b) the regions of existence of Pkc and P2kc are shaded in light gray. In (a) the region of

bistability between Ab
0 and Pkc is indicated in dark gray. For clarity the bifurcation lines EC and FWH

corresponding to the Eckhaus and Hopf bifurcations are omitted in these two panels. Panel (c) shows the full phase
diagram, including the EC and FWH lines, with the region of stability of both patterns shown in light blue. Panel

(d) shows a close-up view of (c) around the cusp bifurcation C. The symbol • represents the codimension-two points
X1, C, D1, D2, and D3, Z1, and Z2.

As this phase diagram is quite dense and therefore dif-
ficult to interpret, we also show (Fig. 7) how the bifur-
cation structure changes as a function of the pump ρ for
increasing values of the detuning θ.

For small values of θ [Fig. 7(a), θ = 1.1 < 41/30], the
pattern Pkc

(red line) bifurcates supercritically from MI
at I0 = Ic and connects back to the HSS at I+

kc
; P2kc

(blue

line) is disconnected from Pkc and bifurcates from I−2kc

and then extends to higher values of ρ before connecting
with HSS at I+

2kc
. At this parameter value both patterns

emerge supercritically from HSS, with Pkc
stable and

P2kc
initially unstable. However, both states can change

stability through subsequent Eckhaus (EC) and finite-
wavelength-Hopf (FWH) instabilities [see Fig. 6(c)]. In
particular, for θ = 1.1, Pkc

becomes unstable at the
EC1 point. When θ increases, I+

kc
and I−2kc

collide at a
codimension-two bifurcation labeled X1, after which the
Pkc

and P2kc
branches connect to one another via a FW

instability originating in X1. This is the 2:1 spatial reso-
nance mentioned in the previous section. This situation

is shown in Fig. 7(b). Note that Pkc
now loses stability

through the FWH1 bifurcation.

At θ = 41/30, the bifurcation to Pkc
is a degener-

ate HH bifurcation denoted in Fig. 6(a)-(c) by D1. For
θ > 41/30 the bifurcation is subcritical as shown in
Fig. 7(c) for θ = 1.4. Here, Pkc is initially unstable but
acquires stability at a saddle-node labeled SN1. This
branch subsequently loses stability at FWH1 and con-
nects with P2kc at FW just as in Fig. 7(b). It follows that
in this regime there is small region of coexistence between
stable Ab

0 and stable Pkc
, close to MI. As a result local-

ized structures (LS) are also present and these are orga-
nized in a so-called homoclinic snaking structure [20, 28–
31]. The Ab

0–Pkc
bistability region is colored in dark

gray in Fig. 6(a). For slightly larger values of θ a cusp
(C) bifurcation is encountered creating a pair of saddle-
nodes SN2 and SN3 on the Pkc

branch [see Fig. 6(d)].
The SN3 disappears almost immediately in a degenerate
codimension-two point D2 on the curve FW, changing the
direction of branching of Pkc

from P2kc
, while the EC1
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FIG. 7: (Color online) Bifurcation diagrams
corresponding to (a) θ = 1.1, (b) θ = 1.3, (c) θ = 1.4,

(d) θ = 1.5, (e) θ = 1.6 and (f) θ = 1.8. Red lines
correspond to Pkc and the blue lines to P2kc . Panels (a)

and (b) show the situation before and after the
codimension-two point X1. Panels (b) and (c) show the
transition from supercritical to subcritical bifurcation of

pattern Pkc via a degenerate HH at θ = 41/30. For
θ = 1.5 [panel (d)] P2kc

bifurcates supercritically from
HSS at I−2kc

. In contrast, for θ = 1.6 [panel (e)] P2kc

emerges subcritically. Solid (dashed) lines indicate
stable (unstable) branches.

bifurcation collides with SN2 and disappears in another
codimension-two point (Z1). The pattern Pkc bifurcates
supercritically from FW below the D2 point and subcrit-
ically above it. The latter case is shown in Fig. 7(d) for
θ = 1.5. Here the upper portion of the Pkc branch is
stable between SN1 and FWH1, and unstable otherwise.
Further increase in θ leads to a collision of FWH1 with
SN2 and its disappearance in a codimension-two point
Z2. After this point the Pkc

branch is stable between
SN1 and SN2.

For θ = 1.6 [Fig. 7(e)], the HSS branch is still mono-
tonic but P2kc now also emerges subcritically, having
crossed another degeneracy at D3 (Fig. 6). This leads
to the creation of a saddle-node bifurcation SN5 on the
P2kc branch similar to SN1 on the Pkc branch. At the
same time an Eckhaus (EC2) bifurcation moves in from
larger values of ρ, stabilizing the large ρ part of the P2kc

branch. With further increase in θ the EC2 point col-
lides with FW, and the whole P2kc

branch beyond FW
becomes stable. For yet larger θ the FW point moves
towards SN5 so that Pkc

now terminates on P2kc
at SN5

and the P2kc
branch is stable from SN5 towards larger ρ.

This multiple bifurcation occurs for θ ≈ 1.72 but is not
analyzed in this work. Figure 7(f) shows the resulting
bifurcation diagram when θ = 1.8. Since this value of θ
exceeds

√
3 the HSS branch is no longer monotone, with

I−kc
lying below the resulting fold SNb and I−2kc

above it.
The regions of stability of Pkc

and P2kc
are shaded using

light gray in Figs. 6(c)-(d).
In Figs. 6 and 7, we focus on the bifurcations asso-

ciated with Pkc and P2kc , although very similar transi-
tions occur between P2kc and P4kc , P4kc and P8kc , and
so on. This scenario resembles foliated snaking of local-
ized structures that appears for θ > 2 [20]. Since kc → 0
as θ → 2 from below, in a finite system a pattern with
domain-size wavelength becomes indistinguishable from
a single peak localized structure present for θ > 2, i.e., in
the limit θ → 2 Pkc

becomes a single peak LS, P2kc
be-

comes a two peak LS, etc. thereby reproducing precisely
the foliated snaking bifurcation scenario.

A similar pattern organization exists for patterns with
wave number k 6= kc, implying that the complete scenario
is fundamentally complex. A detailed study of secondary
bifurcations of patterns with wave numbers k 6= kc is
therefore left for future work.

VI. LINEAR STABILITY ANALYSIS OF THE
PATTERN SOLUTIONS

The preceding section has highlighted the importance
of secondary bifurcations such as the finite wavelength
(FW) and finite-wavelength-Hopf (FWH) bifurcations,
as well as the wavelength changing instability called the
Eckhaus instability. Long wavelength secondary insta-
bilities of one-dimensional patterns can be classified us-
ing symmetry-based arguments that describe the possible
coupling between the instability modes and the phase of



9

the periodic pattern solution [32]. This procedure is par-
ticularly valuable in the case of the Eckhaus instability
which is a long wavelength instability, with domain-size
wavelength. The nonlinear evolution of this instability
generally leads to the generation of a phase slip whereby
a new roll is injected (or annihilated) at the location of
the phase slip, followed by relaxation of the new pattern
towards a periodic structure with a new and different
wavelength in the domain [33, 34]. This process can-
not be described by a phase equation which necessarily
breaks down prior to a phase slip.

The traditional approach to describing the Eckhaus in-
stability is based on the use of an amplitude equation, the
Ginzburg-Landau equation, that describes the pattern-
forming instability close to the primary pattern-forming
bifurcation, assumed to be supercritical [34, 35]. As a re-
sult the predictions concerning the onset and evolution of
the Eckhaus instability are valid only when the instabil-
ity sets are close to the primary instability. We have seen
that in the present case this is not the case; moreover, in
some cases the primary bifurcation is subcritical and the
analysis of the Eckhaus instability is then substantially
modified [36]. For this reason we apply here a technique
described in [7, 37] that permits us to compute the on-
set of the Eckhaus instability for finite amplitude fully
nonlinear spatially periodic patterns. The technique is
necessarily numerical but allows us to find and charac-
terize, as a function of θ, ρ, and k, the secondary bifurca-
tions introduced in Section V. Similar numerical studies
have been performed in the context of fluid mechanics in
Ref. [38] and for supercritical patterns within the LLE in
Ref. [21].

The stationary patterns, hereafter Ap = (Up, Vp), can
be written as a Fourier modal expansion

Ap(x) =

N−1∑
m=0

ame
imkx, (24)

with k the wave number of the pattern, am the com-
plex amplitude of the Fourier mode with wave number
mk, and N the number of Fourier modes retained in the
analysis. To study the linear stability of such a pattern
state, one must first linearize Eq. (1) around the state
(24). Writing A(x, t) = Ap(x) + εδA(x, t), ε � 1, leads
to the following leading order equation for the perturba-
tion δA:

∂tδA = −(1+iθ)δA+i∂2
xδA+2i|Ap|2δA+iA2

pδA
∗. (25)

Owing to the periodicity of Ap, we can apply the Bloch
ansatz and write the eigenmodes of this equations as
Bloch waves [32]

δA(x, t) = eiqxδa(x, t, q) + e−iqxδa∗(x, t,−q), (26)

where δa has the same spatial period as the pattern Ap

and can be written in the form

δa(x, t, q) =

N−1∑
m=0

δam(t, q)eikmx. (27)

Inserting Eqs. (24) and (26) in Eq. (25) leads to a set
of linear equations for the complex amplitudes δa±n ≡
δan(t,±q), namely

d

dt
δa±n = −(1 + iθ)δa±n − i(kn± q)2δa±n +

i

N−1∑
l,m=0

ala
∗
mδa

±
n−l+m + i

N−1∑
l,m=0

alamδa
∗±
−n+l+m. (28)

This equation has the form

∂tΣn(t, q) = L(an, q)Σn(t, q), (29)

where

Σn(t, q) ≡ (δa+
0 , · · · , δa

+
N−1, δa

∗−
0 , · · · , δa∗−N−1).

Thus, the linear stability analysis of Ap(x) reduces to
finding the 2N eigenvalues λn(q) of the N × N matrix
L(an, q) and the corresponding eigenvectors, for each
value of q. For more details, see Refs. [7, 37, 39]. The
eigenvalues for a given q determine the stability of the
pattern against perturbations containing wave numbers
k ± q for any k. For this purpose it is sufficient to con-
sider only q values inside the first Brillouin zone. Any
perturbation with wave number q′ outside the Brillouin
zone is equivalent to another with q = q′ + k. In solid
state physics this representation is described as the re-
duced zone scheme [40].

Using this technique we characterize how the eigen-
spectrum of L(an, q) changes as a function of q for differ-
ent values of (θ, ρ), and predict the different secondary
bifurcations that a pattern with wave number k under-
goes.

Figure 8 shows an enlarged version of the phase di-
agram in Fig. 6. Both Pkc

and P2kc
change their sta-

bility across the lines EC (Eckhaus) and FWH (finite-
wavelength-Hopf), as indicated in Figs. 6 and 8. Fur-
thermore, their branches connect one another through
the FW (finite wavelength) instability. For θ < 41/30
Pkc

is initially stable and loses stability when crossing
either EC1 or FWH1. For θ > 41/30 Pkc

bifurcates sub-
critically and so is stable only between SN1 and the lines
EC1 or FWH1. In either case, P2kc

is initially unstable
but gains stability with increased detuning via EC2 or
FWH2.

These bifurcations divide regions II and III [see Figs. 6
and 8] into the following subregions:

• Region IIA: The pattern Pkc is stable. This region
spans the parameter space between MI and SN1

from below, and EC1, FWH1 and SN2 from above.

• Region IIB: The pattern Pkc
is either Eckhaus un-

stable (by crossing EC1) or Hopf unstable (by cross-
ing FWH1). This region spans the parameter space
between EC1, FWH1 from below and FW and SN2

from above.



10

FIG. 8: (Color online) Phase diagram in (θ, ρ)
parameter space showing an enlargement of the

diagrams shown in Fig. 6 focusing on the main stability
regions of Pkc

labeled IIA,B and P2kc
labeled IIIA,...,C.

The dashed line at θ = 1.5 refers to the slice of this
diagram shown in Fig. 9. On top of these lines, the
symbol • corresponds to points where the stability

analysis of the patterns shown in Section V was
performed. In light blue we show the regions where Pkc

and P2kc
are stable.

• Region IIIA: P2kc
is stable between EC2 and SN5

from below, and FWH2 and FWH3 from above.

• Region IIIB: The pattern P2kc is Eckhaus unstable.
This region spans the parameter space between I−2kc

and SN5 from below, and FWH2 and EC2 from
above.

• Region IIIC: P2kc oscillates in time and in space.
This region spans the parameter space inside the
region defined by FWH2 and FWH3 from below,
and between FWH3 and SN4 (see inset).

In what follows we analyze in detail the different sec-
ondary bifurcations the periodic patterns undergo when
the control parameters are varied. Without loss of gen-
erality, we focus on the P2kc

branch, which – in addition
to EC2 and FWH2,3 – also undergoes an FW instability.
This bifurcation is essential for its reconnection with the

FIG. 9: (Color online) Bifurcation diagram for θ = 1.5.
The pattern branch Pkc

(red) bifurcates subcritically
from HSS at I−kc

, while the branch P2kc
(blue) bifurcates

supercritically at I−2kc
. Labels (a)-(c) correspond to the

unstable patterns with 32 rolls initially that evolve in
time to patterns with different numbers of rolls

depending on the value of ρ and lying on new branches
of periodic states (gray) labeled by Pn, where n is the

new roll number. The points where linear stability
analysis has been carried out are indicated using the

symbol •.

Pkc
branch. The dynamics of the latter when crossing

EC1 and FWH1 are similar to those shown here for P2kc

In Fig. 9, we show the bifurcation diagram for θ = 1.5,
a value we will use to explore the different instabilities in
more detail. For θ = 1.6, discussed in Section VI, the re-
sults are similar except that P2kc

bifurcates initially sub-
critically. The temporal evolution indicated by arrows in
the figure results from phase slips, as discussed next, and
is obtained on a periodic domain of length L = 2πn/kc,
with n = 16.

A. Eckhaus instability

For values of θ and ρ in region IIIB (see Fig. 8), pat-
terns are unstable against long-wavelength perturbations
(q ∼ 0), and for this reason the Eckhaus instability is
also known as a long-wavelength (LW) instability [11, 41].
Furthermore, this instability is triggered by a phase in-
stability [41]. For small values of q, the least stable
branch of eigenvalues λ1(q) has a parabolic shape cen-
tered at q = 0, namely Re[λ1(q)] ∝ |q|2, and the insta-
bility takes place when the convexity of this eigenvalue
branch changes sign.

The result of the stability analysis of P2kc for θ =
1.5 and increasing values of ρ as one crosses the EC2

instability threshold is summarized in Fig. 10. In panel
(c) ρ = 1.59 and Re[λ1(q)] is negative for all nonzero q.
Therefore, P2kc

is stable no matter the wavelength of the
perturbation. This situation corresponds to region IIIA

in Fig. 8. In panel (b) ρ = 1.58 and the eigenspectrum
flattens around Re[λ1(q)] = 0, indicating the onset of
the EC instability. Finally in panel (a) ρ = 1.57 and
the eigenspectrum has changed its convexity, indicating
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FIG. 10: The eigenspectrum in the vicinity of the EC
instability of the P2kc

branch when θ = 1.5, showing
Re[λ1(q)] for different values of ρ: (a) ρ = 1.57, (b)

ρ = ρEC2
= 1.58, and (c) ρ = 1.59.

FIG. 11: Re[λ1(q)] at θ = 1.5 in the region of Eckhaus
instability and the associated temporal evolution of an

unstable initial pattern to patterns of different
wavelengths. These new states are shown in gray in

Fig. 9: an unstable pattern with initially 32 rolls evolves
to P25 in panel (c) for ρ = 1.4, to P24 in panel (b) for
ρ = 1.3, and to P22 in panel (a) for ρ = 1.2. The left
panels show the unstable modes 0 < q < q∗ while the

right panels describe the resulting evolution in
space-time plots.

that the pattern is now unstable to perturbations with
q ∈ [0, q∗]. This property characterizes region IIIB which
extends from EC2 down to I−2kc

as ρ decreases.

In Fig. 11 the right panels show the temporal evolu-
tion of an unstable initial condition along the branch
P2kc

together with the real part of the leading eigen-
value λ1(q) [left panels] for different values of ρ in region
IIIB. The labels (a)-(c) correspond to different points
along the branch P2kc

identified in Fig. 9.

For ρ = 1.4 [Fig. 11(c)], P2kc
is unstable to perturba-

tions with q in between 0 and q∗, and the most unsta-
ble mode is that corresponding to maximum growth rate.
Time simulations show that after an initial transient dur-
ing which the pattern appears stable, the wavelength of
the pattern suddenly increases to the wavelength of the
most unstable mode. The pattern, which initially had 32
rolls, becomes a pattern with 25 rolls that we label P25.
This new pattern can be tracked in ρ and results in the
P25 solution branch plotted in Fig. 9.

Reducing the value of ρ further, the P2kc pattern be-
comes unstable to any q ∈ [0, k′/2], with k′ = kc/2, and
the most unstable wave number increases [Fig. 11(a)-(b)].
The maximum growth rate Re[λ1(q)] also increases so
that the time needed to destabilize the pattern decreases
with ρ. The final patterns that are reached further be-
yond the EC2 instability are P24 with 24 peaks in case
(b), and the pattern P22 in case (a). Once tracked in ρ,
these stationary patterns generate the solution branches
shown in Fig. 9.

B. Finite-wavelength instability

We now characterize the finite-wavelength (FW) insta-
bility that allows the pattern Pkc to terminate on P2kc .
As already mentioned these locations correspond to a
spatial 2:1 resonance located along the line FW in Fig. 8.
However, the theory described in Refs. [25–27] applies
only near the codimension-two case in which the two pri-
mary bifurcations from HSS to states with wavenumbers
kc and 2kc occur in close succession. This is not the case
here, and we therefore employ the numerical technique
of the previous section to compute the location of the
FW bifurcation when this occurs in the fully nonlinear
regime.

If k′ = 2kc is the wavenumber of P2kc
, the FW bifur-

cation is characterized by a branch of eigenvalues λ2(q)
having a parabolic shape centered at q = k′/2, i.e.,
Re[λ2(q)] ∝ |q − k′/2|2, which crosses Re[λ2(q)] = 0 at
q = k′/2. This transition is shown in Fig. 12 for θ = 1.5
and for three values of ρ in the vicinity of the FW bifur-
cation [see the inset in Fig. 9]. The real part of the two
leading eigenvalues λ1(q) and λ2(q) is shown in the left
panels, while the right columns show the full eigenspec-
trum at q = k′/2 = kc. In any case Re[λ1(q)] is positive
for all the range q ∈ [0, k′/2 = kc], and therefore P2kc is
unstable against Bloch modes with q ∈ [0, kc], i.e. in this
regime P2kc is EC unstable. The FW transition is trig-
gered by the second eigenvalue λ2 centered at q = k′/2.
In (a) ρ < ρFW, and a portion of the branch Re[λ2(q)]
is positive, with its maximum occurring at q = k′/2.
Therefore, in this case P2kc

is unstable to the most un-
stable mode, i.e. q = k′/2 = kc, and therefore to Pkc

,
in addition to the unstable EC mode. In (b) ρ = ρFW,
and the maximum growth rate Re[λ2(q)] at q = k′/2
vanishes, as can be appreciated by looking at the corre-
sponding eigenspectrum in the right column. This point
therefore corresponds to presence of the FW bifurcation.
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FIG. 12: The eigenspectrum of P2kc in the vicinity of
the FW instability when θ = 1.5, showing the first two
branches Re[λ1(q)] and Re[λ2(q)] for different values of

ρ: (a) ρ = 1.175, (b) ρ = ρFW ≈ 1.177, and (c)
ρ = 1.179.

Finally, panel (c) shows the situation at ρ > ρFW, where
Re[λ2(q)] is negative for all q, and the P2kc pattern is
FW stable.

C. Finite-wavelength-Hopf instability

For values of θ and ρ in region IIIC patterns undergo
a finite-wavelength-Hopf instability, hereafter FWH. In
contrast to the homogeneous Hopf bifurcation which oc-
curs with q = 0, this Hopf bifurcation sets in with a
finite wave number q 6= 0, here q = kc. In the former
case, patterns which are Hopf unstable will oscillate with
a uniform amplitude and temporal period T = 2πω, with
ω = Im(λ2(0)) = Im(λ3(0)). Here λ2,3(0) are the Hopf
modes. In the FWH case, however, patterns oscillate
both in time and in space, and this is why this instability
is also referred to as a wave instability (WI) [11, 41–44].

In Fig. 13 the real part of the three leading eigenvalues
(left) and the full eigenspectrum at q = k′/2 = kc (right)
are plotted when crossing the FWH2 bifurcation at θ =
1.5 [see Figs. 8 and 9]. In panel (a) ρ = 1.82, and the
real parts of λ2(q) and λ3(q) are both negative, with a
parabolic shape centered at q = k′/2 = kc. In fact these
eigenvalues are complex conjugates of one another, as can
be seen in the full eigenspectrum for q = kc shown in the

FIG. 13: Hopf bifurcation of P2kc
at θ = 1.5 showing

(left panels) Re[λ(q)] for different values of ρ: (a)
ρ = 1.82, (b) ρ = ρFWH = 1.87, and (c) ρ = 1.92. The
right panels show the corresponding eigenspectrum at

q = kc, the onset wave number.

right panel. This is the situation in region IIIA where
P2kc is FWH stable. In panel (b) ρ = ρFWH2 = 1.87
and the real part of the complex conjugate eigenvalues
λ2,3(q) vanishes at q = kc, indicating the onset of the
FWH2 bifurcation. Finally, in (c) ρ = 1.92, and the real
part of the eigenvalues is now positive and P2kc starts to
oscillate, not only in time but also in space. This is the
situation of region IIIC shown in Fig. 8.

In Fig. 14, we show the resulting oscillatory states for
different values of ρ in region IIIC when θ = 1.5. For
ρ = 1.9 [see panel (i)], the amplitude of P2kc oscillates
non-uniformly not only in time but also in space resulting
in zig-zag motion whose amplitude grows with increasing
ρ as seen in panel (b). Finally, in panel (c), for ρ = 2.4,
the pattern exhibits much complex dynamics including
phase slips at which peaks merge or split resulting in
fluctuations in the total number n(t) of rolls in the do-
main at any one time. A complete description and un-
derstanding of the dynamics of these oscillatory states in
time and space involves interaction with the marginally
stable q = 0 mode [Fig. 13 and [45]] and is beyond the
scope of this paper.
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FIG. 14: Time evolution of the oscillating patterns for
θ = 1.5 and (a) ρ = 1.9, (b) ρ = 2.1 and (c) ρ = 2.3.

VII. CONCLUSIONS

In this paper we have studied the bifurcation structure
and stability properies of spatially periodic patterns aris-
ing in the LL model in the anomalous GVD dispersion
regime.

Linear stability theory predicts that the HSS solution
becomes modulationally unstable at I0 = Ic = 1 to a
pattern with a critical wave number kc =

√
2− θ, namely

Pkc [1, 5]. A weakly nonlinear analysis has allowed us to
obtain a perturbative description of this pattern in the
neighborhood of this bifurcation. From this calculation
one finds that Pkc emerges supercritically for θ < 41/30
and subcritically when θ > 41/30, where θ = 41/30 cor-
responds to a degenerate HH point.

This analytical approximation for the pattern Pkc

around the MI point (or equivalently: HH) has been used
as an initial condition in a numerical continuation algo-
rithm that allowed us to track the pattern solutions to
parameter values away from the bifurcation point. Using
this method, we have studied the bifurcation structure of
spatially periodic patterns as a function of ρ for differ-
ent values of the detuning θ. In doing so, we have found

that for low θ patterns arising from the MI bifurcation
reconnect with the HSS for larger values of the pump in-
tensity I0, at I+

kc
. In addition, harmonic patterns with

wave numbers nkc, n = 2, 4, . . . also bifurcate from the
HSS, P2kc at I±2kc

, P4kc at I±4kc
, etc. With increasing θ

these these two types of patterns connect pairwise in a
2:1 spatial resonance, for example Pkc with P2kc and P2kc

with P4kc . We have referred to these bifurcation points as
finite-wavelength (FW) instabilities, and computed their
location via numerical Floquet analysis. This FW bifur-
cation originates in the codimension-two point X, which
appears to organize these connections. Finally, as θ → 2
and kc → 0 the bifurcation structure of patterns trans-
forms into foliated snaking of localized structures [20], as
a pattern with infinite wavelength corresponds in effect
to a single peak localized structure in a finite size system.

We have provided an almost complete discussion of the
various possible secondary bifurcations in the parameter
space (θ, ρ) of the LL equation, mapping the different dy-
namical regions for the patterns Pkc

and P2kc
. In partic-

ular, patterns corresponding to P2kc
were found to un-

dergo Eckhaus and finite-wavelength-Hopf instabilities,
in addition to the FW instability, and these were found
to lead to rich and complex dynamics. Several significant
but higher codimension bifurcation were also identified,
but a detailed study of these remains for future work.

While we have focused our study on patterns with the
critical wave number kc determined by the onset of the
MI, and its harmonics, we have confirmed that similar
behavior also occurs for patterns with wave number
k 6= kc that also emerge from the HSS solution when
I0 > Ic. Together with the instabilities described in this
work, other bifurcations such as an FW with q = k/3 are
also known to exist [21]. A detailed study of secondary
instabilities of patterns with arbitrary wave number k
are beyond the scope of this paper, however, and are
likewise left to future work.
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