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This paper presents a nonequilibrium, first-principles, thermodynamic-ensemble based model for
the relaxation process of interacting non-equilibrium systems. This model is formulated using
steepest-entropy-ascent quantum thermodynamics (SEAQT) and its equation of motion for a grand
canonical ensemble and is applied to a many particle system of classical or indistinguishable particles.
Two kinds of interactions are discussed, including pure heat diffusion and heat and mass diffusion
together. Since no local equilibrium assumption is made, the conjugate fluxes and forces are intrinsic
to the subspaces of the state space of one system and/or of the state space of two interacting systems.
They are derived via the concepts of hypoequilibrium state and nonequilibrium intensive properties,
which describe the nonmutual equilibrium status between subspaces of the thermodynamic state
space of a single system and/or of the state space of two interacting systems. The Onsager relations
are shown to be thermodynamic kinematic features of the system and are found without knowledge
of the detailed mechanics of the dynamic process. A fundamental thermodynamic explanation for
the measurement of each intensive property of a system in a nonequilibrium state is given. The
fundamental thermodynamic definition of reservoir is also discussed. In addition, the equation of
motion for a system undergoing multiple interactions is provided, which permits the modeling of a
network of local systems in nonequilibrium at any spatial and temporal scale. Finally, the physical
features of a nonequilibrium measurement is illustrated via a case study, and the general validity of
the equal probability condition is discussed.

I. INTRODUCTION

The study of nonequilibrium relaxation processes - in-
cluding chemical kinetics, mass diffusion, and heat diffu-
sion is typically accomplished using approaches based on
microscopic mechanics [1–4] or thermodynamics [5–9]. In
particular, thermodynamic approaches are able to gener-
ally capture the features of the relaxation process via, for
example, the Onsager relations and as a result are more
computational efficient than microscopic approaches but
as a consequence also lack much of the detail that mi-
croscopic approaches provide. However, most of these
thermodynamic approaches have limited or no applica-
bility in the far-from-equilibrium realm, since, for exam-
ple, the local or near-equilibrium assumption is needed
or only analytical or exact solutions at steady state are
available or a limited number of non-general solutions
are available in the non-linear transient regime. In addi-
tion, the governing equations are either phenomenologi-
cal (e.g.,[5, 6, 9]) or stochastic (e.g., [8]) in nature and,
thus, do not have a first-principles basis. To address
these issues and generalize the application of thermody-
namic principles further into the nonequilibrium realm,
the thermodynamic features captured can be regarded
as a coarse graining of the microscopic dynamics or as a
pattern in ensemble evolution [10–13] to exploit the ef-
ficiency advantage of such an approach, provide a more
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rigorous microscopic basis, and improve the consistency
of the thermodynamic description across scales. This
philosophy of model reduction has already been used in
studying far-from-equilibrium phenomena such as, for ex-
ample, chemical kinetics, mass and heat diffusion, and
thermal expansion [14–18]. Of course, to achieve a more
efficient model reduction, it is of great importance to find
a general and simple description of nonequilibrium state
corresponding to a thermodynamic pattern of the micro-
scopic description, to fundamentally define the macro-
scopic properties of any thermodynamic state (i.e., ex-
tensive or intensive properties for both equilibrium and
nonequilibrium states), and to use a thermodynamic gov-
erning equation based on first principles.
Steepest-entropy-ascent quantum thermodynamics

(SEAQT), which is a first-principles, thermodynamic-
ensemble based approach, addresses all of the issues
raised above, providing a governing equation able to
describe the nonequilibrium process from an entropy
generation viewpoint [12, 19–27]. The macroscopic
properties of entropy, energy, and particle number,
which are well defined for any state of any system [28],
are used to develop the governing equation and describe
the time evolution of the state of the system. Recently,
the state space required to describe the non-equilibrium
time evolution trajectory determined by SEA has been
significantly simplified via the concept of hypoequilib-
rium state [16, 18, 29–35], which captures the global
features of the microscopic description for the relaxation
process. As noted in [33], similar efforts towards model
reduction in this vein have been proposed by Beretta et

al. [36, 37]. In addition, the concept of nonequilibrium
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intensive properties introduced in [16, 29–31] based on
the concept of hypoequilibrium state enables a complete
description of the nonequilibrium evolution of state when
combined with the set of nonequilibrium extensive prop-
erties. Unlike the intensive property definitions of other
nonequilibrium thermodynamic approaches (definitions
which require the local-equilibrium, near-equilibrium, or
steady state assumption or a phenomenological stochas-
tic basis), the definitions in the SEAQT framework are
fundamental and available to all nonequilibrium states
and are especially suitable for the description of the
evolution in state of relaxation processes. Both of these
concepts enable the generalization of many equilibrium
(or near-equilibrium) thermodynamic relations such as
the Gibbs relation, the Clausius inequality, and the
Onsager relations into the far-from-equilibrium realm
in general and to non-quasi-equilibrium processes in
particular.

In this paper, SEAQT is applied to the study of the in-
teraction of systems using the grand canonical ensemble.
The system studied can be any distinguishable or indis-
tinguishable set particles with or without long distance
intermolecular interactions, and the evolution of state of
two systems can be that of a non-quasi-equilibrium pro-
cess. In Sec. II, the equation of motion and the concepts
of hypoequilibrium state and nonequilibrium intensive
properties are introduced. In Sec. III, interacting sys-
tems with heat diffusion only are studied. The Onsager
relations and thermodynamic explanations of a measure-
ment (of a system in equilibrium or nonequilibrium) and
a reservoir are given. In Sec. IV, interacting systems
with heat and mass diffusion are discussed followed in
Sec. V by the study of a system interacting with mul-
tiple systems and a discussion of the applicability of the
SEAQT framework to a network of nonequilibrium sys-
tems. Finally, in Sec. VI, the new features of measure-
ments of state of a nonequilibrium system are contrasted
with equilibrium measurements of state via a case study.
The general validity of the equal probability principle is
also discussed.

II. SEAQT EQUATION OF MOTION

A. General equation of motion

In this section, the system and state description in
SEAQT is given, and the equation of motion, is pre-
sented. Based on the discussion by Grmela [10, 11, 38]
and Beretta [12, 13] the general form of a nonequilib-
rium framework is a combination of both irreversible re-
laxation and reversible symplectic dynamics. If written
in the generalized form of the Ginzburg-Landau equation
[10, 13], the equation of motion takes the following form:

d

dt
φ(t) = XH

φ(t) + Y H
φ(t) (1)

where φ(t) represents the state evolution trajectory,XH
φ(t)

and Y H
φ(t) are functions of the system state φ(t) and repre-

sent the reversible symplectic and irreversible relaxation
dynamics, respectively. In the SEAQT framework, the
system is defined by the Hamiltonian operator Ĥ , the
system state is represented by the density operator ρ̂,
XH

φ(t) follows the Schrödinger equation, and Y H
φ(t) is de-

rived from the SEA principle. To describe the evolution-
ary process, conservation laws are explicitly required in
order to construct the equation of motion, which is given
by [26]

dρ̂

dt
=

1

i~
[ρ̂, Ĥ ] +

1

τ
D̂ (2)

where the first term is the Schrödinger term and the sec-
ond is the dissipation term. If the system is in a pure
(zero-entropy) state, ρ̂ρ̂ = ρ̂, the equation of motion re-
verts back to the Schrödinger equation of quantum me-
chanics. If the system is in a so-called mixed (nonzero-
entropy) state and ρ̂ is diagonal in the energy eigenstate

basis, Ĥ commutes with ρ̂ and the Schrödinger term goes
to zero even though ρ̂ may not be a Maxwellian distribu-
tion among the energy eigenlevels. The state evolution
of such a mixed-state operator cannot be captured by
the Schrödinger term and is instead given by the sec-
ond term to the right of the equals, the dissipation term,
which captures the probability redistribution towards the
Maxwellian distribution. The dissipation term is con-
structed using a set of operators called the ‘generators of
the motion’. Each generator corresponds to one of the
conservation laws to which the system is subjected. For
example, a nonreacting isolated system is subject to two
conservation laws, probability normalization and energy
conservation, so that the generators of the motion are
{Î, Ĥ}.
In the study of two interacting systems, the state space

of the system is given by

H = Ha ⊗Hb (3)

where Ha(b) are the Hilbert spaces of two systems a(b)
(for a general system with a variable number of indistin-
guishable particle, Ha(b) is a Fock space) and the initial
state of the density operator is chosen to be

ρ̂ = ρ̂a ⊗ ρ̂b (4)

where no correlation term is included. Then minus an
interparticle interaction term, the Hamiltonian operator
of the system is given by

Ĥ = Ĥa ⊗ Îb + Îa ⊗ Ĥb (5)

If we assume both system a and system b to consist of
a dilute-Boltzmann gas that gives the diagonal density
operators ρ̂a and ρ̂b, the equation of motion reduces to

dp
a(b)
i

dt
=

1

τ
D

a(b)
i (p) (6)
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where pai (b) is the ith diagonal term of ρ̂a(b) in the energy
eigenstates basis and represents the probability of the
system a(b) being in the eigenstate associated with the
ith energy eigenlevel. p then represents the distributions
{pai , i = 1, · · · } and {pbj , j = 1, · · · } for system a and b,
and τ is the relaxation time. Clearly, in this case, the
diagonal density operators commute with Ĥ so that the
Schrödinger term vanishes.

B. Nonequilibrium state and state evolution

description: Hypoequilibrium

The thermodynamic features of the nonequilibrium re-
laxation process generated by the SEAQT framework
have a number of useful characteristics, which lead to
a complete description of each state and a fundamental
definition of nonequilibrium intensive properties. This
description is based on the key concept of hypoequilib-
rium state, which along with that of nonequilibrium in-
tensive properties, is briefly discussed below.
For a given system, such as system a, represented by

an energy eigenlevel set Ωa = {(na
i , ǫ

a
i , N

a
i )}, where each

energy eigenlevel is represented by a triplet of energy (ǫai )
and particle number (Na

i ) eigenvalues and by its degener-
acy (na

i ), the system can be divided into Ma subsystems

Ωa
K = {(na,K

i , ǫa,Ki , Na,K
i )},K = 1, · · · ,Ma, so that the

state space of system a (Hilbert space) Ha can be rep-
resented by the direct sum of Ma subspaces Ha

K with
K = 1, 2, ...,Ma [39].

Ha =

Ma
⊕

K=1

Ha
K (7)

To be complete, Ma can be infinite. Any state of system
a can then be represented by the energy eigenlevel distri-

butions of Ma subspaces given by {pa,Ki ,K = 1, ...,Ma}.
If the probability distribution in each subsystem yields

to a grand canonical distribution, the system is desig-
nated as being in an Math-order hypoequilibrium state.
Such a state is consistent with original work done by
Beretta using a state representation that falls within the
exponential family [40]. Based on this definition, it can
be shown that any state of the system a is a hypoequi-
librium state with order Ma, where Ma is less than or
equal to the number of system eigenlevels [16, 29]. A
hypoequilibrium state of order 1 corresponds to a state
in stable equilibrium. The probability distribution of the
Kth subspace of the Math-order hypoequilibrium state
takes the form

pa,Ki =
pa,K

Ξa,K(βa,K , γa,K)
e−βa,Kǫa,K

i −γa,KNa,K
i (8)

where βa,K and γa,K are parameters, pa,K is the
total probability in subspace K of system a, and
Ξa,K(βa,K , γa,K) is the grand partition function of the
subspace with parameters βa,K and γa,K . To be com-
plete, βa,K = 0 and γa,K = 0 if #(HK

a ) = 1, γa,K = 0

if #(HK
a ) = 2 and #(HK

a ) can be infinite. The grand
partition function is written as

Ξa,K(βa,K , γa,K) =

#(HK
a )

∑

K=1

na,K
i e−βa,Kǫa,K

i −γa,KNa,K
i

(9)
Then, defining

αa,K = lnΞa,K(βa,K , γa,K)− ln pa,K (10)

so that the probability distribution of the Kth sub-
space can be represented using {(αa,K , βa,K , γa,K), K =
1, · · · ,Ma}, i.e.,

pa,Ki = na,K
i e−αa,K

e−βa,Kǫa,K
i e−γa,KNa,K

i (11)

For a given Math-order hypoequilibrium state, the in-
tensive properties of the subspaces can be represented
by βa,K and γa,K or equivalently using temperature and
chemical potential defined by

T a,K =
1

kbβa,K
, µa,K = γa,KT a,K (12)

A Math-order hypoequilibrium state can then be rep-

resented by a division {ΩK = (na,K
i , ǫa,Ki , Na,K

i ), K =
1, ...,Ma} of the system and a corresponding triplet set
{(αa,K , βa,K , γa,K), k = 1, ...,Ma}. The intensive prop-
erty set {(T a,K , µa,K), K = 1, ...,Ma} is a generalization
of the definition of intensive property at stable equilib-
rium (T eq, µeq), which itself is a first-order hypoequilib-
rium state. Appendix A proves that for the equation of
motions used in this paper, if a system begins in a Math-
order hypoequilibrium state, it remains in a Math-order
hypoequilibrium state throughout the state evolution as
long as the same subsystem division is maintained. Thus,
the time evolution of the distribution is given by

pa,Ki (t) = na,K
i e−αa,K(t)−βa,K(t)ǫa,K

i −γa,K(t)Na,K

i (13)

The intensive property set {(T a,K(t), µa,K(t)), i =
1, ...,M} is well defined throughout the entire state evo-
lution. This time evolution of the state of the system
can also be represented by the evolution of the triplet
set {(αa,K(t), βa,K(t), γa,K(t)), K = 1, ...,Ma}, repre-
senting just 3Ma variables in total. In the discussions
below, the triplet (αa,K , βa,K , γa,K) are also called in-
tensive properties, since it is their gradients that act as
conjugate forces and drive the fluxes as in conventional
nonequilibrium thermodynamics [5, 6]. The latter two
are proportional to the temperature and chemical po-
tential, while the former depends only on the log of a
ratio of probabilities. In addition, it is shown later that
the weighted average of βa,K and γa,K give the thermo-
dynamic measurements of the intensive properties of a
system in nonequilibrium (i.e., hypoequilibrium) states.
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III. INTERACTING SYSTEMS WITH HEAT

DIFFUSION ONLY

In this section, system a and system b form a composite
system, and only heat diffusion is allowed between them.
Both system a and system b can be in nonequilibrium
states and are represented by the probability distribu-
tions among the energy eigenlevels of systems a and b,
i.e., by {pai } and {pbj}.

A. Equation of motion

For the case when only heat diffusion is present, five
conservation laws hold: probability and particle num-
ber conservation for system a and for system b and to-
tal energy conservation of the composite system. Thus,
the generators of the motion are {Îa, Îb, N̂a, N̂b, Ĥ} con-
strained by

Ia =
∑

i

pai = 1 (14)

Ib =
∑

i

pbi = 1 (15)

Na =
∑

i

Na
i p

a
i = constant (16)

N b =
∑

i

N b
i p

b
i = constant (17)

E =
∑

i

ǫai p
a
i +

∑

i

ǫbip
b
i = constant (18)

Based on the derivation in Appendix B, the equation of
motion for system a takes the form

dpaj
dt

=
1

τ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−paj ln
pa
j

na
j

paj Na
j p

a
j 0 0 ǫaj p

a
j

〈s〉a 1 〈N〉a 0 0 〈e〉a
〈Ns〉a 〈N〉a 〈N2〉a 0 0 〈eN〉a
〈s〉b 0 0 1 〈N〉b 〈e〉b
〈Ns〉b 0 0 〈N〉b 〈N2〉b 〈eN〉b
〈es〉 〈e〉a 〈eN〉a 〈e〉b 〈eN〉b 〈e2〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 〈N〉a 0 0 〈e〉a
〈N〉a 〈N2〉a 0 0 〈eN〉a
0 0 1 〈N〉b 〈e〉b
0 0 〈N〉b 〈N2〉b 〈eN〉b

〈e〉a 〈eN〉a 〈e〉b 〈eN〉b 〈e2〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

(19)

The numerator of the ratio of determinants on the right
can be expanded to yield

det = −pj ln
paj
na
j

|C1|−paj |Ca
2 |+Na

j p
a
j |Ca

3 |−ǫaj p
a
j |C4| (20)

where |C1|, |Ca
2 |, |Ca

3 |, and |C4| are the minors of the
first line of the denominator of the given determinant.
By defining

|Ca
2 |

|C1|
= α0

a,
|Ca

3 |
|C1|

= −γ0
a,

|C4|
|C1|

= β0, (21)

the equation of motion transforms to

dpaj
dt

=
1

τ
(−paj ln

paj
na
j

− pajα
0
a −Na

j p
a
jγ

0
a − ǫaj p

a
jβ

0) (22)

Now, defining a row vector of extensive properties

~laj =
[

1 ǫaj Na
j

]

(23)

where the subscript j refers to the jth energy eigenlevel
and defining a column vector of intensive properties

~η0a =





α0
a

β0

γ0
a



 (24)

the equation of motion can be written as

dpaj
dt

=
1

τ
(−paj ln

paj
na
j

− paj
~laj · ~η0a) (25)

At stable equilibrium, each element of ~η0a turns out to be
an intensive property of the composite system.

B. Hypoequilibrium state and nonequilibrium

intensive properties

The initial state of system a is assumed to be a
Math-order hypoequilibrium state, and the probability
for the ith energy eigenlevel represented by the triplet

(na,K
i , ǫa,Ki , Na,K

i ), where i = 1, 2, · · · , K = 1, 2, · · ·Ma,
is given by

pa,Ki = na,K
i e−αa,K

e−ǫa,K
i βa,K

e−Na,K
i γa,K

(26)

Here the triplet {(αa,K , βa,K , γa,K), K = 1, · · · ,Ma} has
been used in the representation. This can be rewritten
in terms of a row vector of extensive properties and a
column vector of intensive properties such that

ln
pa,Ki

na,K
i

= −αa,K − ǫa,Ki βa,K −Na,K
i γa,K = −~la,Kj · ~ηa,K

(27)
where the superscripts refer to system a and the Kth
subspace of system a and the subscript refers to the ith
energy eigenlevel in the Kth subspace. The row and
column vectors are defined as

~la,Ki =
[

1 ǫa,Ki Na,K
i

]

(28)

~ηa,K =





αa,K

βa,K

γa,K



 (29)

In Appendix A, it is proven that if the initial state is a hy-
poequilibrium state, the system with the same subsystem
division remains in a hypoequilibrium state throughout
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the state evolution, which means that the time evolution
of the state distribution of system a takes the form

pa,Ki (t) = na,K
i e−αa,K(t)e−ǫa,K

i βa,K(t)e−Na,K
i γa,K(t)

= na,K
i e−

~la,K
i ·~ηa,K(t) (30)

where the evolution of the intensive properties
αa,K(t), βa,K(t), γa,K(t) are the solutions to (see Ap-
pendix A)

d~ηa,K(t)

dt
= − 1

τ
(~ηa,K(t)− ~η0a(t)) (31)

and the equation of motion, Eq. (25), is expressed as

dpa,Ki

dt
=

1

τ
pa,Ki

~la,Ki · (~ηa,K − ~η0a) (32)

Thus, if the initial state of system a is a Math-order hy-
poequilibrium state and that of system b is a Mbth-order
hypoequilibrium state, only 3(Ma +Mb) ODEs must be
solved in order to determine the nonequilibrium evolu-
tion.

C. Time evolution of subsystem extensive

properties and the Onsager relations

The hypoequilibrium concept can provide additional
physical insight [29] to the Onsager reciprocity and
dispersion-dissipation relations [40] in the SEA frame-
work. Based on the row vector for extensive properties
of one energy eigenlevel, the vector of the extensive prop-
erties in the Kth subsystem of system a can be defined
as a row vector as well such that

~La,K =
∑

i

pa,Ki
~la,Ki =

[

pa,K Ea,K Na,K
]

(33)

where pa,K , Ea,K , and Na,K are the contributions of
the Kth subsystem to the total extensive properties of
system a and are defined by

pa,K =
∑

i

pa,Ki (34)

Ea,K = 〈e〉a,K =
∑

i

ǫa,Ki pa,Ki (35)

Na,K = 〈N〉a,K =
∑

i

Na,K
i pa,Ki (36)

The evolutions of these extensive properties and others
are governed by

d~La,K(t)

dt
= − 1

τ
(~ηa,K(t)− ~η0a(t))

T [C1]
a,K (37)

where

[C1]
a,K =





pa,K 〈e〉a,K 〈N〉a,K
〈e〉a,K 〈e2〉a,K 〈eN〉a,K
〈N〉a,K 〈eN〉a,K 〈N2〉a,K



 (38)

Here 〈. . . 〉a,K is the contribution of the Kth subspace to
the total extensive property 〈. . . 〉a of system a.
The rate of entropy change of the Kth subsystem is

then

dSa,K

dt
=

d〈s〉a,K
dt

=
∑

i

d

dt
(−pa,Ki ln

pa,Ki

na,K
i

)

=
∑

j

(− ln
pa,Ki

na,K
i

− 1)
dpa,Ki

dt
=
∑

j

(~la,Ki · ~ηa,K − 1)
dpa,Ki

dt

=
d~La,K

dt
· ~ηa,K − dpa,K

dt
(39)

and for system a

dSa

dt
=
∑

K

dSa,K

dt
=
∑

K

d~La,K

dt
· ~ηa,K (40)

where probability conservation for system a has been
used. The rate of change of the entropy for the com-
posite system is then

dS

dt
=
∑

m=a,b

dSm

dt
=
∑

m=a,b

∑

K

d~Lm,K

dt
· ~ηm,K

=
∑

m=a,b

∑

K

d~Lm,K

dt
· (~ηm,K − ~η0m) (41)

The last equal sign is written using the conservation of
probability and mass for each subsystem and the conser-
vation of energy for the composite system, i.e., in com-
pact form this is written as

∑

K

~η0a
d~La,K

dt
+
∑

K

~η0b
d~Lb,K

dt
= 0 (42)

where it is noted that α0
a(b) and γ0

a(b) are constant for all

K subspaces of system a(b) and β0 is constant for the
composite system. Defining conjugate fluxes and conju-
gate forces for system a, respectively, as

~Ja,K =
d~La,K

dt
, ~Xa,K = ~ηa,K − ~η0a (43)

the evolutions of the extensive properties for system a
can be written from Eqs. (37) and (41) as

~Ja,K = ~Xa,K · [C1]
a,K (44)

and similarly for system b. The rate of change of the
entropy for the composite system is then expressed in
terms of the conjugate fluxes and forces as

dS

dt
=
∑

m=a,b

∑

K

~Jm,K · ~Xm,K (45)

Since [C1]
a,K is positive definite and symmetric, the On-

sager relations are acquired. Specifically, due to the con-
servation laws, probability and particle number fluxes oc-
cur within a given system a or b, while the energy fluxes
cross from one system to the next. Thus, the Onsager
relations hold here for the relaxation process of system
a and for the non-quasi-equilibrium process between sys-
tems a and b.
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D. Linkage between two systems: Measurement

and reservior

The conservation of probability and particle number
for system a leads to

dpa

dt
=
∑

K

dpa,K

dt
= 0 (46)

d〈N〉a
dt

=
∑

K

d〈N〉a,K
dt

= 0 (47)

which using Eqs. (37) and (38) can be written as

∑

K

(αa,K − α0
a)p

a,K +
∑

K

〈e〉a,K(βa,K − β0)

+
∑

K

〈N〉a,K(γa,K − γ0
a) = 0 (48)

∑

K

(αa,K − α0
a)〈N〉a,K +

∑

K

〈eN〉a,K(βa,K − β0)

+
∑

K

〈N2〉a,K(γa,K − γ0
a) = 0 (49)

α0
a and γ0

a can then be determined from Eqs. (48) and
(49) such that

α0
a =

∑

K

αa,Kpa,K +
∑

K

〈e〉a,Kβa,K

+
∑

K

〈N〉a,Kγa,K − β0〈e〉a − γ0
a〈N〉a (50)

Aa
NNγ0

a =
∑

K

αa,K〈N〉a,K +
∑

K

〈eN〉a,Kβa,K

+
∑

K

〈N2〉a,Kγa,K −Aa
eNβ0 (51)

where Aa
NN = 〈N2〉a − 〈N〉a〈N〉a and Aa

eN = 〈eN〉a −
〈e〉a〈N〉a Thus, γ0

a and α0
a are only a function of β0 and

system a properties. Furthermore, the evolutions of sub-
system properties can be calculated via

dαa,K

dt
= − 1

τ
(αa,K − α0

a) (52)

dγa,K

dt
= − 1

τ
(γa,K − γ0

a) (53)

dβa,K

dt
= − 1

τ
(βa,K − β0) (54)

where the time evolutions of αa,K , γa,K and βa,K are as
well determined using only properties of system a and
β0. The influence of system b only occurs via β0 so that
if a different system b were to provide the same β0, the
time evolution of system a would be the same.

To study the linkage between systems a and b, the
explicit form of β0 = |C4|/|C1| is given using fluctuations
of the extensive properties of energy and particle number,

i.e.,

|C1| =

∣

∣

∣

∣

∣

∣

Aa
NN 0 Aa

eN

0 Ab
NN Ab

eN

Aa
eN Ab

eN Aee

∣

∣

∣

∣

∣

∣

(55)

|C4| =

∣

∣

∣

∣

∣

∣

Aa
Ns Aa

NN 0
Ab

Ns 0 Ab
NN

Aes Aa
eN Ab

eN

∣

∣

∣

∣

∣

∣

(56)

where

A
a(b)
UV = 〈UV 〉a(b) − 〈U〉a(b)〈V 〉a(b), AUV = Aa

UV +Ab
UV

(57)

and A
a(b)
UV is the fluctuation of extensive properties U and

V in system a(b), while AUV is the sum of the fluctuations
of systems a and b.
Now, if system b is much smaller than system a, i.e., if

Aa
UV ≫ Ab

UV for any set of extensive properties, β0 → β̃a

where

β̃a ≡ lim
Ab

UV
Aa

UV
→0

|C4|
|C1|

=

∣

∣

∣

∣

Aa
es Aa

eN

Aa
Ns Aa

NN

∣

∣

∣

∣

/

∣

∣

∣

∣

Aa
ee Aa

eN

Aa
eN Aa

NN

∣

∣

∣

∣

(58)

then the stable equilibrium temperature of system b is β̃a

provided the state of system a remains in a nonequilib-
rium state (for example, if system a relaxes much slower
than system b or is controlled by some external interac-
tion). Thus, β̃a is a temperature measurement of system
a and can be used as an expression for the experimental
measurement of system a in nonequilibrium. In addition,
β̃a also turns out to be the β0 in the equation of motion
for a single system relaxation, i.e., when system b is not
present.
Now, if system b is much larger than system a, i.e.,

Aa
UV ≪ Ab

UV for any set of extensive properties, β0 →
β̃b = 1/kbT

b; and T b is the temperature measurement
of system b. In this case, system b is not necessarily in
stable equilibrium but can still act as a heat reservoir at
temperature T b.

IV. INTERACTING SYSTEMS WITH HEAT

AND MASS DIFFUSION

For the case when both heat and mass diffusion are
present, four conservation laws hold: probability conser-
vation for both system a and system b, and total en-
ergy and total particle number conservation for the com-
posite system. Thus, the generators of the motion are
{Îa, Îb, N̂ , Ĥ} constrained by

Ia =
∑

i

pai = 1 (59)

Ib =
∑

i

pbi = 1 (60)

N =
∑

i

Na
i p

a
i +

∑

i

N b
i p

b
i = const (61)

E =
∑

i

ǫai p
a
i +

∑

i

ǫbip
b
i = const (62)
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Similar to the derivation in Appendix B, the equation of
motion for this case is

dpaj
dt

=
1

τ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−paj ln
pa
j

na
j

paj 0 ǫaj p
a
j Na

j p
a
j

〈s〉a 1 0 〈e〉a 〈N〉a
〈s〉b 0 1 〈e〉b 〈N〉b
〈es〉 〈e〉a 〈e〉b 〈e2〉 〈eN〉
〈Ns〉 〈N〉a 〈N〉b 〈eN〉 〈N2〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 〈e〉a 〈N〉a
0 1 〈e〉b 〈N〉b

〈e〉a 〈e〉b 〈e2〉 〈eN〉
〈N〉a 〈N〉b 〈eN〉 〈N2〉

∣

∣

∣

∣

∣

∣

∣

∣

(63)

The numerator of the ratio of determinants on the right
can be expanded to yield

det = −paj ln
paj
nj

|C1|−paj |Ca
2 |−ǫaj p

a
j |C3|+Na

j p
a
j |C4| (64)

where |C1|, |Ca
2 |, |C3|, and |C4| are the minors of the first

line of a given determinant. By defining

|Ca
2 |

|C1|
= αa,

|C3|
|C1|

= β,
|C4|
|C1|

= −γ (65)

the equation of motion transforms into

dpaj
dt

=
1

τ
(−paj ln

paj
nj

− pajαa − ǫaj p
a
jβ −Na

j p
a
jγ) (66)

Using the row vector ~laj of Eq. (23) and defining a new

column vector ~η0a of intensive properties, the equation of
motion is rewritten as

dpaj
dt

=
1

τ
(−paj ln

paj
nj

− paj
~lj
a · ~η0a) (67)

where the column vector is defined as

~η0a =





αa

β0

γ0



 (68)

Thus, the discussion using the concept of hypoequilib-
rium state given in Secs. III.B and III.C can be repeated
here with the only difference being the definition of ~η0a.
Furthermore, the discussion in Sec. III.D is simplified
here since only probability conservation holds for system
a with the consequence that

dpa

dt
=
∑

K

dpa,K

dt
= 0 (69)

from which, αa can be calculated, i.e.,

αa =
∑

K

αa,Kpa,K +
∑

K

〈e〉a,Kβa,K

+
∑

K

〈N〉a,Kγa,K − β0〈e〉a − γ0〈N〉a (70)

Here, αa is a function of β0, γ0, and system a properties.
Furthermore, the evolutions of subsystem (i.e., subspace)
properties can be determined from

dαa,K

dt
= − 1

τ
(αa,K − αa) (71)

dγa,K

dt
= − 1

τ
(γa,K − γ0) (72)

dβa,K

dt
= − 1

τ
(βa,K − β0) (73)

For this case, the time evolution of αa,K , γa,K and βa,K

are as well determined using properties of system a and
β0 and γ0 only. The influence of system b is via β0 and
γ0, which relates to the energy and particle number fluxes
between the two systems.
To study the linkage between systems a and b, the

explicit form of β0 = |C3|/|C1| is given using fluctuations
of the extensive properties, i.e.,

|C1| =
∣

∣

∣

∣

Aee AeN

AeN ANN

∣

∣

∣

∣

, |C3| =
∣

∣

∣

∣

Aes AeN

ANs ANN

∣

∣

∣

∣

,

|C4| =
∣

∣

∣

∣

Aes Aee

ANs AeN

∣

∣

∣

∣

(74)

The measurements of the intensive properties β̃a and γ̃a

of system a are given as

β̃a ≡ lim
Ab

UV
Aa

UV
→0

|C3|
|C1|

=

∣

∣

∣

∣

Aes AeN

ANs ANN

∣

∣

∣

∣

/

∣

∣

∣

∣

Aa
ee Aa

eN

Aa
eN Aa

NN

∣

∣

∣

∣

(75)

γ̃a ≡ lim
Ab

UV
Aa

UV
→0

|C4|
|C1|

=

∣

∣

∣

∣

Aes Aee

ANs AeN

∣

∣

∣

∣

/

∣

∣

∣

∣

Aa
ee Aa

eN
Aa

eN Aa
NN

∣

∣

∣

∣

(76)

When system b is in stable equilibrium and much larger
than system a, system b acts as a heat and mass reservoir.

V. SYSTEM INTERACTING WITH MULTIPLE

SYSTEMS

If there are R different kinds of interactions that sys-
tem a experiences, the equation of motion (25) or (67)
changes to

dpaj
dt

=

R
∑

r=1

[

1

τr

(

−paj ln
paj
na
j

− paj
~laj · ~ηra

)]

(77)

Defining

1

τ̃
=

R
∑

r=1

1

τr
,
~̃η0a
τ̃

=

R
∑

r=1

~ηra
τr

(78)

where the first equation is Matthiessen’s rule, the equa-
tion of motion is rewritten as

dpaj
dt

=
1

τ̃
(−paj ln

paj
na
j

− paj
~laj · ~̃η0a) (79)
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which recovers the form of Eq. (25). Thus, the discussion
in Secs. III.B and III.C and in Appendix A still hold, and
the evolution of hypoequilibrium state and the definition
of nonequilibrium intensive properties can be applied to
the study of a network of nonequilibrium systems with
non-quasi-equilibrium interactions.

VI. MODEL: INDISTINGUISHABLE PARTICLE

SYSTEM

This section presents a case study of the application
of the SEAQT framework based on a grand canonical
ensemble and illustrates the special feature of measure-
ments of state on a system in nonequilibrium. As shown
in Sec. III.D, the state measurement of a nonequilibrium
system (system a) is given by a small equilibrium system
(system b) attached to it. When there is no flux between
the two systems, the intensive properties of the small
equilibrium system provide the nonequilibrium measure-
ments of properties of the large system. Temperature
or chemical potential differences between the small sys-
tem and the subsystems of the large system are always
present. However, a unique equilibrium state of the small
system can be found that allows the conjugate forces from
different intensive property gradients to balance. Thus,
in contrast to the state measurement of an equilibrium
system, the state measurement of a nonequilibrium sys-
tem is determined by the coupling of conjugate forces.

A. System definition

An indistinguishable particle system [32] is studied be-
low using an occupation number representation. The
state space of the system is a Fock space, which is the
sum of N -particle state spaces [41]. The N -particle
basis state is |nν1 , nν2 , nν3 , · · · 〉,

∑

k nνk = N . The
space spanned by the occupation number basis, which
is also that of the energy eigenlevels of the Hamilto-
nian, is the Fock space F =

⊕∞
N=0 FN , where FN =

span{|nν1 , nν2 , nν3 , · · · 〉 |
∑

k nνk = N}. The occupation
number nνk is the particle number distributed in single-
particle energy eigenlevels νk. In order to determine the
system properties, the grand partition function is used,
which is defined as

Ξ(β, γ) =
∑

N

e−γN
∑

SN

e−βESN (80)

The sum over SN is a summation over N -particle energy
eigenlevels.
The partition function Ξ is now determined for a three-

dimensional, infinite-potential-well model in the contin-
uous limit. Its natural logarithm takes the form [32]

ln Ξ(β, γ) = ∓ V

λ3
T

(2s+ 1)Li5/2(∓e−γ) (81)

where fermions take the minus sign and bosons the plus.
s is the spin of a particle, V is the volume, Lis(z) is the
polylogarithm function, and λT , a function of β, is the
de Broglie wavelength of the thermal energy defined by

λT =
h√

2πmkbT
=

h
√

2πm/β
(82)

In the present example, a continuous-limit form is in-
tentionally used even for microscale systems so that the
focus is on the thermodynamic features of the evolution
without the quantum effect present. To include the quan-
tum effect, a partition function based on discrete energy
eigenlevels would be needed to generate the result in
which case the discussion on the thermodynamic features
given below would still nonetheless be valid.

B. Initial nonequilibrium state

The study here uses fermions as an example. A
second-order hypoequilibrium state is defined as the ini-
tial state of system a. The system eigenstates φi =
|nν1 , nν2 , nν3 , · · · 〉 are randomly separated into two sub-
systems (1 and 2) with equal probability, namely, Ω1 =
{φ1

i , i = 1, . . . } and Ω2 = {φ2
i , i = 1, . . . }. The energy

and particle number of each eigenstate φ
1(2)
i in subsystem

1 (or 2) are represented by ǫ
1(2)
i and N

1(2)
i , respectively.

The partition functions are then defined as

Ξ1 =
∑

Ω1

e−βǫ1i−γN1

i ≃ Ξ2 =
∑

Ω2

e−βǫ2i−γN2

i ≃ 1

2
Ξ (83)

where Ξ = Ξ(β, γ) is the system partition function given
by Eq. (81). A second-order hypoequilibrium initial state
is chosen using a generalized Maxwellian distribution

p1i ∝ e−β1ǫ1i−γ1N1

i , p2i ∝ e−β2ǫ2i−γ2N2

i (84)

which results in a second-order hypoequilibrium initial
state in the form of Eq. (8). The superscript a, which
stands for the nonequilibrium system to be measured,
has been omitted for convenience. Thus,

p1i =
e−β1ǫ1i−γ1N1

i

Ξ1(β1, γ1) + Ξ2(β2, γ2)
, p2i =

e−β2ǫ2i−γ2N2

i

Ξ1 + Ξ2
(85)

A generalized equal-probability condition for the
nonequilibrium initial states is then assumed so that

p1

p2
=

Ξ1(β1, γ1)

Ξ2(β2, γ2)
(86)

This condition leads to the same intensive property “α”
of two systems and no net probability driving force.
Equation (86) reduces to the equal-probability condition
of the microstates of the grand canonical ensemble in sta-
tistical mechanics at stable equilibrium, i.e.,

p1

p2
=

Ξ1(βeq , γeq)

Ξ2(βeq , γeq)
=

1

2
Ξ :

1

2
Ξ (87)
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The generalized equal-probability condition is relaxed
later to illustrate that the probability driving force is
extremely strong (Fig. 3) and would, thus, be hard to
maintain so that the generalized equal-probability condi-
tion is very likely to hold in a wide range of nonequilib-
rium systems.
For a macroscopic volume, Eqs. (81) and (86) indi-

cate that p1/p2 increases dramatically since lnΞ ∝ V
so that one of the subsystems (or subspaces) has a very
small probability during the evolution. For such a case,
both the equilibrium temperature and chemical potential
are determined by the other subsystem only, for exam-
ple, subsystem 1. The β, γ of subsystem 2 then decay
exponentially towards those of subsystem 1 according to
the intensive property evolutions (Eqs. (52)-(54) or (71)-
(71)) in which case subsystem 1 acts as a reservoir. Thus,
from a practical standpoint, the grand canonical ensem-
ble formulation of the SEAQT framework is primarily
suited to the study of microscopic systems. For macro-
scopic systems, use of the canonical ensemble [16, 29] or
single particle ensemble is more suitable [35]. Further-
more, a nonequilibrium macroscopic system is less likely
to violate Eq. (86) (i.e., the equal-probability principle),
since an extremely large driving force would be required
to produce such a nonequilibrium state. For these rea-
sons, a volume ∼ λT is used for system a in the case
study presented here to illustrate the details of nonequi-
librium evolution as well as the impact of a violation of
Eq. (86). Such a selection ensures that the driving forces
from α, β, γ are comparable and the intermediate p1/p2

ratio is never too large during the relaxation process.
The initial temperatures and eγs of subsystems (or

subspaces) 1 and 2 are chosen to be (500 K, 5) and (300
K, 103), respectively. With these values for γ1 and γ2,
subsystem 1 has a considerable indistinguishability ef-
fect, while subsystem 2 is almost a classical ideal gas.
The two subsystems have different specific property val-
ues initially, and the equilibrium temperature is not just
simply a mass averaged value.

C. Results: Measurements

Fig. 1 shows the evolutions of the nonequilibrium tem-
peratures and Fermi levels (or proportionally the chem-
ical potentials) of two subsystems and the nonequilib-
rium measurements of temperature and Fermi level of
the whole system. Fig. 2 shows the entropy evolution
for the system as a whole. The coupling of tempera-
ture and Fermi level (chemical potential) evolutions has
a strong influence on the thermodynamic measurements
of a nonequilibrium system. During a nonequilibrium
relaxation, the conjugate flux of energy and mass are de-
termined by the the coupled temperature and chemical
potential driving forces. It is possible that the temper-
ature measurement (black curve in Fig. 1a) is higher
than both of the individual subsystem temperatures of
system a, since the chemical potential conjugate force
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Dimesionless time
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FIG. 1. The nonequilibrium (a:top figure) temperature and
(b:bottom figure) Fermi level evolutions of two subsystems
(red and blue curves) are compared with the nonequilibrium
measurement of temperature and Fermi level of the whole
system (black curve). The coupling of energy and mass flows
has a strong influence on the thermodynamic measurement of
the temperature and chemical potential (and Fermi level) of
a nonequilibrium system.

can also drive the energy flow. This result shows that
the small equilibrium system b (i.e., the measurement
system) needs an even higher temperature than any of
the subsystem temperatures in order to balance the ad-
ditional driving forces from the chemical potential when
a nonequilibrium measurement is made.
In Fig. 3, the impact of another intensive property α,

which is the Lagrange multiplier of the probability con-
servation, is studied to show the effect resulting from a
violation of the equal-probability condition [Eq. (86)].
The α and probability evolutions of two different initial
conditions are compared. The solid line (initial condi-
tion 1) takes the same initial condition as Fig. 1 and
satisfied Eq. (86). For the dashed line (initial condi-
tion 2), the initial temperature and chemical potential
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FIG. 2. The evolution of entropy of the nonequilibrium sys-
tem.

are the same as for the solid line, but the initial p1 is
reduced by 5% so that the equal probability condition
no longer holds. In the evolution of α for subsystems
1 and 2 (Fig. 3a), mutual equilibrium of α is main-
tained throughout the evolution for the solid red and blue
curves (the red lies underneath the blue). However, the
α measurement is different from the two subsystem α’s
due to the coupling of all three conjugate forces. For
the case of the dashed curves, the small deviation of 5%
from the initial probability of the solid curve results in
a very large α difference for the two subsystems and,
as a consequence, a probability driving force. In Fig.
3b, the two subsystems increase their probability differ-
ence for the case of initial condition 2 (dashed curves),
approaching the solid lines (case of initial condition 1)
in the initial phase of the relaxation in order to recap-
ture the equal probability condition. This implies that
at the beginning of the relaxation, the α conjugate force
is stronger than the energy and chemical potential con-
jugate forces that cause the two subsystem probabilities
to merge. Moreover, when a macroscopic system is stud-
ied, the α driving force is significantly even stronger and
dominates the initial phase of the relaxation. Thus, the
general equal-probability condition (Eq. (86)) is very
likely to hold in most nonequilibrium systems except mi-
croscopic ones, since a very large thermodynamic driving
force is needed to prevent a nonequilibrium state from
violating Eq. (86).

VII. CONCLUSIONS

This paper provides a thermodynamic investigation of
interacting systems undergoing heat and/or mass inter-
actions. In order to apply the SEAQT framework to
all kinds of systems, the grand canonical ensemble and
the grand partition function are used. The evolutions
of intensive and extensive properties as well as the On-
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FIG. 3. (a:top figure) α and (b:bottom figure) probability
evolutions of systems starting from two different initial con-
ditions. Initial condition 1 (solid line) satisfies the equal-
probability condition whereas initial condition 2 (dashed line)
does not. Note that in (a), the subsystem 1 evolution is iden-
tical to that of subsystem 2 and, thus, the red curve is not
seen in the figure since it lies below the blue curve.

sager relations of the relaxation process of non-quasi-
equilibrium processes in general are discussed. Both tem-
perature and chemical potential measurements to a sys-
tem in nonequilibrium are explained from a thermody-
namic viewpoint, independent of the microscopic interac-
tions taking place in the measurement. The investigation
presented here provides a first-principles explanation for
the experimental phenomenological measurement. In ad-
dition, both heat and mass reservoirs are defined thermo-
dynamically. A system interacting with multiple systems
is discussed showing how the SEAQT framework and the
concepts of hypoequilibrium state and nonequilibrium in-
tensive properties can be applied to studying a network of
nonequilibrium systems, which in turn permits the study
of a macro/mesoscopic system with discrete local systems
in nonequilibrium. Finally, results show that the tem-
perature measurement to a nonequilibrium system may
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result in a temperature value higher than those of the
nonequilibrium temperatures of the subsystems (approx-
imately, the temperature defined phenomenologically by
the molecular kinetic energy in the Boltzmann Equation)
due to the chemical potential driving force. A strong
probability driving force appears when the system is in
a nonequilibrium state that departs from the generalized
equal-probability condition.
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Appendix A: Hypoequilibrium state evolution

The equation of motion of every energy eigenlevel in
the Kth subspace of system a takes the form

dpa,Kj

dt
=
1

τ
(−pa,Kj ln

pa,Kj

na,K
j

− pa,Kj α− ǫa,Kj pa,Kj β

−Na,K
j pa,Kj γ) (A1)

Defining

~la,Kj =
[

1 ǫa,Kj Na,K
j

]

, ~ηa,K =





αa,K

βa,K

γa,K



 , ~η0a =





αa

β0

γ0





(A2)
the equation of motion is written as

dpa,Kj

dt
=

1

τ
(−pa,Kj ln

pa,Kj

na,K
j

− pa,Kj
~la,Kj · ~η0a) (A3)

For the Kth subspace of system a, the probability dis-
tribution, grand partition function, and αa,K are given
by

pa,Kj = na,K
j e−αa,K

e−ǫa,K
j βa,K

e−Na,K
j γa,K

(A4)

Ξa,K(βa,K , γa,K) =

#(HK
a )

∑

i=1

na,K
i e−βa,Kǫa,K

i −γa,KNa,K
i (A5)

αa,K = lnΞa,K(βa,K , γa,K)− ln pa,K (A6)

The equation of motion then simplifies to

dpa,Kj

dt
=

pa,Kj

τ
~la,Kj · (~ηa,K − ~η0a) (A7)

Using the relation

ln
pa,Kj

na,K
j

= −ηa,K − ǫa,Kj βa,K −Na,K
j γa,K

= −~la,Kj · ~ηa,K (A8)

and the fact that the degeneracy na,K
j is a constant, the

equation of motion can also be written as

− d

dt
(~la,Kj · ~ηa,K) =

1

τ
(~la,Kj · ~ηa,K −~la,Kj · ~η0a) (A9)

~la,Kj · (d~η
a,K

dt
+

1

τ
~ηa,K − 1

τ
~η0a) = 0 (A10)

For any equation of motion that can reduce to the form
of Eq. (A10) above (e.g., multiple interacting nonequilib-
rium systems), the system remains in a hypoequilibrium
state throughout its evolution provided the system’s ini-
tial state is a hypoequilibrium state. The solution of this
equation is

pa,Kj (t) = na,K
j e−

~la,K
j ·ηa,K(t) (A11)

and ηa,K(t) is found from

d~ηa,K(t)

dt
= − 1

τ
(~ηa,K(t)− ~η0a(t)) (A12)

which governs the evolutions of the nonequilibrium in-
tensive properties.
For any three eigenstates, pi, pj , and pk, of system

a, represented by ~li, ~lj , and ~lk where for simplicity the
superscripts have been omitted, the following relation is
found:

ln
pj
nj

= −~lj · ~Kijk (A13)

provided ~li, ~lj , and ~lk are linearly independent, i.e.,

∣

∣

∣

∣

∣

∣

1 ǫi Ni

1 ǫj Nj

1 ǫk Nk

∣

∣

∣

∣

∣

∣

6= 0, or

∣

∣

∣

∣

ǫj − ǫi Nj −Ni

ǫk − ǫi Nk −Ni

∣

∣

∣

∣

6= 0 (A14)

In Eq. (A13), ~Kijk is defined as

~Kijk ≡





1 ǫi Ni

1 ǫj Nj

1 ǫk Nk





−1 



− ln pi

ni

− ln
pj

nj

− ln pk

nk



 (A15)

The time evolution of these three energy eigenlevels (or
eigenstates) obeys the following equations:

− d

dt
(~lj · ~Kijk) =

1

τ
(~lj · ~Kijk − ~lj · ~η) (A16)

~lj · (
d ~Kijk

dt
+

1

τ
~Kijk − 1

τ
~η) = 0 (A17)

Because ~li, ~lj , and ~lk are linearly independent,

d ~Kijk

dt
+

1

τ
~Kijk − 1

τ
~η = 0 (A18)

If ~li, ~lj , and ~lk are in the same Kth subspace of system
a which is in hypoequilibrium with intensive properties
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~ηa,K , the initial condition for the equation of motion of
~Kijk is

~Kijk(t = 0) = ~ηa,K (A19)

Thus, the ~Kijk of any three independent energy eigen-
levels in the Kth subspace of system a follows the same
ordinary differential equation, i.e., the same time evolu-
tion,

~Kijk(t) = ~ηa,K(t) (A20)

and, therefore, the system always remains in a hypoequi-

librium state. If no linearly independent triplet of ~li, ~lj,

and ~lk exists in the subspace, one can set γ = 0 or β = 0

for the case when two linearly independent ~li and ~lj exist
in the subspace and set both γ = 0 and β = 0 for the
case of a single eigenlevel in the subspace.

Appendix B: Equation of motion

The energy eigenlevels of system a and b are repre-
sented by {(na

i , ǫ
a
i , N

a
i )} and {(na

j , ǫ
a
j , N

a
j )}. The state of

the system can be represented by two probability distri-
butions among the energy eigenlevels of systems a and
b given by {pai , pbj , i, j = 1, 2, · · · }. The distance be-
tween two states is defined here as the Fisher-Rao metric
[12, 26]. Equivalently, the square root of the probability
distribution {xa

i , x
b
j , i, j = 1, 2, ...} can be used to repre-

sent the system state. One can prove that the Fisher-Rao
metric of the probability space becomes the Euclidean
metric in the space of {xa

i , x
b
j , i, j = 1, 2, ...}. The dis-

tance between states for both representations is given by

dl =
1

2

√

√

√

√

∑

i

pai (
d ln pai
dθ

)2 +
∑

j

pbj(
d ln pbj
dθ

)2dθ (B1)

dl =

√

√

√

√

∑

i

(
dxa

i

dθ
)2 +

∑

j

(
dxb

j

dθ
)2dθ (B2)

where dl is the distance between p(θ + dθ) and p(θ) or
x(θ+dθ) and x(θ) and θ is a continuous parameter. Prop-
erties of the system are functions of the state {xa

i , x
b
j}

such that

Ia =
∑

i

(xa
i )

2 = 1 (B3)

Ib =
∑

j

(xb
j)

2 = 1 (B4)

Na = 〈N〉a =
∑

i

Na
i (x

a
i )

2 = const (B5)

N b = 〈N〉b =
∑

j

N b
j (x

b
j)

2 = const (B6)

E = 〈e〉a + 〈e〉b =
∑

i

ǫai (x
a
i )

2 +
∑

j

ǫbj(x
b
j)

2 = const (B7)

S = 〈s〉a + 〈s〉b = −
∑

i

(xa
i )

2 ln
(xa

i )
2

na
i

−
∑

j

(xb
j)

2 ln
(xb

i )
2

nb
i

(B8)

where 〈. . . 〉a(b) indicates the expectation value in system
a(b). The entropy 〈s〉a(b) uses the von Neumann form

[42] and includes the eigenlevel degeneracy n
a(b)
i [16]. For

interacting systems with heat diffusion only, the steepest
entropy ascent time evolution is subject to the conser-
vation of only the first five properties (Eqs. (B3)-(B7)).
The gradient vectors in state space for the properties de-
fined by Eqs. (B3)-(B7) are given by

gIa =
∑

i

∂Ia

∂xa
i

êai +
∑

j

∂Ia

∂xb
j

êbj =
∑

i

2xa
i ê

a
i (B9)

gIb =
∑

i

∂Ib

∂xa
i

êai +
∑

j

∂Ib

∂xb
j

êbj =
∑

j

2xb
j ê

b
j (B10)

gNa =
∑

i

∂Na

∂xa
i

êai +
∑

j

∂Na

∂xb
j

êbj =
∑

i

2xa
iN

a
i ê

a
i (B11)

gNb =
∑

i

∂N b

∂xa
i

êai +
∑

j

∂N b

∂xb
j

êbj =
∑

j

2xb
jN

b
j ê

b
j (B12)

gE =
∑

i

∂E

∂xa
i

êai +
∑

j

∂E

∂xb
j

êbj

=
∑

i

2xa
i ǫ

a
i ê

a
i +

∑

j

2xb
jǫ

b
j ê

b
j (B13)

gS =
∑

i

∂S

∂xa
i

êai +
∑

j

∂S

∂xb
j

êbj =
∑

i

[−2xa
i

− 2xa
i ln

(xa
i )

2

na
i

]êai +
∑

j

[−2xb
j − 2xb

j ln
(xb

i )
2

nb
i

]êbj (B14)

where êai (b) is the unit vector for each dimension.

The SEA principle upon which the equation of motion
is based is defined as the direction at any instant of time
along which the system state evolves that has the largest
entropy gradient consistent with the conservation con-
straints. The resulting equation of motion for the case
when the symplectic term (or Schrödinger term) is zero
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is then expressed as [22–25, 43]

dx

dt
=

1

τ(x)
gS⊥L(gIa ,g

Ib
,gNa ,g

Nb ,gE) (B15)

where τ , which is a function of system state, is the re-
laxation time that describes the speed at which the state

evolves in state space in the direction of steepest entropy
ascent. L = L(gIa , gIb , gNa , gNb , gE) is the manifold
spanned by the first five gradients, and gS⊥L is the com-
ponent of the gradient of the entropy perpendicular to
this manifold, i.e., the hyper-surface that yields to the
five conservation laws. The right hand side of Eq. (B15)
takes the form of a ratio of determinants, which is

gS⊥L(gIa ,g
Ib

,gNa ,g
Nb ,gE) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

gS gIa gNa gIb gNb gE

(gS , gIa) (gIa , gIa) (gNa , gIa) (gIb , gIa) (gNb , gIa) (gE , gIa)
(gS , gNa) (gIa , gNa) (gNa , gNa) (gIb , gNa) (gNb , gNa) (gE , gNa)
(gS , gIb) (gIa , gIb) (gNa , gIb) (gIb , gIb) (gNb , gIb) (gE , gIb)
(gS , gNb) (gIa , gNb) (gNa , gNb) (gIb , gNb) (gNb , gNb) (gE , gNb)
(gS , gE) (gIa , gE) (gNa , gE) (gIb , gE) (gNb , gE) (gE , gE)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(gIa , gIa) (gNa , gIa) (gIb , gIa) (gNb , gIa) (gE , gIa)
(gIa , gNa) (gNa , gNa) (gIb , gNa) (gNb , gNa) (gE , gNa)
(gIa , gIb) (gNa , gIb) (gIb , gIb) (gNb , gIb) (gE , gIb)
(gIa , gNb) (gNa , gNb) (gIb , gNb) (gNb , gNb) (gE , gNb)
(gIa , gE) (gNa , gE) (gIb , gE) (gNb , gE) (gE , gE)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(B16)

where (. . . , . . . ) denotes the scalar product of two vectors
in state space and the determinant in the denominator
is a Gram determinant. The equation of motion of the
probability for a given eigenlevel pai is then given by the
inner product of xa

i ê
a
i and dx

dt such that

dpai
dt

= (xa
i ê

a
i ,

dx

dt
) =

1

τ
(xa

i ê
a
i , gS⊥L(gIa ,g

Ib
,gNa ,g

Nb ,gE))

(B17)
The inner products of the gradient vectors and xa

i ê
a
i are

expressed as

(xa
i ê

a
i ,x) = pai (B18)

(xa
i ê

a
i , gIa) = 2pai (B19)

(xa
i ê

a
i , gIb) = 0 (B20)

(xa
i ê

a
i , gNa) = 2Na

i p
a
i (B21)

(xa
i ê

a
i , gNb) = 0 (B22)

(xa
i ê

a
i , gE) = 2ǫai p

a
i (B23)

(xa
i ê

a
i , gS) = −2pai − 2pai ln

pai
na
i

(B24)

and every inner product between two gradient vectors
can be calculated by the linear combination of the in-
ner products of gradient vectors and xa

i ê
a
i . For exam-

ple, (gNa , gE) =
∑

i 2N
a
i (x

a
i ê

a
i , gE) = 4

∑

i N
a
i ǫ

a
i p

a
i =

4〈eN〉a. The explicit form of Eq. (B15) is then given by
Eq. (19).
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