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A central goal of thermodynamics is to identify optimal processes during which the least amount of
energy is dissipated into the environment. Generally, even for simple systems, such as the parametric
harmonic oscillator, optimal control strategies are mathematically involved, and contain peculiar and
counter-intuitive features. We show that optimal driving protocols determined by means of linear
response theory exhibit the same step and δ-peak like structures that were previously found from
solving the full optimal control problem. However, our method is significantly less involved, since
only a minimum of a quadratic form has to be determined. In addition, our findings suggest that
optimal protocols from linear response theory are applicable far outside their actual range of validity.

I. INTRODUCTION

For infinitely slow processes the maximally usable work
is given by the change of availability or exergy [1, 2]. All
real processes operate in finite-time, and thus they are
accompanied by dissipation into the envrionment. For
instance, for isothermal processes the amount of energy
that is irretrievably lost is quantified by the irreversible
work, Wirr = W − ∆F [3]. One of the central goals of
modern thermodynamics is to develop methods to mini-
mize Wirr, i.e., to identify optimal processes during which
the least amount of energy is wasted.

One of the first approaches was developed in finite-
time thermodynamics [4–6]. Here, the irreversible en-
tropy production is calculated from a heuristic expansion
of the thermodynamic entropy around its value in equi-
librium. The leading order of the expansion can then be
used as the definition of the thermodynamic length [5].
This length measures how far from equilibrium a system
operates [7–9] and it allows, e.g., to measure the arrow
of time [10]. It also has been shown that the thermo-
dynamic length induces a Riemannian geometry. There-
fore optimal processes can be found as geodesics on the
thermodynamic manifold [11–18], and the irreversible en-
tropy production can be written as a quadratic form of
the susceptibility matrix [12, 19, 20].

The downside of this approach is its limited range of
validity since it is inherently a linear response theory [21–
24]. More detailed insight and general results can be ob-
tained by means of stochastic thermodynamics [25–27].
In particular, the theorems of Jarzynski [28] and Crooks
[29] motivated to analyze stochastic properties of thermo-
dynamic work, rather than to focus on its average value.
In stochastic thermodynamics a system is described mi-
croscopically, e.g. by a Langevin equation. Thermody-
namic quantities like work, heat, or entropy are then as-
sociated with single realizations, or single trajectories of
the process under study. From this approach optimal
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driving protocols can then be studied explicitly, which
showed some rather unexpected features, such as jump
and delta-peak-like protocols [30–37]. These “ragged”
driving protocols appear to be in stark contrast to the
very smooth functions commonly used in free energy es-
timation [38].

A disadvantage of the microscopic approach is that
only relatively few problems can be solved analytically.
Thus, for general situations advanced and computation-
ally expensive tools from Optimal Control Theory need
to be employed [39]. The natural question arises, whether
and how well results from a phenomenological approach
based on linear response theory carry over to systems
that are driven far from thermal equilibrium.

The purpose of the present analysis is twofold: In a
previous work [22] we found that for slowly driven pro-
cesses the resulting irreversible work for optimal proto-
cols from exact microscopic dynamics and linear response
become identical. In the following, we will demonstrate
convergence of the driving protocols by numerically solv-
ing the optimal control problem. However, we will also
find that the jump and delta-peak-like features [30–32]
are not present in the regime of slow driving. There-
fore, we developed a novel approach to find optimal driv-
ing protocols of the linear-response quadratic form in the
regime of weak but fast driving. As a main result we will
show the appearance of jumps and delta-peak-like fea-
tures. Our findings suggest that optimal protocols from
linear response theory might perform remarkably well far
outside their actual range of validity.

II. OPTIMAL CONTROL VERSUS LINEAR
RESPONSE

We consider a system with Hamiltonian H(λ) weakly
coupled to a heat bath. Initially, system and heat bath
are in thermal equilibrium for a fixed value λ = λ0. An
external observer then varies λ in finite time τ using a
certain protocol g(t) such that λ(t) = λ0 + δλ g(t), with
g(0) = 0 and g(τ) = 1. This allows us to characterize the
processes under consideration by their strength δλ/λ0
and their speed τR/τ , where τR is a typical relaxation
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FIG. 1. (color online) Illustration of the four classes
of processes: class 0, slow and weak perturbation; class 1,
conventional linear response theory; class 2, slowly varying
processes; class 3, arbitrary driving far from thermal equilib-
rium.

time. The corresponding “phase” diagram is depicted in
Fig. 1.

As a 0th class we categorize processes that are induced
by weak, δλ/λ0 � 1, and slow, τR/τ � 1, perturbation;
class 1 refers to weak, but not necessarily slow driving,
whereas class 2 consists of slowly varying processes [22].
Finally, a 3rd class refers to any other driving, which is
neither slow nor weak.

Since our main interest is to asses how well optimal
protocols from approximate theories perform far from
thermal equilibrium, we begin the analysis with class 3.
For such driving, optimal protocols can be determined
by means of Optimal Control Theory [39, 40].

Consider a physical system whose state is fully de-
scribed by a vector xt. The components of xt could be
the real, physical microstate, a point in phase space, the
state of a qubit [41], or a collection of macroscopic vari-
ables as, for instance, voltage, current, volume, pressure,
etc. The evolution of xt for times 0 ≤ t ≤ τ is described
by a first order differential equation, the so-called state
equation,

ẋt = f (xt,λt) and xt=0 = x0 , (1)

where the vector λt is a collection of external control
parameters, or simply the control.

The task is, then, to find the particular λ∗t such that
a performance measure, or cost functional is minimized.
In other words, to find the optimal control λ∗t we have
to minimize the cost functional J [xt,λt] under the con-
dition that xt evolves under the state equation (1). In
the present context, J [xt,λt] can be naturally identified
with the irreversible work Wirr.

Note that generally not all controls λt are physically
allowed or admissible. In particular, we will see in the
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FIG. 2. (color online) Optimal driving in class 3: Opti-
mal driving protocols for the time dependent harmonic oscil-
lator (2) with λ0 = 1 and δλ = 3. Blue lines correspond to
overdamped dynamics (5) with τ = 1 (blue, lower solid line)
and τ = 10 (blue, dashed line), and red lines are found for un-
derdamped dynamics (6) with γ = 1, τ = 1 (red, upper solid
line) and τ = 10 (red, dashed line). The analytical protocol
(7) for slowly varying processes (black, dotted line) coincides
to very good approximation with slow (τ = 10) processes for
any damping.

following example that, if we restrict ourselves to con-
tinuous protocols with fixed initial and final values, no
jump or delta peculiarities are found [42].

To illustrate the application of optimal control theory
and as a fully solvable case study we consider the time-
dependent harmonic oscillator with Hamiltonian

H(t) =
p2

2
+ λt

q2

2
(2)

where we set the mass m = 1. For this system exact
optimal driving protocols have been derived analytically
for overdamped dynamics [30], numerically in the under-
damped regime [31], and analytically for slowly varying
processes by means of linear response theory [22]. In
either case the irreversible work can be written as

Wirr =
1

2

∫ τ

0

dt λ̇t q2 +
1

2
ln

(
λ0

λ0 + δλ

)
, (3)

where we set β = 1. Thus, we choose as a performance
measure

J [q, λt] =

∫ τ

0

dt λ̇t q2 . (4)

In the case of overdamped dynamics the state equation
reads [30]

∂t q2 = −2λt q2 + 2 , (5)

whereas we have in the underdamped regime [31]

∂t q2 = 2 qp

∂t p2 = −2λt qp− 2γ p2 + 2γ

∂t qp = p2 − λt q2 − γ qp .

(6)
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The latter performance measure (4) together with the
state equation, Eq. (5) or Eq. (6) respectively, allow us to
formulate Pontryagin’s extremum principle [39]. Optimal
protocols are then numerically found by a modified algo-
rithm of steepest decent [41], where we restrict ourselves
to continuous protocols with g(0) = 0 and g(τ) = 1.

In Fig. 2 we plot the results from optimal control the-
ory together with the analytically obtained optimal pro-
tocol for slowly varying processes [22],

g∗(t) = −λ0
δλ

+
1

A((t/τ) +B)4
(7)

where A and B are free constants to be determined by
the boundary conditions g∗(0) = 0 and g∗(τ) = 1. We
observe that for slow processes, i.e., long switching times
τ the protocols obtained from the full dynamics are in
very good agreement with the result from linear response
theory (7). For faster driving, i.e., short switching times
τ , the optimal protocols significantly differ [43].

As a first main result, we find that numerically exact
solutions from optimal control theory converge to the op-
timal protocols from linear response theory by taking the
appropriate limits. Note, however, that a judicious choice
of boundary conditions, g∗(0) = 0 and g∗(τ) = 1, and re-
stricting the admissible protocols to continuous functions
suppressed jump and delta-peak features. The remainder
of this analysis is dedicated to finding exactly these fea-
tures from linear response theory, which illustrates that
phenomenological tools can be powerful also far outside
their range of validity.

III. OPTIMAL DRIVING FROM CLASS 1

To describe the work performed along processes lying
in class 1 (see Fig. 1), we demand that |δλ g(t)/λ0| � 1
for 0 ≤ t ≤ τ . This allows for a linear response treatment
of the average work Wirr whose expression reads [23]

Wirr ≡W −∆F

=
(δλ)2

2

∫ 1

0

ds

∫ 1

0

ds′Ψ0[τ(s− s′)] ġ(s) ġ(s′) ,
(8)

where ġ(s) and ġ(s′) denote the derivatives with re-
spect to s ≡ t/τ and s′ ≡ t′/τ , and Ψ0(t) =
β
(
〈∂λH(0)∂λH(t)〉 − 〈∂λH(0)〉2

)
is the relaxation func-

tion [22, 44] with β = (kBT )−1 and 〈·〉 denoting an aver-
age with the canonical distribution. Within this frame-
work, the relaxation time τR may be defined as

τR =

∫ ∞
0

dtΨ0(t)/Ψ0(0) . (9)

As explained in Ref. [22], the relaxation function is the
phenomenological input of the Hamiltonian-based linear
response theory since its fully microscopic derivation re-
quires the solution of classical or quantum equations of
motion of the system plus heat bath. Hence, this is the
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FIG. 3. (color online) Optimal protocol for overdamped
dynamics: Optimal protocol (red solid line) that minimizes
Eq. (8) using a truncated expansion of g(s) with 35 modes and

the relaxation function Ψ0(0) e−α|t|. The switching time τ
was chosen to be five times bigger than the relaxation time τR.
Blue dotted line corresponds to the linear protocols g(s) = s.
Inset: short time behavior of the optimal protocol showing
a smooth version of a “step”.

strong point of our linear response approach since it cir-
cumvents the lack of an exact treatment of a specific sys-
tem and, at the same time, allows for system-independent
conclusions from the qualitative behavior of Ψ0(t).

The phenomenological modeling of the relaxation func-
tion provides the possibility of finding optimal protocols
of (8) not only for one or two examples but for classes of
systems. At the same time, we still want to keep track of
the influence of a specific system in our results. As shown
in Ref. [22], this can be done through a self-consistent
modeling that matches a given ansatz of Ψ0(t) with its
Hamiltonian requirements.

Figures 3 and 4 show optimal protocols ob-
tained from Eq. (8) using two models for the
relaxation function, namely, the overdamped
Ψ0(t) = Ψ0(0) e−α |t|, and the underdamped
Ψ0(t) = Ψ0(0) e−α |t| [cos (ωt+ (α/ω) sin (ω|t|)]. The
nomenclature we use clearly refers to the corresponding
regimes of Brownian motion under an external harmonic
potential [30, 31]. Nevertheless, they are not limited
to describe the relaxation of this physical system only.
They are very good models for several different phe-
nomena such as the relaxation of dieletric polarization
or magnetization or even the decay of quasi-particles in
quantum systems.

To obtain the optimal protocols we note that Eq. (8)
is a quadratic form in the ġ(s). Therefore, we expand
the functions ġ(s) in a series of Chebyshev polynomials
Tn(u) in the interval [0, 1]. The series is then truncated
and therefore regularized (to deal with the common prob-
lems of finite order expansions) using well-known meth-
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ods [45]. The expansion reads

ġ(s) =

N∑
n=1

an gN,n Tn(2s− 1) , (10)

where

gN,n =
1

N + 1

×
[
(N − n+ 1) cos

(
πn

N + 1

)
+ sin

(
πn

N + 1

)
cot

(
π

N + 1

)]
(11)

is a factor that regularizes the truncated series with finite
N terms (see Sec.II.C of Ref. [45]).

Inserting the finite order expansions (10) in Eq. (8), the
double integrals can be solved analytically and the par-
ity of the Chebyshev polynomials and of Ψ0(t) (the relax-
ation function satisfies Ψ0(−t) = Ψ0(t); see Refs. [22, 23])
help to verify that many of them are zero. Consequently,
expression (8) becomes the following finite quadratic
form

Wirr

(
(δλ)2Ψ0(0)/2

)−1
=
∑
n,l

Anl anal , (12)

on the coefficients an, with the matrix Anl given by

Anl =∫ 1

0

ds

∫ 1

0

ds′Ψ̃(τ(s− s′)) gN,ngN,l Tn(2s− 1)Tl(2s
′ − 1),

(13)

where we have defined Ψ̃(t) = Ψ0(t)/Ψ0(0).
The extremum of Eq. (12) is obtained by solving a min-

imization problem with Lagrange multipliers. This comes
down to solving numerically a linear system of equations.
The unknown variables of this system are the coefficients
an of the finite order expansion of the ġ(s) subjected to
the boundary conditions g(0) = 0 and g(1) = 1. The
results clearly show smooth versions of the same features
(steps and peaks) obtained in Refs. [30, 31] for a driven
Brownian particle trapped in a harmonic potential in
overdamped and underdamped regimes. As mentioned
above, exact optimal protocols are determined by solv-
ing Eqs. (5) and (6), respectively (see Refs. [30, 31] for
the details).

It is remarkable that our linear response optimization
leads to the same counterintuitive features which were
originally attributed to far from equilibrium driving. As
the process gets faster (i.e., τ approaches τR), such fea-
tures become even sharper, see Fig. 5. In addition, for
a fixed switching time τ , the steps and peaks also get
sharper as we increase the number of polynomials in the
finite order expansion of g(t), see Fig. 6. This suggests
that the optimal linear response process can get arbi-
trarily close to the singular features of the exact result of
Ref. [31].
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FIG. 4. (color online) Optimal protocol for un-
derdamped dynamics: Optimal protocol (red solid
line) that minimizes Eq. (8) using a truncated expan-
sion of g(s) with 35 modes and the relaxation function

Ψ0(0) e−α|t| [cos (ωt+ (α/ω) sin (ω|t|)]. The switching time τ
was chosen to be five times bigger than the relaxation time τR.
Blue dotted line corresponds to the linear protocol g(s) = s.
Inset: short time behavior showing that after the peak, the
optimal protocol also presents a smooth step since it oscillates
around a linear protocol (green dashed line) whose inclination
is lower than one.

A natural question to ask then is how well do the linear
response optimal paths perform in the nonequilibrium re-
gion. To test this, we have solved numerically Eqs. (6)

since we need q2(t) to obtain Wirr (see Eq. (3)). We were
not able to go beyond an expansion of g(s) with 17 modes
due to a numerical instability caused by high-frequency
oscillations. Hence our preliminary results about per-
formance show that, for fixed τ = 5τR and for δλ/λ0
ranging from 1 to 2.7, the linear response optimal paths
are roughly 1% to 5% better than a linear protocol (al-
though it sometimes performs worse since Wirr seems to
have a non-monotonic dependence with δλ/λ0 for the lin-
ear protocol). However, our optimal protocols are always
6% to 14% better than the C2(t) protocol proposed by
Watanabe and Reinhardt in the context of free-energy
estimation (see Eq. (5) in Ref. [38]).

IV. PERSPECTIVES OF THE PRESENT
APPROACH

The results obtained in Refs. [30, 31] have opened sev-
eral questions about the optimization problem of finite-
time processes, of which some have not been satisfactorily
answered so far. For instance, the physical origin of the
unexpected features (namely, steps and peaks) appearing
in the optimal protocols has remained elusive. Moreover,
it is not clear whether these sharp features are restricted
to the dynamics of specific models studied. We have
shown that these features are also present even when
fixed boundary conditions, g(0) = 0 and g(1) = 1, are
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FIG. 5. (Color Online) Optimal protocols for differ-
ent τ : Protocols that minimize Eq. (8) using a truncated
expansion of g(s) with 35 modes and the relaxation function

Ψ0(0) e−α|t| [cos (ωt) + (α/ω) sin (ω|t|)]. The ratio τ/τR was
chosen to be 2.5 (blue solid line), 5 (red dotted line) and 10
(green dashed line).
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FIG. 6. (Color Online) Optimal protocols for different
orders of truncation: Protocols that minimize Eq. (8) using
a truncated expansion of g(s) with 17 modes (blue solid line)
and 35 modes (red dashed line) and the relaxation function

Ψ0(0) e−α|t| [cos (ωt) + (α/ω) sin (ω|t|)]. The switching time
τ was chosen to be five times bigger than the relaxation time
τR. The green dotted line corresponds to the linear protocol
g(s) = s.

demanded, which means, in our interpretation, that they
may not be just a byproduct of some optimization pro-
cedure. Moreover, they can occur in close-to-equilibrium
processes.

The potentially interesting aspect of our approach
relies on the phenomenological modeling of the relax-
ation function. In contrast to stochastic thermody-
namics methods, the present approach easily provides
means of testing different kinds of relaxation behavior
and therefore investigate whether the features we ob-
serve in the optimal protocols are universal. Figure 7
shows that even the monotonic exponential decay given
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FIG. 7. (Color Online) Exponential relaxation : Protocol
(red solid line) that minimizes Eq. (8) for the relaxation func-

tion Ψ0(0)e−α|t|(1 + α|t|/2)2 using a truncated expansion of
g(s) with 35 modes and τ/τR = 5. The blue dotted line cor-
responds to g(s) = s. Inset: The optimal protocol oscillates
around a linear function f(s) = a s+ b with a < 1.

by e−α|t|(1+α|t|/2)2 (this relaxation function can be de-
rived from Brownian motion; see App. B of Ref. [22])
leads to very pronounced peaks and “steps” since, apart
from the boundaries, the protocol oscillates around a lin-
ear function f(s) = a s + b with a < 1. This naturally
raises the question of why is this case closer to the under-
damped result of Fig. 4 even though the relaxation func-
tion decays monotonically as in the overdamped case.

A possible hint to answer this question lies in the short-
time behavior of the relaxation functions. Although both
the Ψ0(t) leading to Figs. 3 and 7 decay monotonically,
for small t we have

e−α|t|
(

1 +
α|t|
2

)2

= 1− α2|t|2

4
+O(|t|3), (14)

e−α|t| = 1− α|t|+O(|t|2) . (15)

For the underdamped Ψ0(t), we have

e−α|t| [cos (ωt) + (α/ω) sin (ωt)] =

1− (α2 + ω2)|t|2

2
+O(|t|3) , (16)

which shows that the short-time behavior of expressions
(14) and (16) for Ψ0(t) is |t|2 in both cases.

Figure 8 shows an example of an optimal protocol for
a non-exponential decay of the relaxation function. Very
pronounced peaks are also present in this case and persist
for much slower processes (τ = 80τR for that result). It
can be easily verified that, for small t, the leading order
behavior of Ψ0(t) is also |t|2 in this case.

The short-time behavior of Ψ0(t) has a clear physical
meaning in linear response theory since the relaxation
function is related by −Ψ̇0(t) = Φ0(t) to the so-called
response function Φ0(t) [44, 46]. In the present case,
Φ0(t) = 〈{∂λH(0), ∂λH(t)}〉, with {A,B} denoting ei-
ther the Poisson bracket or the commutator between A
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FIG. 8. (Color Online) Non-exponential relaxation: Op-
timal protocol (red solid line) that minimizes Eq. (8) using
a truncated expansion of g(s) with 35 modes, τ/τR = 80
and the relaxation function Ψ0(0) J0(αs), where J0(x) is the
Bessel function of first kind. The blue dotted line corresponds
to the linear protocol g(s) = s.

and B. Hence, the short-time behavior of Φ0(t),

Φ0(t) = Φ
(0)
0 (0) + Φ

(1)
0 (0) t+ Φ

(2)
0 (0)

t2

2!
+O(t3) , (17)

with coefficients given by [44, 46, 47]

Φ
(0)
0 (0) = 〈{∂λH(0), ∂λH(0)}〉 = 0,

Φ
(1)
0 (0) = 〈{∂λH(0), {∂λH(0), H}}〉,

Φ
(2)
0 (0) = 〈{∂λH(0), {{∂λH(0), H}, H}}〉, (18)

is determined by Hamiltonian constraints. In particular,
Eqs. (18) demand that Ψ0(t) must have t2 instead of t
dependence in leading order. Besides, these equations
can also give us expressions for the free parameters α
and ω of our phenomenological models (14) and (16) in
terms of average values of observables (see Ref. [22] for
more details).

V. CONCLUDING REMARKS

In the present analysis we found that although a lot
of work has been done to find optimal linear response

processes in class 2, namely, slowly-varying optimal pro-
cesses, those lying in class 1 are much closer to what
happens in the fully nonequilibrium regime. Hence they
should be a better choice as seeds of optimal control pro-
cedures far from equilibrium. Our results also show that,
despite of sharing the same underlying theory, the linear
response approaches for the irreversible work in classes
1 and 2 are qualitatively different and only match when
δλ/λ0 and τR/τ are both much smaller than 1.

The phenomenological modelling of relaxation func-
tions give us a lot of flexibility to analyze several dis-
tinct physical systems both classical and quantum. Thus,
our results state that the peculiar features found in
Refs. [30, 31] are indeed very general and are not re-
stricted just to driven Brownian motion. In this sense, we
can easily go beyond stochastic thermodynamics meth-
ods to obtain qualitative answers since our approach does
not rely on exact solutions.

We have also provided a preliminary analysis suggest-
ing that what happens at the boundaries of the optimal
protocols depends strongly on the short-time behavior of
the relaxation function (which is linear for overdamped
dynamics and quadratic for the underdamped one). It
is possible to show that the sum rules of linear response
theory [47] (which can be used to make the phenomeno-
logical relaxation functions compatible with the underly-
ing Hamiltonian dynamics [22]) demand a quadratic be-
havior for short times. Nevertheless, further analysis is
still necessary to settle the physical origin of the peculiar
features at the boundaries of optimal protocols.
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