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Université de Tours, Université d’Orléans,
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Abstract

We propose a functional integral framework for the derivation of hierarchies of Landau–Lifshitz–

Bloch (LLB) equations that describe the flow towards equilibrium of the first and second moments of

the magnetization. The short scale description is defined by the stochatic Landau–Lifshitz–Gilbert

equation, under both Markovian or non-Markovian noise, and takes into account interaction terms

that are of practical relevance. Depending on the interactions, different hierarchies on the moments

are obtained in the corresponding LLB equations. Two closure Ansätze are discussed and tested by

numerical methods that are adapted to the symmetries of the problem. Our formalism provides a

rigorous bridge between the atomistic spin dynamics simulations at short scales and micromagnetic

descriptions at larger scales.
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I. INTRODUCTION

Thermal fluctuations of the magnetization can have a significant influence on the oper-

ating conditions of magnetic devices [1–3]. To describe them well is quite challenging, and

the development of appropriate computational methods has a long history [4–6].

A textbook approach for their description is the stochastic calculus [7, 8]: the fluctuations

are described by a thermal bath interacting with the magnetic degrees of freedom, namely

spins. The quantities of interest are the correlation functions of the magnetization, deduced

from numerical simulations [9, 10]. Former micromagnetic formulations do not account for

a direct evaluation of the dynamics of those thermally activated correlation functions, which

can be accessed naturally by experimental measurements.

The dynamics of those spins can be specified by a particular choice of a Langevin equation.

A common and well-studied choice is the so–called stochastic form of the Landau-Lifschitz-

Gilbert equation (sLLG) [11]. Up to a renormalization factor over the noise [12], the sLLG

equation of motion for each spin component si can be written as follows :

dsi
dt

=
1

1 + λ2
εijk sk (ωj + ηj − λ εjlm ωl sm) , (1)

where the Einstein summation convention is adopted, and εijk describes the Levi-Civita fully

anti-symmetric pseudo-tensor. The vector ω sets the precession frequency and is defined

as [13]:

ωi = −1

~
∂H

∂si
, (2)

where H is the magnetic Hamiltonian of the system.

In eq. (1), a random vector η defines the connection to the thermal bath. The components

of η are assumed to be drawn from Gaussian distributions, and are completely defined by

the two first moments :

〈ηa(t)〉 = 0

〈ηa(t)ηb(t′)〉 = δabC(t− t′)
(3)

with C(t − t′) a scalar correlation function of the bath. C can be any continuous function

invariant by translation in time, assuming a weaker stationary form. The main advantage

of such weak stationary form is that it places any time series in the context of Hilbert

spaces, and as a consequence, these series admits a Fourier-like decomposition on a spectral

measure.

2



Within this framework, we mainly focused on the Markovian definition of the correlation

function, and one has C(t−t′) = 2D δ(t−t′), where D defines the amplitude of the noise. In

the associated Supplemental Material (SM) [14], the invoked approach is more general and

can also by applied to non-Markovian formulations, with the Ornstein-Uhlenbeck process as

an example.

Eq. (1) also describes a purely transverse damping with a non-dimensional constant λ.

Properly integrated [15, 16], it ensures that the norm of the spin remains constant, which one

can normalize to unity, |s| = 1. This transverse damping term is responsible for the transfer

of spin angular momentum from the magnetization to the environment whereas the thermal

bath allows conversely energy to be pumped from the environment to the magnetization.

Many different mechanisms for damping are already known that include spin-orbit cou-

pling, lattice vibrations and spin-waves [2]. Overall, this model is well-suited for the sim-

ulation of an ensemble of interacting atomic magnetic spins including temperature effects

[17, 18].

When simulations of a spin ensemble (i.e. a finite size magnetic grain) is at stake, it is

well known that the norm of the average magnetization is not preserved, and that longi-

tudinal damping effects have to be taken into account [19–21]. Although this mechanism

is often accounted in a very empirical way, it has been shown that an appropriate averag-

ing procedure over the bath can describe those longitudinal damping effects [22, 23]. An

equation describing the precession of the magnetization dynamics of nanomagnets, and ac-

counting for both transverse, and longitudinal forms of damping is commonly referred to as

a Landau-Lifschitz-Bloch (LLB) equation. Recent studies have been leveraging this model

for the description of thermal fluctuations in different areas of magnetization dynamics, such

as thermally assisted magnetic switching [24], ultrafast magnetism [25], or studies in chaotic

magnetization dynamics [26].

In this work, we present how a rigorous and systematic statistical averaging procedure,

based on the functional calculus, can be applied to the derivation of sets of LLB equations

for the moments of the spin variables. Our approach differs quite significantly from previous

attempts [22, 23]. The form of the equilibrium distribution, for instance, is not postulated,

but we try to deduce its properties from the evolution of the off–equilibrium dynamics of

equal–time correlation functions. To this end, we explore the consequences of closure schemes

on the evolution equations. We show how different magnetic interactions can be incorporated
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simply into the model. This makes the procedure particularly suitable and relevant for the

derivation of effective micromagnetic equations from the knowledge of interactions at the

atomic scale. This can more efficiently bridge the gap between atomistic methods, such as

spin-dependent density functional theory and classical spin dynamics, and macro-equations

used in micromagnetic simulations.

The plan of this work is the following. In the Supplementary Material(SM) [14] adjoined

to this article, the general framework based on functional calculus is presented. It allows

us to take the statistical average over the equations of motion of the spins, and to derive

hierarchies of LLB equations. In section II we show how this procedure can be applied

to obtain the LLB equations for the first and second moments. The formalism is then

applied to the case of a Markovian process, and to three common magnetic interactions: a

Zeeman interaction, a magnetic uniaxial anisotropy, and the exchange interaction. These

equations are part of an open hierarchy. To solve them, we must impose closure conditions.

In section III we explore Gaussian, as well as non–Gaussian closure conditions, derived from

the theory of chaotic dynamical systems. To test their validity we compare the results

against those of a ”reference model”, studied within the framework of stochastic atomistic

spin dynamics simulations. Our conclusions are presented in section IV.

II. DERIVATION OF FIRST AND SECOND ORDER LLB EQUATIONS

In this section, the application of the formalism detailed in the SM [14] allows us to derive

first and second order LLB equations. The derivation is particularized to three essential

magnetic interactions, useful to describe realistic nanomagnets. An open hierarchy on the

moments of the spin variables is generated. The hierarchy of LLB equations for the dynamics

of the spin moments could easily be extended to higher orders, but is limited to the first

and second order moments only for practical reasons.

A. LLB equations for paramagnetic spins in an external magnetic field

Atomic spins submitted to an external magnetic field are considered first. The contribu-

tion to the magnetic energy consists in a Zeeman term only. For a given magnetic spin s,
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one has the following magnetic Hamiltonian and magnetic precession vector :

HZeeman = −gµBsiBi and ωext
i =

gµB

~
Bi (4)

respectively, with g the gyromagnetic ratio, µB the Bohr magneton and B the external

magnetic induction (in T). This contribution can be seen as an ultra–local expression, as it

only accounts for the spin s.

The corresponding equation of motion is obtained by inserting the expression of the

precession vector ωext
i in eq. (1). One has :

dsi
dt

=
1

1 + λ2
εijk sk

(
ωext
j + ηj − λ εjlm ωext

l sm
)
. (5)

Even if the external magnetic field ωext may be time-dependent, it is assumed to be inde-

pendent of the noise, and therefore can be taken out of any statistical average over the noise

(see SM [14] for clarifications).

Applying the statistical averaging procedure described in the SM [14] to eq. (5), one

obtains the following set of LLB-type equations on the first and second spin moments:

d〈si〉
dt

=
1

1 + λ2
εijk

(
ωext
j 〈sk〉 − λ εjlm ωext

l 〈sksm〉
)
− 2D

(1 + λ2)2
〈si〉, (6)

d〈sisj〉
dt

=
1

1 + λ2
εikl

(
ωext
k 〈sjsl〉 − λ εkmn ω

ext
m 〈sjslsn〉

)
+

D

(1 + λ2)2

(
δij〈snsn〉 − 3〈sisj〉

)
+ (i↔ j) , (7)

with 〈si〉 and 〈sisj〉 denoting the first- and second-order statistical averages over the noise

of the spin variables. Note that 〈s〉 is also the average magnetization, a quantity commonly

measured.

The first terms in the RHS of eq. (6) and (7) encapsulate the effects of the transverse

dynamics (arising from the LLG equation), whereas the second term, that is proportional

to the amplitude of the noise D, generates longitudinal damping effects, and is a direct

consequence of the statistical average over the noise.

This first set of equations is very close to the one obtained by Garanin et al. from a

similar approach, but with different hypothesis [22].

We also observe that this set of equations is not closed. Indeed, the RHS of eq.(7) contains

three–point moments 〈sjslsn〉, which are not defined yet.
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B. LLB equations for anisotropic magnetic spins

The situation of spins in an anisotropic environment is now considered. The expression

of the magnetic Hamiltonian accounting for the interaction between a given magnetic spin

and an uniform axial magnetic anisotropy, defined by an easy-axis n and an intensity Ka

(in eV), is the following:

HAniso = −Ka

2

(
(nisi)

2 − 1
)
. (8)

Again, this expression is ultra–local. Also, an uniaxial form of magnetic anisotropic contri-

bution was considered, but other local forms (such as a cubic anisotropy) could have been

considered the same way. The corresponding magnetic precession vector is given by

ωAniso
i = ωa (n · s)ni, (9)

which, inserted into eq. (1), gives :

dsi
dt

=
1

1 + λ2
εijksk(ωAniso

j + ηj − λεjlmωAniso
l sm) (10)

where ωa ≡ 2Ka/~ is the effective field corresponding to the anisotropy.

The same statistical averaging procedure is repeated and applied to eq. (10). The follow-

ing set of anisotropic LLB equations is obtained:

d〈si〉
dt

=
ωa

1 + λ2
εijk

(
njnl〈sksl〉 − λ εjlm nlnp〈sksmsp〉

)
− 2D

(1 + λ2)2
〈si〉 (11)

d〈sisj〉
dt

=
ωa

1 + λ2
εimn

(
nmnp〈sjsnsp〉 − λ εmpq npnr〈sjsnsrsq〉

)
+

D

(1 + λ2)2

(
δij〈snsn〉 − 3〈sisj〉

)
+ (i↔ j) . (12)

Eqs (11) and (12) present very similar features as eqs (6) and (7). The main difference lies

on the open hierarchy on the moments. Indeed, the quadratic term in the RHS of eq. (10)

implies that eq.(11) depends on three–point moments, and eq.(12) on four–point moments.

We observe that for the local interactions considered so far, the average-over-the-noise

procedure does not affect the final expression of the longitudinal damping. Only the preces-

sion expression is modified.
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C. LLB equations for ferromagnetic nanomagnets

The situation of a ferromagnetic media, where a spin is submitted to local interactions,

is now considered.

Typically, the exchange interaction, that controls the local alignment and order of spins

is defined by the following expression [17, 18]:

Aex = −
N∑

I,J 6=I

JIJ s
I(t).sJ(t) (13)

where sI(t) and sJ(t) are the values of neighboring spins (with I and J labeling different

sites) at time t, and JIJ is the strength of the exchange interaction between these spins.

When working out of equilibrium, the dynamics described by a two–spin interaction can

be reduced by an averaging method [27, 28] to that of one spin in an effective field. The

exchange interaction is then described by

A MF
ex = −Jexsi(t) · 〈si(t)〉, (14)

where Jex = nvJIJ with nv the number of spins in the considered neighbor shells.

This mean-field approximation allows us to remain within a local formulation. The

statistical averaging procedure is only applied to a given spin, submitted to an average

magnetic field and connected to a thermal bath.

Under those conditions, and injecting the precession vector resulting from eq. (14) into

eq (1), one has the following equation of motion:

dsi
dt

=
ωex

1 + λ2
εijk sk (〈sj〉+ ηj − λ εjlm 〈sl〉 sm) , (15)

with ωex = Jex/~ the intensity of the exchange pulsation.

Then the exchange interaction contributes to the LLB equations as :

d〈si〉
dt

=
λωex

1 + λ2

(
〈si〉〈sksk〉 − 〈sk〉〈sksi〉

)
− 2D

(1 + λ2)2
〈si〉, (16)

d〈sisj〉
dt

=
ωex

1 + λ2
εikl

(
〈sk〉 〈sjsl〉 − λ εkmn 〈sm〉 〈sjslsn〉

)
+

D

(1 + λ2)2

(
δij〈snsn〉 − 3〈sisj〉

)
+ (i↔ j) . (17)

Simplifications have been performed in eq. (16), as εijk〈sj〉〈sk〉 = 0 within the mean-field

approximation.
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D. LLB equations for combined interactions

If a classical ferromagnet in a simultaneous anisotropic and external magnetic field is

considered, the contribution of each interaction to the moment equations has to be computed.

The final form can be obtained by straightforwardly taking the sum of the RHSs. The only

subtle point is that the longitudinal damping contribution should not be over-counted. The

full expressions are not very illuminating as such; suffice to stress that they have been

obtained under few and tightly controlled assumptions.

III. CLOSING THE HIERARCHY

In order to solve the sets of LLB equations for the first- and second-order moments of

the spin variables obtained in the former section, and to deduce the consequences for the

magnetization dynamics itself (i.e. the first-order moments), the hierarchies must be closed.

In this section, two closure methods inspired from turbulence theory [29, 30] and dy-

namical systems [31] are reviewed and applied. A purely numerical reference model is first

presented, that allows us to check the consistency and to assess the range of validity of the

applied closures.

A. Reference model

Atomistic spin dynamics (ASD) simulations are commonly performed by solving sets

of interacting sLLG equations (eq. (1)), coupled to white–noise processes. For a single

magnetic moment, getting that equation for ASD simulations has been considered from a

quantum perspective [18, 32, 33], and several numerical implementations have been reported

[17, 34, 35], including the exchange interaction, the treatment of external and anisotropic

magnetic fields and temperature.

For each individual spin, an sLLG equation 1 is integrated by a third-order Omelyan

algorithm, which preserves the symplectic structure of the set of sLLG equations [36–38].

More details of this integration method have been provided in previous works [35, 39]. These

ASD simulations are performed for different noise realizations and averages are taken.

In practice we find that it is possible to generate a sufficient number of noise configurations

so that the map induced by the stochastic equations, as the result of this averaging procedure,
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realizes the exact statistical average over the noise [40, 41]. These averages define, therefore,

our reference model.

Fig. 1 presents how effective this averaging procedure can be. The example of conver-

gence toward statistical average for paramagnetic spins is shown. From fig. 1 one readily

grasps that increasing the number of spins (or, equivalently, realizations) does accelerate the

convergence toward the true averaged dynamics For practical purposes, 104, interacting or

not, spins are considered to be enough. This fixes statistical errors to sufficiently low level

to draw accurately the desired average quantities.

From now on, this averaging procedure is used in order to check the consistency of the

closure assumptions presented hereafter.

B. Gaussian Closure Assumption

A first closure assumption that is consistent with Gaussian statistics is a direct application

of the Wick’s theorem [42]. This approach, referred to as the Gaussian Closure Assumption

(GCA) in this work, has been briefly explored in previous studies [10, 43].

Denoting the cumulant of any stochastic spin vector variable s by double brackets 〈〈.〉〉

[8], one has :

〈〈sisjsl〉〉 = 〈sisjsl〉 − 〈sisj〉〈sl〉 − 〈sisl〉〈sj〉

− 〈sjsl〉〈si〉+ 2〈si〉〈sj〉〈sl〉 (18)

for any combination of the space indices for the third-order cumulant, and :

〈〈sisjslsm〉〉 = 〈sisjslsm〉 − 6〈si〉〈sj〉〈sl〉〈sm〉

−〈sisj〉〈slsm〉 − 〈sisl〉〈sjsm〉

−〈sism〉〈sjsl〉 − 〈si〉〈sjslsm〉

−〈sj〉〈sislsm〉 − 〈sl〉〈sisjsm〉

−〈sm〉〈sisjsl〉+ 2 [〈si〉〈sj〉〈slsm〉

+〈si〉〈sl〉〈sjsm〉+ 〈si〉〈sm〉〈sjsl〉

+〈sj〉〈sl〉〈sism〉+ 〈sj〉〈sm〉〈sisl〉

+〈sl〉〈sm〉〈sisj〉] (19)

9



(a) (c)

(d)(b)

Figure 1. Random magnetization dynamics of paramagnetic spins in a constant magnetic field.

The graphs labelled (a) and (c) plot some of the first–order moments and the norm of the averaged

magnetization, when the graps labelled (b) and (d) plot the diagonal elements only of the matrix

of the second–order moments. The averages over 10 paramagnetic spins only are shown graphs

(a) and (b), whereas 104 spins are shown on graphs (c) and (d). Parameters of the simulations :

{D = 5.10−2 rad.GHz; λ = 0.1; ~ω = (0, 0, 0.63) rad.GHz; timestep ∆t = 10−3 ns}. Initial

conditions: ~s(0) = (1, 0, 0), 〈si(0)sj(0)〉 = 0 exept 〈sx(0)sx(0)〉 = 1.

for any combination of the space indices for the fourth-order cumulant. The GCA implies

that, for every time t, 〈〈sisjsk〉〉 = 0 and 〈〈sisjsksl〉〉 = 0. Thus the following relationships
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apply :

〈sisjsk〉 = 〈si〉〈sjsk〉+ 〈sj〉〈sisk〉

+〈sk〉〈sisj〉 − 2〈si〉〈sj〉〈sk〉, (20)

〈sisjsksl〉 = 〈sisj〉〈sksl〉+ 〈sisk〉〈sjsl〉

+〈sisl〉〈sjsk〉 − 2〈si〉〈sj〉〈sk〉〈sl〉, (21)

relating thereby the third and fourth moments with the first and second ones only. Equations

(20) and (21) have to be injected into eqs. (7), (11), (12), and (17) respectively.

Because of the form these equations assume, they are referred to as dynamical Landau-

Lifshitz-Bloch (dLLB) models.

Simulations of hcp-Cobalt are performed, and depicted in fig. 2, 3 and 4. These figures

compare the GCA, applied to the third and fourth moments according to eqs.(20) and (21),

to the ASD calculations peformed for an hexagonal 22 × 22 × 22-supercell. The first and

second nearest neighbor shell are taken into account for the exchange interaction, and its

value, which is directly taken from ab initio calculations [44, 45], is JIJ = 29.79 meV for

each atomic bond of the first nearest neighbors, and JIJ = 3.572 meV for the second nearest

neighbors. The anisotropy energy for hcp-Co, is given to Ka = 4.17.10−2 meV for each spin,

according to the same references [44, 45].

The magnetic analog of the Einstein relation can be introduced in order to relate the

amplitude D of the noise to the temperature of the bath [4, 5]:

D =
λkBT

~ (1 + λ2)
(22)

The conditions for the validity of such an expression, which is not immediately obvious, and

are beyond the scope of this work, and eq. (22) is assumed to be valid. Thus, the averages

over the noise can be replaced by the corresponding thermal averages. This allows us to

have effective sets of dLLB micromagnetic equations at practical temperatures, that can be

directly compared to experimental measurements.

Fig. 2 plots the average magnetization norm versus the temperature for hcp-Co with and

without the anisotropic contribution, over a long simulation time, assuming the system at

equilibrium. The application of the GCA matches well the ASD calculations–and without

requiring prior knowledge of the equilibrium magnetization value. Thus, the GCA can be
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considered to be a valid assumption for a broad range of temperatures (up to approximately

two-third of the Curie temperature, 2Tc/3).

For higher temperatures, a departure from the ASD calculations is observed. This is not

surprising as the correlation length of the connected real-space two-point correlation function

at equilibrium grows without limit when T approaches Tc. Interestingly, the GCA, allows

to observe the critical transition from a ferromagnetic to a paramagnetic phase, driven by

the temperature.

(a)

(b)

Figure 2. Equilibrium magnetization norm vs temperature for hcp-Co, without (on graph (a)) and

with (on graph (b)) the anisotropic interaction. The solid line plot the result of the GCA applied

on the third-order moments. Open circles (with error bars) plot the ASD results, performed with

the s-LLG equation. The experimental Curie temperature Tc for hcp-Co is also reported.

Fig. 3 plots the time dependence of the average magnetization for hcp-Co for an external

magnetic field of 10T along the z-axis, without any internal anisotropic contribution. The
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value of the external magnetic field is chosen to hasten the convergence of large ASD sim-

ulations. Besides, as the closure assumption does not rely on the intensity of the Zeeman

interaction, any value of the field can be used. For T= 500K, the GCA appears to be a

good approximation and the two models are in good agreement. For T= 1000K, the validity

of the GCA becomes more questionable. In particular regarding the norm of the average

magnetization and 〈sz〉 at equilibrium.

Another interesting feature of this figure is the presence of two regimes for the magne-

tization dynamics. The first one is an extremely short thermalization regime. Because the

exchange pulsation is the fastest pulsation in the system, the magnetization norm sharply

decreases in order to balance the exchange energy with the thermal agitation. The second

regime is the relaxation around the Zeeman field itself. The GCA model and the ASD

simulations are in good agreement concerning the characteristic times of these two regimes.

Fig. 4 displays the non-equilibrium profile of the average magnetization for hcp-Co as-

suming axial anisotropy, oriented along the z-axis, along with a small Zeeman field, also

along the z-axis, which ensures that the average magnetization aligns itself along the +z

direction. For T= 500K, the GCA leads to the same equilibrium magnetization as the ASD,

whereas for T= 1000K, the average magnetization norm, and the average magnetization

along the z-axis, calculated by the GCA, show deviations from the ASD calculations.

However, the GCA also fails to recover the transient dynamics of the relaxation found in

the ASD simulations. The ASD calculations indicate a lag for the magnetization, compared

to the results obtained by the GCA and even if the precession frequency of the two models

is the same, their dynamics are correspondingly shifted.

The origin of these departures for the transient regimes does not lie on the validity of the

closure assumption itself, but on the fact that an averaged truncated (to the second-order

spin moments) model is unable to recover the interacting magnon modes that are generated

inside the large 223 ASD cell.

Indeed, with a local anisotropy field only, the energetics of the spins is less constrained

because individual spins may equilibrate along the two directions of the anisotropy-axis. For

a large but finite ASD cell, with periodic boundary conditions, this has as consequence to

generate local spin configurations (small ”sub-cells” inside the large cell) due to the different

realizations of the noise. In order to dissipate these sub-cells, additional internal magnon

modes are produced. Their collective motion cannot be described by average thermal modes

13



(a)

(b)

Figure 3. Sub-figures show the relaxation of the average dynamics up to 20ps for 500K on graph

(a), and 1000K on graph (b), under a constant external magnetic induction of 10 T, applied on

the z-axis for initial conditions sy(0) = 1 on each spin, and λ = 0.1. ASD results are in solid lines

(〈sx〉 in black, 〈sy〉 in red, 〈sz〉 in blue and |s| in green), whereas dLLB results with the GCA are

in open circles.

only, as we can see in the very beginning of the transient regimes of both graphs of fig. 4. As

a consequence, the effective precession around the anisotropy field is not shifted and delayed

within the dLLB model with the GCA closure, whereas it is in the ASD simulation.

In order to enhance the agreement for the equilibrium magnetization state of both ASD

and averaged models, another closure method, more sophisticated than the GCA, is now

considered.
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(a)

(b)

Figure 4. Sub-figures show the relaxation of the average dynamics up to 20ps for 500K on graph

(a), and 1000K on graph (b), under an axial anisotropic field (Ka=4.17 meV) and a constant

external magnetic induction of 0.1 T, both applied along the z-axis. The initial conditions are

sx(0) = 1 on each spin, and λ = 0.1. ASD results are depicted in solid lines (〈sx〉 in black, 〈sy〉 in

red, 〈sz〉 in blue and |s| in green), whereas dLLB results with the GCA are shown in open circles

(see text).

C. Non-Gaussian closure

This method is inspired by studies in chaotic dynamical systems, where elaborate moment

hierarchies are typically encountered [46, 47]. Closure relations can be derived for the

hierarchy of moments for the invariant measure of dynamical systems [48]. The proof relies

on properties of the Fokker–Planck equation, and on the assumption of ergodicity [49].

However, we saw in the previous section that, depending on the magnetic interactions
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that are at stake, departures from ergodicity can be observed in the ASD simulations of

large cells.

Therefore, since the Non-Gaussian Closure Assumption (NGCA) presented below is only

expected to hold for ergodic situations, only the exchange and the Zeeman interactions

will be considered, or cases when the Zeeman interaction is stronger than the anisotropic

interaction, forcing each individual spin toward one possible equilibrium position.

The formalism can be presented as follows. Assuming ergodicity and with the cumulant

notation at hand, such a NGCA relation can be parametrized for a stochastic variable s as :

〈〈sisjsk〉〉 = a
(1)
i 〈〈sjsk〉〉+ a

(1)
j 〈〈sisk〉〉+ a

(1)
k 〈〈sisj〉〉

+a
(2)
ij 〈sk〉+ a

(2)
ik 〈sj〉+ a

(2)
jk 〈si〉 (23)

where coefficients a
(1)
i and a

(2)
ij are assumed not to depend on time, but only on system

parameters, such as D, ω and λ. These coefficients are assumed to be exactly zero when

D = 0, hence matching the GCA. These Non-Gaussian Closure Approximations (NGCA)

are tested with eqs. (7). The next logical step is to determine the values of these coefficients.

As the third-order cumulants are symmetric under permutation of the coordinate indices,

the coefficients a
(2)
ij are symmetric too, and only nine coefficients have to be determined.

According to Nicolis et al. [49], these coefficients satisfy constraining identities, that

express physical properties of the considered spin systems. However, finding the general

corresponding identities is quite non–trivial. To circumvent this difficulty, a fully computa-

tional approach was chosen. It is useful to stress that this approach is not without its proper

theoretical basis: these identities, indeed, express properties of the functional integral[42].

ASD calculations are used to fit the coefficients a
(1)
i and a

(2)
ij , for a given set of system pa-

rameters. At a given time, a distance function d, defined from the results of ASD simulations

and the new, closed model as :

d2(t) ≡
3∑

i=1

(
〈si(t)〉ASD − 〈si(t)〉

)2
+

3∑
i,j=1

(
〈sisj〉ASD(t)− 〈sisj〉(t)

)2
(24)

is computed and a least-square fitting method is applied. In this distance expression, each

term is weighted equally to avoid any bias. At each step of the solver, a solution of the system

of equations (eqs. (6), (7), (11), (12), (16) and (17)), closed by eq. (23)) is computed, and the
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distance function is evaluated. From the evolution of this distance, the method determines

a new guess for the coefficients a
(1)
i and a

(2)
ij . When the distance reaches a minimum, the

hierarchy is assumed to be closed with the corresponding coefficients.

In order to check the validity of the NGCA, this was applied for the simulation performed

at T=1000K presented in the previous section, as in these situations, neither the equilibrium

nor the transient regimes of the ASD simulations were recovered by the GCA.

A new trial is carried out by performing again the simulation of the second part of fig. 3.

At the equilibration time, a minimum distance is found by considering a restriction to the

third values only, thus we find a
(1)
3 = 0.145 and a

(2)
33 = 0.145. All the other coefficients are

assumed to be zero. As expected, these dimensionless coefficients are small, demonstrating

a slight departure of the GCA, which has to increase when the temperature increases. The

uniqueness of these coefficients is not obvious and may depend on the choice of the distance

function and its corresponding weights.

Fig. 5 displays the result of this closure, with and without the anisotropic interaction.

The two models present some slight differences in the beginning of the transient regime, but

quickly match. This could be surely managed by increasing the number of distance points

to match and by relaxing all the coefficients.

We now investigate the situation of including all interactions. For a different set of

equations, a similar situation has already been investigated previously [43], with a slightly

different closure method.

To close the hierarchy of moments in that case, an expression for the fourth–order mo-

ments 〈sisjsksl〉 is required. This is performed by assuming that the fourth-order cumulants

are negligible (i.e. 〈〈sisjsksl〉〉 = 0) and that each third-order moments are computed by

eq. (23). Yet again, one can systematically improve this hypothesis by increasing the num-

ber of desired coefficients up to this order such as :

〈〈sisjsksl〉〉 = b
(1)
i 〈〈sjsksl〉〉+ perm.

+b
(2)
ij 〈〈sksl〉〉+ perm.

+b
(3)
ijk〈sl〉+ perm.

Once again, invariance under permutation of indices enhances the symmetries of the b(2) and

b(3) tensors and reduces the number of independent coefficients.

As a test, if we take all these coefficients b to be zero, at equilibrium, a minimum is found
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(a)

(b)

Figure 5. Average dynamics up to 20ps for T=1000K, with λ = 0.1 and initial conditions

〈sx(0)〉 = 1. On graph (a), the situation of a constant external field of 10T applied along the

z-axis, and on graph (b), the case of an uniaxial anisotropic field (Ka = 4.17meV) and a constant

external field of 10T, both applied along the z-axis. ASD results are in solid lines (〈sx〉 in black,

〈sy〉 in red, 〈sz〉 in blue and |s| in green), whereas dLLB results with the NGCA approximation

are in open circles.

with a
(1)
3 = 0.07 in the case where the z-axis is preferred. Fig. 5 displays the results of the

application of the NGCA in that case. Again, the equilibrium state is recovered, even if

some differences remain in the transient regime.

By educated guessing, we saw that the NGCA allows to recover the equilibrium state of

the magnetization, and a much better agreement between ASD and dLLB models is also

observed during the transient regimes.
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IV. CONCLUSIONS

A new framework based on a functional calculus approach was presented in the SM [14]

associated to this article.

In section II, we showed that under controlled assumptions, this formalism can be applied

to the derivation of open hierarchies of LLB equations on the moments of the magnetiza-

tion dynamics. Within this study, the approach was limited to the situation of Markovian

processes, even if it can be applied to more general correlation functions of the noise.

In section III, we saw that when the magnetic interactions include the exchange (within

a mean-field approximation) and the Zeeman energy, a Gaussian closure assumption proved

sufficient to recover both the transient regime and the equilibrium state of the average

magnetization, for temperatures up to two-third of the Curie temperature.

For higher temperatures, or when a magnetic anisotropy is taken into account, departures

from the GCA can be observed. In those situations, a non-Gaussian closure method was

proposed. It proved to be efficient at recovering the equilibrium state, and to improve the

transient regime.

Finally, it has to be emphasized that those new sets of dLLB equations can be used

to directly recover macroscopic magnetic quantities in micromagnetic simulations, such as

the norm of the effective magnetization, the effective magnetic anisotropy, or the magnetic

stiffness due to the exchange interaction, as well as performing direct simulations of the

dynamics of nanomagnets. Only a prior knowledge of atomic-scale interactions (such as the

inter-atomic exchange interaction, or the per-atom magnetic anisotropy), is necessary.

The implementation of those dLLB models as fundamental equations of micromagnetic

numerical tools could greatly improve the accuracy of the latter, and lead to new method-

ologies allowing to bridge the gap between atomistic magnetic methods and micromagnetic

simulations.

Furthermore, whether they can describe deterministic chaos in micromagnetic systems

deserves further study [26].
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