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Heterogeneity in relaxation rates is a key feature of supercooled liquids.  It implies the existence 

of a rate-exchange process to restore ergodicity, but the experimental characterization of that 

exchange has been incomplete and controversial.  Here, a recently proposed, ensemble-based 

analysis is applied to single-molecule dichroism data to extract a detailed correlation function for 

rotational-rate exchange.  A large, late phase is 8.7±0.3 times slower than the probe rotation and 

22 times the alpha relaxation time, and it has its own exchange-rate dispersion.  A small, early 

phase tracks the initial rotational decay.  We propose that the late phase is due to molecules in 

the core of spatial regions of correlated rates and that the early phase is due to molecules on the 

boundaries.  The results imply that multiple processes and spatial fields are involved in the 

primary relaxation in supercooled liquids. 
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Rate dispersion (nonexponential relaxation) is a universal feature of supercooled liquids.  

Rate heterogeneity is widely accepted to be the dominant mechanism causing this dispersion [1].  

Knowing how these heterogeneities evolve to yield a homogeneous, ergodic system at long times 

is essential for understanding the dynamics leading to the glass transition.  Nonetheless, despite 

nearly three decades of study by a variety of experimental approaches—multidimensional NMR 

[2-13], deep photobleaching [14], probe-size dependent decay shape [15,16], Stokes-shift line 

shapes [17], and single-molecule [18-22] studies—there is still disagreement about nearly every 

aspect of rate exchange: its rate relative to alpha relaxation, its temperature dependence, whether 

fast structural relaxation correlates with fast exchange, and the extent of rate dispersion in the 

exchange itself. 

Single-molecule dichroism measurements, which monitor the rotation of a probe molecule 

in a supercooled matrix, have long promised to be a general and direct approach to this problem 

[18-22].  However, they have been hampered by several problems.  First, conventional probe 

molecules rotate too slowly relative to exchange [15,16,23,24]. Second, photobleaching of the 

probe molecule limits the dynamic range in time: low light intensities extend the time window, 

but also require larger time bins to collect sufficient signal.  Last and most disturbing, sampling 

noise—noise due to measuring a finite number of relaxations—is large and has seemed to be 

unavoidable [25-28].   

One of us recently identified the cause of the sampling-noise problem [29].  Conventional 

analysis of single-molecule kinetics rejects full ensemble averaging in favor of time averages of 

individual molecules.  Although such a molecule-by-molecule analysis is correct for a static 

heterogeneity, problems arise for systems undergoing exchange.  These systems are ergodic; 

averages over molecules and over time are equivalent.  Dropping the average over molecules 

cannot increase the information content of the measurement; it can only increase noise.   

The result is an apparent paradox in which exchange seems to be unmeasurable, even when 

it is physically relevant.  Without an average over molecules, sampling noise is approximately 

the square root of the number of rotations during the averaging time [30].  However, the 
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averaging time must be less than the exchange time, leaving an unavoidable amount of sampling 

noise in a single-molecule average.  Thus, molecule-by-molecule averaging does not produce 

erroneous results, but the correct results become increasingly obscured as the exchange becomes 

more rapid.  Measurements of exchange rates within an order-of-magnitude of the rotation time 

are impractical; the critical question of whether the rotation rate changes with a single rotation is 

unanswerable.  

The solution to this paradox is to retain full ensemble averages and their low noise, but to 

average a more complex quantity that can probe the heterogeneity of the system. More 

specifically, multidimensional correlation functions should be used.  A multidimensional 

analysis of single-molecule dichroism data from the vanden Bout group introduced this idea and 

used it to demonstrate the existence of rate heterogeneity [29].  However, that data set did not 

extend to times long enough to measure rate exchange.  About the same time, another of us 

developed a small, fast rotating probe molecule (BODIPY268).  With this probe, rate exchange 

became evident in single-molecule data, even using molecule-by-molecule analysis [31].   New 

theoretical work has discovered a “rate filtering” term [32] that was not accounted for in 

previous applications of 3D correlation functions [33-48] (see Supplemental Material (SM) [49]).  

Methods have been developed to create rate-correlation spectra, to use them to separate rate-

filtering from rate-exchange effects [50], to apply these theoretical ideas to real, experimental 

data, and to combine data sets with different time resolutions and ranges [51].  This 

Communication combines all these recent advances for the first time to give a quantitative 

measurement of rate exchange near the glass transition.  

In a dichroism experiment, a single molecule is excited with unpolarized light.   The 

fluorescence intensities along two perpendicular polarizations, I1(t) and I2(t), are measured as a 

function of time t.  The linear dichroism, 
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fluctuates as the molecule rotates, and an analysis of the resulting trajectories yields the 

rotational dynamics of the probe.  Dichroism dynamics are predominantly those of the second 

Legendre polynomial of the angle, although a variety of factors can cause small deviations from 

this ideal [52-54].  (These deviations bring in faster, higher Legendre polynomials and would be 

detected as homogeneous contributions to the rate dispersion in our multidimensional analysis.)   

 

FIG. 1.  The 1D correlation function (1)
rot 1( )C τ  at two temperatures, 247.5 K (Tg + 4.5 K, 

blue) and 244.5 K (Tg + 1.5 K, red).  Data (points) with different time ranges and 

resolutions are combined at each temperature ([51] and SM [49]).  The black curves are a 

global fit to both temperatures, assuming time–temperature superposition.  The 

geometric-mean times, rotT  =  15.6 s or 3.0 s, and total dispersion, drot = 4.3, are indicated 

for each temperature.  A single-exponential decay, with an arbitrary decay time, is 

shown for comparison (green, dexp = 1.645).  

The standard rotational decay comes from the 1D correlation function, 

 (1) 2
rot 1 1( ) ( ) (0)C D D Dτ τ=  , (2) 

where the brackets indicate a full ensemble average, over both time and molecules.  This 

quantity is shown for two temperatures as the red and blue symbols in Fig. 1.  As expected, 



  5 

time–temperature superposition works well over this small temperature range.  Figure 1 shows a 

fit to a common decay shape with a 5.2-fold time shift between the two temperatures (SM [49]).   

The 1D results are conventional, but they are described here by quantities that have been 

specifically designed to facilitate multidimensional analysis.  The time decay is converted to a 

“decay spectrum”, 
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which is a peaked function.  Its first moment is the geometric-mean time rotT  of the time decay 

and is similar to its half-life.  The variance of the decay spectrum, the total dispersion drot, 

measures the spread of the decay in time.  Its square root is similar to the time from the half-life 

to the quarter-life, in factors of e (Fig. 1).  For reference, the dispersion measured here, drot = 4.3, 

corresponds to β = 0.62 in a stretched exponential, exp[−(τ/Tst)
β].  For more detail, see Ref. [50] 

and SM [49].   

The total dispersion drot consists of a contribution from the expected exponential decay dexp 

and an excess dispersion, which consists of homogeneous dhom and heterogeneous dhet 

contributions.  The heterogeneous dispersion is the variance of the distribution of time constants 

on a log-time scale.  The excess homogeneous dispersion is identical to the variance of an 

inverse-Laplace transform of the decay, again calculated on a log-time scale.  In the case of a 

slowly varying heterogeneity, the decay spectrum is a convolution of spectra corresponding to 

each source of dispersion, and the variances are additive [50], 

 rot hom exp het d d d d= + +  . (4) 

The different contributions to the total dispersion are disentangled by the 3D correlation 

function, 

(3) 4
rot 3 2 1 3 2 1 2 1 1( , , ) ( ) ( ) ( ) (0)C D D D D Dτ τ τ τ τ τ τ τ τ= + + +  . (5) 
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Notice that all four measurements in the average must come from the same molecule and that the 

average is still over both molecules and time.  Thus, the 3D correlation function is an ensemble 

measurement, but it requires single-molecule data. 

 

FIG. 2.  2D correlation function as decay spectra (2)
rot 3 1

ˆ ( , )C T T .  Predictions for (a) pure 

homogeneous dispersion and (b) pure heterogeneous dispersion (SM [49]). (c & d) 

Spectra from the dichroism data at two temperatures.  (e) The difference between the 

predictions, (b) and (a).  (f) The difference between the mean of the data (c & d) and the 

heterogeneous prediction (ab).  Solid contours are at the ticks on the legends.  Dotted 

contours are at half the spacing of the full contours. 
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The multidimensional analysis begins with the τ2 = 0 slice of this function.  It is converted to 

the 2D decay spectrum [50], which is shown in Figs. 2(c) and 2(d).  These spectra show the 

correlation between two time constants, T1 and T3.  (Because a logarithmic scale is used, rates 

and time constants are equivalent.  They only differ by a sign.)  Every time constant correlates 

with itself, so there is always intensity along the diagonal.  Greater dispersion implies a broader 

range of time constants and an increased spread along the diagonal.  If the kinetics are 

homogeneous, every time constant in the sample occurs on the same molecule as part of the 

same kinetic scheme, and thus, each time constant correlates with every other time constant.  

Off-diagonal intensity is strong, so the spectrum is compact [Fig. 2(a)].  On the other hand, if the 

kinetics are heterogeneous, different time constants occur on different molecules and do not 

correlate.  Off-diagonal intensity is weak, and the spectrum is elongated [Fig. 2(b)]. 

The spectra calculated from the data are shown in Figs. 2(c) and 2(d).  The two data sets 

have been analyzed, fit and transformed independently ([51] and SM [49]).  After correcting for 

the time shift, as measured by the 1D data, the two spectra are nearly identical: the 2D 

correlation functions obey time–temperature superposition.  We do not believe the small 

differences between the spectra are real; they represent experimental error. 

The spectra in Figs. 2(c) and 2(d) are elongated along the diagonal, and thus, strong rate 

heterogeneity is present.  However, the spectra are not as elongated as the prediction based on 

heterogeneous dispersion alone [Fig. 2(b)].  The variances of the projections of the spectrum 

along the diagonal and antidiagonal are used to calculate fhet, which quantifies the location of the 

real spectra between the predicted limits ([50] and SM [49]).  Within a model based on slow 

exchange, this parameter gives the fraction of the excess rate dispersion due to heterogeneous 

processes, 

 het
het

hom het

d
f

d d
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+
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It is found to be fhet = 0.65±0.02 (mean of both temperatures with their range as the error 

estimate), suggesting a significant source of homogeneous dispersion.   

The slow-exchange model also predicts that the off-diagonal intensity, which is associated 

with the purported homogeneous process, will be distributed uniformly across all time constants.  

Figure 2(e) highlights the predicted distribution by subtracting the diagonal, heterogeneous 

spectra from the homogeneous spectrum.  In this model calculation, the positive (yellow) off-

diagonal  intensity is spread evenly along the diagonal.  In Fig. 2(f), the heterogeneous prediction 

is subtracted from the mean of the two experimental  spectra.  The positive intensity is focused 

on the early part of the decay, a deviation from the slow-heterogeneity model prediction [Fig. 

2(e)].  We will argue below that both the below unity value of fhet and the uneven distribution of 

off-diagonal intensity are not due to a homogenous source of rate dispersion, but rather are due 

to a subset of molecules that lie outside the slow-exchange limit. 

 

FIG. 3.  3D correlation function (3)
rot 3 2 1

ˆ ( , , )C T Tτ .  The average of the two temperatures is 

shown.  Each panel is normalized to unit volume.   
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The full 3D correlation function is calculated from Eq. (5) using all points with τ2 > 0.  

(Because the τ2 = 0 points contain an extra contribution from detector noise, they are only used 

in the 2D correlation [51].)  The 3D function is presented as a series of slices at fixed τ2, each of 

which has been transformed to a 2D spectrum (3)
rot 3 2 1

ˆ ( , , )C T Tτ  [50].  The results for each 

temperature are very similar (SM [49]), that is, time–temperature superposition holds again.  The 

mean of the two temperatures is shown in Fig. 3.   

 The evolution along τ2 is sensitive to rate exchange.  If a molecule has a time constant T1 

during τ1, but exchanges to T3 during τ2, those time constants will become correlated.  As 

exchange proceeds, off-diagonal intensity will build, broadening the spectrum in the antidiagonal 

direction and shrinking it along the diagonal [50].  This process is visible in Fig. 3, showing that 

exchange is occurring.  For τ2 longer than the exchange time, the 3D spectrum should look like a 

fully homogeneous 2D spectrum.  The predicted homogeneous spectrum [Fig. 2(a)] and observed 

3D spectrum at long τ2 [Fig. 3(d)] are quite similar, showing that the time range of the data fully 

captures the exchange.  
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FIG. 4.  The apparent heterogeneity  fhet(τ2) (solid red) extracted from the 3D correlation 

data (Fig. 3) compared to other relaxations.  The late phase of exchange has been 

separated and corrected for deviations from the slow-heterogeneity limit to give the 

correlation function of the molecular time constant (1)
ex 2( )C τ  [dashed red, Eq. (7)].  The 

1D correlation functions for full rotation (black, fit from Fig. 1), for dielectric alpha 

relaxation (blue) [55], and for orientational jumps (green) [11]are shown for comparison.  

The vertical line marks the 90% point of (1)
ex 2( )C τ .  Earlier times are minimally affected 

by late-phase rate exchange, but may be affected by the early phase. 

The exchange is quantified by calculating the apparent heterogeneity as a function of time 

fhet(τ2) (SM [49]).  The result is shown as the red curve in Fig. 4.  The exchange occurs in two 

phases, an early phase for τ2 ≲ 0.1  and a late phase for τ2 ≳ .   

 The parameter fhet(τ2) has been designed to eliminate contributions from rate-filtering 

during τ2 in the limit of slow exchange, exT  ≫ rotT  [50].  The late phase of fhet(τ2) has been 

separated and corrected for the residual rate-filtering effect [50] to give (1)
ex 2( )C τ  (Fig. 4, red, 

dashed curve).  This function can be quantitatively interpreted as the 1D correlation of the time-

dependent time constant for a specific molecule Trot(τ2):  
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The geometric-mean time of the late phase of exchange is exT  = 8.7±0.3 rotT .  The rotation time 

of our dye is slightly longer than the dielectric alpha-relaxation time Tα , due differences in the 

sizes of the probe and o-terphenyl molecules and due to differences in the Legendre polynomial 

Pn measured by optical (P2) and dielectric (P1) experiments [56].  Measurements show that rotT  

= 2.5 Tα  [31], which gives exT  = 22 Tα .  The late phase of exchange is not exponential, but 

rather, it has an excess exchange-rate dispersion of dex = 1.23±0.05 (β = 0.76).  A 

nonexponential exchange indicates that there is yet another process with a similar or longer 

relaxation time that holds memory of the exchange rate. 

The early phase of fhet(τ2) decays in concert with (1)
rot 1( )C τ .  This phase is close to the 

intermediate-exchange case, exT  = rotT , for which the theory of multidimensional correlation 

functions is less well developed.  As a result, the early phase of fhet(τ2) must be interpreted more 

qualitatively.  If a molecule retains its rotation rate for two rotations, one during τ1 and another 

during τ2, it will appear heterogeneous.  If a molecule retains memory of its rotation rate for one 

rotation, but not two, it will contribute to dispersion in the 1D decay, but it will not appear to be 

heterogeneous in a multidimensional measurement.  In other words, the intermediate-exchange 

molecule will appear to have homogeneous dispersion.  In an ensemble with intermediate-

exchange heterogeneity, a combination of these effects would occur: apparently homogeneous 

dispersion along with rapidly decaying fhet(τ2).  Thus, a single subset of molecules with 

intermediate exchange rates would account for the high off-diagonal intensity and the apparently 

low heterogeneity in the 2D measurements and for the early phase of fhet(τ2) in the 3D 

measurements.  Both the 2D and 3D measurements show that these intermediate-exchange 

molecules are concentrated in the fast part of the rotational-rate distribution. 

Rate heterogeneity occurs in well-defined spatial regions [1].  These domains provides a 

plausible explanation for the biphasic exchange.  Molecules in the bulk of the domains rotate 

slowly and exchange even more slowly.  The boundaries between domains have less stable local 

configurations, so molecules in them rotate rapidly and exchange just as quickly.  In this 
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interpretation, the early and late phases of exchange represent boundary and bulk molecules, 

respectively. 

Previous reports of exchange dynamics have given a variety of results, ranging from much 

faster to much slower than the current value.  The analysis of very similar single-molecule data 

with molecule-by-molecule methods identified the slower exchange components seen here, but 

not the faster ones [31].  This result is consistent with the expectation that molecule-by-molecule 

methods will have greater problems identifying faster exchange times [28,29].  Studies of 

rotational-rate dispersion versus probe size reported exT  ~ 2 Tα  [16], ten times faster than our 

result of exT  = 22 Tα .  Studies of solvation line shapes [17] and of solvation-rate dispersion 

versus probe size [15] indicated that exchange is more than 9 or more than 20 times slower than 

solvation, respectively.  The interpretation of the solvation results depends on whether the 

solvation time is the same as the alpha-relaxation time [57] or ten times faster [16].  NMR 

experiments reported exchange in the rate of orientational jumps jmpT  rather than in the rate of 

full rotation (SM [49]) [2-13].  In o-terphenyl, they found a range of exchange times spreading 

over a decade in time and centered near exT  ~ 0.3 Tα  [11].  Although there is some overlap, 

most of their reported exchange is faster than ours.  (Because the fast-exchange components, 

those with exT  < rotT , would not contribute to the rate dispersion of the full rotation, it is not 

clear whether the NMR results are compatible with the strong rate dispersion seen in the 1D 

rotational decay.)  Deep photobleach experiments reported power-law exchange decays 

extending to hundreds of times the alpha-relaxation time [14].  They also found that the 

exchange rate changes with temperature much more rapidly than expected from time–

temperature superposition.  Both of these results disagree with ours.   

Two limiting cases help to guide the interpretation of our results: exchange is either 

simultaneous with the primary structural relaxation of the liquid or quasi-static with respect to it.  

Which limit is more correct depends on which phase of exchange and which aspect of structural 

relaxation we consider. 
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Relaxation occurs through a sequence of jumps, each small relative to a molecular 

dimension.  These jumps are arguably the fundamental reorganization event that drives 

relaxation, in which case, rate exchange is equivalent to a change in jump rate.  In the case of 

rotation, NMR measurements indicate a jump angle of ~10° in o-terphenyl [58].  A simple model 

[59] and the measured jump angle give the P1-rotation time as Tα  = 66 jmpT .  Thus, exT  ≈ 

1.4×103 jmpT .  On average, molecules in the bulk of the domains undergo thousands of jumps 

before changing their rate.  Figure 4 shows the jump-correlation function from NMR [11] along 

with the exchange-correlation function.  The jump correlation has completely decayed before 

late-phase exchange begins.  For molecules in the bulk of the domains, even the slowest 

orientational jumps occur with a quasi-static jump rate.   

However, the early phase of exchange does overlaps the jump-correlation function in time.   

Because the effects of exchange become averaged as the exchange become faster than rotation, it 

is possible that this phase is somewhat faster and larger than it appears.   For molecules in the 

domain boundaries, jumps and exchange could be nearly simultaneous.  The structural 

reorganization associated with a single jump might strongly affect the rate of the next jump. 

Multiple small jumps eventually lead to motion on a molecular dimension.  For example, the 

dielectric alpha-relaxation time Tα  measures reorientation of the host molecule over ~180°.  

Comparing mean times, exT  = 22 Tα , shows that most o-terphenyl molecules make many full 

rotations before rate exchange occurs.   

However, the rates of rotation and of exchange are distributed, and mean times may not 

capture the complete story.  The full dielectric alpha-relaxation function [55] has been plotted in 

Fig. 4.  The vertical line approximately separates time regions where late-phase exchange is and 

is not important.  The tail of the alpha relaxation falls in a region where exchange is beginning to 

be active.   

This result relates to a common observation.  When stretched relaxations are expressed as a 

distribution of rates, the distribution typically has a long tail for fast rates, but a sharp cut-off for 

slow rates.  For example, stretched exponentials have this type of distribution. It has been 
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hypothesized that rate distributions are intrinsically more symmetric, but that very slow rotation 

is disrupted by exchange to a faster rate [1,60].  Looking at the region affected by exchange in 

Fig. 4, this scenario may apply, and a subset of slow molecules may have their rotation affected 

by exchange. 

To summarize, for the majority of molecules, rate exchange is slow compared to structural 

relaxation.  However, subsets of molecules that are in the boundaries of domains or that are in 

the tail of the rate distribution might exchange in as little as one relaxation event.  The size of 

these subsets will vary with the mean time and dispersion of the particular process being 

considered.  

The overall slowness of exchange is not compatible with theories that have structural 

relaxation and exchange coming from the same mechanism.  An example is the Random First-

Order Transition (RFOT) explanation for rate heterogeneity [60].  In this theory, a mosaic of 

“phase droplets” defines both the local structure and the local relaxation rate.  Nucleation and 

growth of a new droplet changes both.  Whether this event is associated with a single 

reorganizational jump or with alpha relaxation, exchange should be simultaneous with 

relaxation.  The exchange rate we find is too slow for this prediction. 

Our explanation for biphasic exchange is based on spatial domains defined as a group of 

molecules with a common alpha-relaxation rate.  The exchange rate is the lifetime of these 

domains.  In other discussions, a domain is defined as a cluster of molecules undergoing 

cooperative motion [61].  If structural relaxation and exchange are simultaneous, this distinction 

is unimportant, and only one type of spatial domain exists.  In the RFOT example, a phase 

droplet defines the spatial range of both cooperative reorganization and common relaxation rate.  

However, if slow exchange implies that there are different processes for relaxation and 

exchange, there may be different spatial domains connected with each process.  

In summary, an ensemble-based approach to analyzing single-molecule data allows rate 

exchange to be measured with quantitative accuracy.  The observation of two phases in the 

exchange decay is consistent with the common, domain picture of supercooled liquids, with the 
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late and early phases of exchange assigned to the bulk and boundaries of the domains, 

respectively.  The slowness and nonexponential relaxation of the bulk exchange show that full 

equilibration of supercooled liquids requires process beyond those creating alpha relaxation.  

Single-molecule measurements can now provide the experimental data needed to study those 

processes. 
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