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Abstract: We developed a powerful computational approach to elaborate on the onset mechanisms of determin-
istic chaos due to complex homoclinic bifurcations in diverse systems. Its core is the reduction of phase space
dynamics to symbolic binary representations that lets one detect regions of simple and complex dynamics as
well as fine organization structures of the latter in parameter space. Massively parallel simulations shorten the
computational time to disclose highly detailed bifurcation diagrams to a few seconds.

New directions in science are launched by new tools
much more often than by new concepts. Dyson F. [1].
Break-through discovery of deterministic chaos in [infra-
red gas| lasers in nonlinear optics was established and pi-
oneered both theoretically and experimentally long time
ago [2-6]. Recent developments in semiconductor lasers
and nano-optics have stimulated newest advances in op-
tical synchronization and photonic integrated circuits for
the needs of cryptography [7-12]. Nowadays, a real ad-
vance in deterministic nonlinear science stimulating the
progress of cutting-edge engineering is hardly possible
without significantly deepening the knowledge and ben-
eficial usage of complex elements borrowed from dynam-
ical systems theory. This in turn is hardly possible with-
out development and incorporation of new mathematical
and computational tools, including for parallel Graphics
Processing Unit(GPU) based platforms.

In this letter we demonstrate how our newly developed
toolkit, called “Deterministic Chaos Prospector (DCP),”
along with the bifurcation-parameter continuation tech-
nique, lets one quickly and fully disclose and elabo-
rate on the origin of complex chaotic dynamics in a
6D model of a resonant 3-level optically-pumped laser
(OPL) [13, 14]. In addition to simple dynamics associ-
ated with stable equilibria and periodic orbits, it reveals
a broad range bifurcation structures that are typical for
many ODE models from nonlinear optics and other di-
verse applications [15-21]. These include homoclinic or-
bits and heteroclinic connections between saddle equilib-
ria that are the key building blocks of deterministic chaos
in most systems. Their bifurcation curves with char-
acteristic spirals around T(terminal)-points along with
other codimension-2 points are the organizing centers
that shape regions of complex and simple dynamics in
the parameter space of such systems. The detection of
these bifurcations has long remained the state-of-the-art
involving a meticulous and time consuming parameter
continuation technique to disclose a few sparse elements
of the otherwise rich and fine organization of the bifur-
cation set. We note that while the brute-force approach

based on the evaluation of Lyapunov exponents can ef-
fectively locate stability windows within regions of chaos
[22, 23], it fails to disclose these essential structures that
are imperative for the exhaustive understanding of com-
plex dynamics and their origin. We will demonstrate
how our approach exploiting the sensitivity of determin-
istic chaos and its symbolic representation using binary
sequences combined with Lempel-Ziv complexity algo-
rithms [24], can effectively reveal regions of complex,
structurally unstable and simple stable dynamics in this
and other systems.

The 3-level optically pumped laser model [13, 14] is given
by

B =—0pB+ 50pas,

P21 = —pa1 — Bp31 + aDay,

P23 = —pa3 + BDa23 — apaz,

P31 = —p31 + Bp21 + apas, (1)
D1 = —b(Day — DY) — dapa1 — 2Bpos,

Das = —b(Das — DY3) — 2apa1 — 4Bpas,

with parameters a, 8, and o = {1.5; 10}, being the Rabi
flopping quantities representing the electric field ampli-
tudes at pump and emission frequencies, and the cavity
loss parameter, resp.; b is the ratio of population to polar-
ization decay rates; p;; is the normalized density matrix
element corresponding to the transitions between levels 4
and j, while D;; is the population difference between the
i-th and j-th levels. Note that Eqgs. (1) are Zo-symmetric
under the involution (8,pa1,pas,ps1, D1, Des) <«
(=B, p21, —p23, —p31, D21, D23), which is typical for
Lorenz-like systems [17, 25]. Depending on (a, b)-values,
the laser model (1) has either a single non-lasing steady
state, O, or an extra pair of equilibria, C* (Fig. 1a),
emerging as O loses stability through a pitch-fork (PF)
bifurcation and becomes a saddle. All three steady states
can independently undergo super-critical Andronov-Hopf
(AH) bifurcations (curves labelled with AH and AH; o
in the (a, b)-parameter plane in Fig.2) giving rise to sta-
ble periodic orbits (PO) in the phase space of the laser



model (1). Both structural and dynamical instability in

i 10100101... 10100101...
Q (@)t + _(b) = %10100110...% ()
3
[a]
I L] L]
55 A
3l{11..} M : time 50
S (d) e) f)
@
[a]
|
(101} y
o {0011} {101}
-3 B 33 B 3-1.7 B 3

FIG. 1. (color online) (a) (8, —D23)-phase space projection
showing the primary homoclinic orbit (red, coded as {1})
splitting leftward/rightward (green/blue, {11...} or {11...})
when the separatrix I'; misses the saddle O (black dot) after
completing a single turn around the saddle-focus CT, with the
Lorenz attractor (in grey) in background (b) Chaotic transient
of I'1 generating a binary sequence starting with {10100101...}
(c) Time-evolutions of the -coordinate of I'y (in (b)) and of
a close trajectory (red), and their binary codes, before they
diverge. (d) Two stable symmetric POs coded as {01}) and
{0011} (e) Heteroclinic connections (red {101}, blue symmet-
ric counterpart) at the Ti-point (Fig. 2) (f) Samples (P;) of
the primary homoclinic orbit morphing to a double loop af-
ter the inclination-flip, IFi, on the curve Hp in the (a,b)-
parameter plane in Fig.2; here o = 1.5

the model are due to an abundance of homoclinic bifur-
cations (H B) of the saddle O, whose 1D unstable separa-
trix T'; (and the symmetric counterpart I'y) densely fills
out the two spatially-symmetric wings of the butterfly-
shaped strange attractor (Fig. la,e) [25]. As parameters
are varied I'; constantly and unpredictably changes its
flip-flop switching patterns within the Lorenz attractor.
These patterns change whenever I'; comes back to O to
undergo a homoclinic bifurcation. This observation is the
core for the proposed symbolic approach that converts
chaotic and periodic patterns of I'y around the equilibria
C* into binary sequences {k,} as follows:

i 1, when the separatrix I'; turns around C;
" 10, when the separatrix I'; turns around C~.

As such, the periodic sequence {111...}, or {1}, corre-
sponds to I'; converging to the equilibrium state CT or a
periodic orbit emerging from it through AH-bifurcation,
while the sequence {100...} or {10} corresponds to I'y
converging to C~ and so forth. Wherever small param-
eter variations do not change I'y-progressions and hence
their binary representations, the system demonstrates
structurally stable dynamics, which can be due to stable
equilibria or periodic orbits (PO), such as the symmetric
POs turning once [figure-8 shaped] or twice around C~
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FIG. 2. (color online) (a, b)-parameter sweep of [5—12]-length
reveals an abundance of homoclinic bifurcations emerging
from two cod-2 points, [ Fy & [F», on Ho, that corresponds to
the primary homoclinic butterfly of saddle O, along with self-
similar characteristic spirals around T-points, labelled 71,2,
corresponding to distinct heteroclinic cycles between O and
saddle-foci C*. Cod-2 Bogdanov-Takens, BT, unfolding in-
cludes Andronov-Hopf AHy, AH;i 2 and pitch-fork PF bifur-
cation curves for O and C*, resp.; here o = 1.5.

and C™" in Fig. 1d, with corresponding binary sequences
{01} and {0011}, resp. An aperiodic binary sequence is
associated with chaotic dynamics that is characterized by
the sensitive dependence on small parameter variations
that change I';-progressions and corresponding symbolic
sequences (Fig. 1c). Changes occur at homoclinic bifur-
cations when I'y comes back to saddle O. The primary
homoclinic orbit (shown in Fig. la,f) coded with a fi-
nite sequence {1} separates periodic patterns coded as
{1} and {10}. It occurs on the bifurcation curve Hy
in the (a,b)-parameter plane in Fig. 2. There are two
special points labeled as I'F; and IF5 on Hy that cor-
respond to the so-called inclination-flip (IF) bifurcation
of codimension-two [26]. Its feature is that it gives rise
to instant homoclinic chaos in the phase space and com-
plex bifurcation structures in the parameter space of the
system. With our new computational-symbolic toolkit
we can clearly and quickly identify such bifurcations and
their fine organizations in the parameter space along with
regions of chaotic and regular dynamics. First, we define
a formal power series P(N) for a finite binary sequence
{k,} of length N, after omitting the first j symbols for
initial transients of the separatrix I'y or any other trajec-
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FIG. 3. (color online) (a) Short [8-15] and (b,d) long [100—
123]-length (a, b)-sweeps reveal fine self-similar organization
of homo- and heteroclinic bifurcations underlying the regions
of chaotic and regular dynamics of model (1) for o = 1.5. A
small area (white box) in (a) is magnified with a longer [15—
22]-sweep in (c). (b,d) reveal stability windows (solid colors)
within “noisy” regions of structurally unstable chaos; white
lines demarcate boundaries of some stability windows.

tory, as follows:

J+N

P(N)= Y

n=j+1

Fn
ST 2)

By construction, the range of P(N) is [0, 1], including the
sequences {0} and {1} (in the limit as N — oo). For ex-
ample, P(8) for the aperiodic sequence {10100101} gen-
erated by I'; in Fig. 1b, with 7 =0 and N = 8, is given
by: P(8) = 1/28 +0/27 +1/26 +0/2° +0/2* + 1/23 +
0/2% + 1/2' = 0.64453125. The P-quantities are used as
invariants to discriminate or conjugate finite progressions
of the separatrix I'; of the saddle against each other to
identify and trace down corresponding bifurcation curves
in the parameter space. Moreover, the quantities gener-
ated from long periodic and aperiodic binary sequences
let us efficiently detect regions of regular and chaotic dy-
namics, resp. Keeping o fixed at 1.5 or 10, we 1) vary a
and b to get a bi-parametric sweep on a 2000x2000 grid 2)
to follow I'1-progressions 3) generating binary sequences
{k,} that 4) result in P(N)-quantities. Next 5) we col-
ormap all found P(N) values onto the parameter plane,
where regions are identified by their equivalent colors,
and the borderlines between adjacent regions correspond
to homoclinic bifurcation curves. The colormap differen-
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FIG. 4. (color online) [2-9]-length sweep discloses organiza-
tion of homo/heteroclinic bifurcations originating from cod-2
inclination-flip I F5> and multiple T-points: primary 7o coded
as {10}, secondary T; as {101}, and a pair T4 — T5 with
code {110} separated by a saddle (S) in the (a,b)-parameter
plane; here ¢ = 10. Inset (a) shows a larger (a,b)-sweep of
[1-7]-length; (b) [16-23]-long sweep depicts dense loci of ho-
moclinic bifurcation curves originating from IF5.

tiates between P(N)-values grouped into 224 bins with
preset RGB-color values. Such sweeps can be massively
parallelized by running separate threads on a GPU. For
example, the sweep of [5-12]-length, i.e. with the first five
symbols omitted, shown in Fig. 2 takes about 8 seconds to
run on a Tesla K40 GPU by Nvidia. It is superimposed
with the curves, obtained by parametric continuation,
corresponding to pitch-fork (PF'), Andronov-Hopf (AH,
and AH; 5 for O and CF) and the primary homoclinic
(Hyp) bifurcations all originating from the codimension-
2 Bogdanov-Takens point (BT') [26]. Fig. 1f shows how
the primary homoclinic loop transmutes into a double
loop along the curve Hy. The sweep reveals the way
the inclination-flip IF; and IF5 points give rise to jets
of homoclinic bifurcation curves spiraling to various self-
similar cod-2 Bykov terminal T-points, including Ty and
T1, that correspond to heteroclinic connections linking
the saddle O with saddle-foci C*, C~ and generating
periodic sequences {10}, {101} (Fig. le), resp.

Figure 3a shows that with longer sequences we can ob-
tain more detailed sweeps disclosing multiple T-points of
smaller scales near the saddle point, S, that are not seen
in Fig. 2. These spiral structures around T-points (iden-
tical to T and T% in Fig. 4) morph into closed loops (like
those shown in Fig. 3c) after collapsing into the saddle



FIG. 5. (color online) Fragment of the 3D (a, b, o)-parameter
space (based on a 2000 x 2000 x 2000 grid) depicting vari-
ous nested elliptic and hyperbolic paraboloids whose contour
curves appear as spirals around T-points, and/or concentric
circles near saddles in the bi-parametric sweeps in Figs. 2-4.

as o-parameter is varied (shown in Suppl. Movie 1 [27].)
Figures 3b,d present the sweep of [100-123]-length, i.e.,
after skipping the first 100 transient symbols. Here re-
gions with solid colors of constant P(23)-values represent
the stability windows corresponding to simple (periodic)
Morse-Smale dynamics, whereas multi-colored noisy re-
gions refer to structurally unstable chaotic dynamics, as
described later.

The (a, b)-sweep of [2-9]-length in Fig. 4 demon-
strates the intrinsic re-arrangement of the bifurcation
constituents of complexity for a different cut at o = 10.
Here, the secondary inclination-flip point, (IFy), gives
rise to loci of outgoing homoclinic curves that are re-
directed by a saddle point (S), and spiral onto multiple
T-points. The heteroclinic connections at the T-points,
To-Ts, are given by {10}, {101}, {110}, and {1}, re-
spectively. The T-points T3 and T3, separated by the
saddle S, correspond to the same heteroclinic connec-
tion {110}. Note that here the primary homoclinic curve
spirals onto the primary T-point 7. The T-point T3
belongs to the stability window dominated by the sym-
metric figure-8 periodic orbit (Fig. 1d) in the long run.
The semi-annular structures around C are, in fact, the
remnants of the spirals around T3, where the other halves
of the spirals are disintegrated by the stable periodic or-
bit existing near T3. With small o-variations, T3 crosses
over the stability boundary near C, so that both ends
of the semi-annular structures merge to complete spirals
around T35 (as demonstrated in Suppl. Movie 2 [27].)
Meanwhile, T-points T3 and T3 merge with the saddle
S to transform into concentric cycles. These structures
in the 2D sweeps are the contour curves of the corre-
sponding surfaces in the 3D (a,b, o)-parameter space of
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FIG. 6. (color online) Long [1000-1999]-length sweeps to de-
tect a multiplicity of stability windows (solid colors; dark red
due to stable PO {0011}) in Fig. 1d) within noisy/multi-color
regions of chaos adjacent to IF; and IF» points in the (a, b)-
parameter plane using PC algorithm in (a) and (c), and LZ-
complexity in (b) and (d). Sweeps at 0 = 1.5 (a,b) and o = 10
(¢c,d) to compare with Fig. 2 and 4.

the model (1). Figure 5 demonstrates this saddle as the
critical point of the 3D surface shaped as a hyperbolic
paraboloid, constructed using 8 billion trajectories in the
parameter space. Depending on the particular o-cuts,
the contour lines of the bent scroll-shaped surfaces may
look like spirals or closed concentric circles in the projec-
tions in Figs. 2-4. While a detailed sweep for short-term
transient dynamics lets us reveal the underlying homo-
clinic bifurcations, longer sweeps omitting initial tran-
sients are designed to localize stability windows corre-
sponding to regular dynamics and regions of chaotic dy-
namics in the parameter space. We implemented two
algorithms into our computational DCP toolkit to clas-
sify such regions depending on whether the correspond-
ing binary sequences of solutions are periodic or not for
the given parameter values. The first algorithm based
on Eq. (2) includes periodicity correction (PC) to iden-
tify periodic structure within a binary sequence and to
normalize it to its smallest valued circular permutation.
For example, the symmetric figure-8 periodic orbit in
Fig. 1d is coded with {01}) not with {10}. The second
algorithm utilizes the Lempel-Ziv-76 (LZ) compression
[24], to determine the normalized complexity (the num-
ber of words in vocabulary per sequence length) of the
binary sequence. The LZ compression algorithm scans
a sequence from left to right and adds a new word to



the vocabulary every time a previously unencountered
substring is detected. Since all circular permutations of
a periodic orbit have the same complexity, with this ap-
proach we can also detect stability windows amidst struc-
turally unstable chaotic regions. This approach requiring
only one solution per parameter set complements more
expensive computational approaches based on the evalu-
ations of the largest or several Lyapunov exponents.
Figure 6 represents the bi-parametric [1000-1999]-long
sweeps to identify regions of simple and complex dynam-
ics in model (1); here insets a/c and b/d represent the
PC- and LZ-algorithm based sweeps, respectively. Re-
gions of solid monotone colors correspond to the sta-
bility windows with stable equilibrium states and pe-
riodic orbits, while multi-colored noisy regions indicate
that the dynamics are structurally unstable and chaotic.
The sweeps in Figs. 5a-b (at ¢ = 1.5) are superimposed
with the primary and secondary inclination-flip points,
IFy and IF5, along with the primary T-point T located
next to the boundary between the regions of chaotic and
stable periodic dynamics. They reveal multiple stabil-
ity windows adjacent to I Fy and IF5 (magnified insets),
including the wide one (in dark red) corresponding to a
stable periodic orbit {0011} (shown in Fig. 1d). This
approach can clearly identify distinct periodic orbits and
their stability windows mapped by different colors. Note
that same stability windows (indicated with same colors)
emerge near both IF} and I F in the reversed order. The
sweeps in Figs. 5¢c-d (at o = 10) depict the primary T-
point Ty located inside the region of chaotic dynamics,
and the stability windows accumulating to I F,. We note
that the PC-algorithm lets one detect and identify a va-
riety of stable periodic orbits efficiently even with short
symbolic sequences (see Figs. 2b,d) compared to quite
long sequences required by the LZ-algorithm that suits
better for the detection of chaotic regions. This observa-
tion suggests the order to analyze the given sequence is to
run it first through the PC-algorithm to detect periodic
orbits, and next through the LZ-algorithm to detect com-
plexity of aperiodic strings on a GPU. Other future en-
hancements for the DCP toolkit are to include the search
algorithms for bifurcations of equilibrium states and pe-
riodic orbits such as period-doubling.

In conclusion, we have demonstrated the proficiency of
the new symbolic toolkit for computational studies of
both transient and long-term solutions to analyze the bi-
furcation mechanisms underlying the onset of chaotic and
regular dynamics in the phase and parameter spaces of
the given OPL model and similar deterministic systems.
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