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Invasion of Turing patterns into a region of bulk oscillations was investigated in the Belousov-
Zhabotinsky-Aerosol OT reverse microemulsion system. Three distinct mechanisms for the forma-
tion of Turing structures at the expense of the bulk oscillation region were observed: ”frozen waves,”
which have been reported previously in this system, and ”reflecting waves” and Turing-Hopf fronts,
which have not. Turing-Hopf fronts appeared as the outer rings in this quasi-two-dimensional sys-
tem with an amplitude intermediate between those of the Turing pattern and the phase waves in
the bulk oscillation region. Three dimensional Turing-Hopf shells (outer layers of 3D balls) were
also observed.

I. INTRODUCTION

There are many examples of synchronized oscillations
and pattern formation in the natural world as well as
in engineered systems. Patterns form from a variety of
fundamental instabilities and bifurcations, including the
Hopf bifurcation and the Turing instability [1]. In the
(supercritical) Hopf bifurcation, as the bifurcation pa-
rameter is changed the stable steady state becomes un-
stable and a stable limit cycle emerges, leading to oscilla-
tion of the system in time but not in space. In the classic
case of the Turing instability, the uniform steady state
is destabilized by the Fickian diffusion [2] of the com-
ponents, and finite wavelength perturbations can grow,
resulting in the development of patterns that are periodic
in space, with an intrinsic wavelength, and stationary in
time. The short range activation-long range inhibition
paradigm that characterizes this instability can also be
generated by other, non-diffusive spatial interactions [3].

It is possible to have bulk oscillations or Turing pat-
terns that do not uniformly fill the domain (e.g., par-
tial synchronization seen in chimera states [4] or local-
ized Turing pattern domains [5]) and also to have co-
existence of Hopf and Turing domains in a system with
both bifurcations. Turing and Hopf bifurcations occur
together in a variety of systems. They can be found in
models of biological (predator-prey dynamics [6], neural
activation [7]) and physical (non-linear optics [8], semi-
conductor [9]) systems, and, of course, chemical systems,
which include the prototypical CIMA system for Tur-
ing pattern formation [2] and the Belousov-Zhabotinsky-
Aerosol OT (BZ-AOT) system of our present study [10]
as well as biochemical reaction networks [11] and elec-
trodeposition [12]. When the Turing and Hopf instabil-
ities interact, they can form patterns that are periodic
both in time and in space. Some examples of mixed
mode Turing-Hopf (MM T-H) behavior are oscillatory
Turing patterns [13, 14], and oscillatory localized pat-
terns [15], which been obtained in experiments on chem-
ical reaction-diffusion systems.

Experiments on such systems supported by theoretical

work have established that when one localized domain is
embedded in or otherwise in contact with the other, the
domain interface formed by the Turing pattern can be
stationary [16–18] or it can move [15, 18], leading to the
growth of one pattern domain at the expense of the other.
Theory predicts that these domain interfaces can reverse
spontaneously at a critical parameter value [19, 20] and
that noise can increase the range within which destabi-
lization can occur [21]. Recent experimental results have
shown a phase-diffusion-like front between bulk oscilla-
tion and emerging Turing patterns [22]. MM T-H front
structures between the domains have also been predicted
[19].

Here we describe emerging Turing pattern domains
that invade a region of bulk oscillation. Our major obser-
vation is the theoretically predicted MM T-H front struc-
ture, which we demonstrate by analyzing the amplitude
(magnitude of brightness) of the pattern. In addition to
the front structure, we observe different domain interface
interactions, i.e., ”frozen wave” dynamics [15] and a new
phenomenon that we dub ”reflecting waves”.

II. EXPERIMENTAL

All reagents were purchased from Sigma-Aldrich, ex-
cept AOT, which was obtained from ACROS Fisher.
Two different microemulsion stock solutions were pre-
pared in order to prevent the BZ chemical species from
reacting. The first microemulsion (MEI) contained mal-
onic acid (MA), and sulfuric acid, and the second (MEII)
contained bromate and ferroin. MEI and MEII contained
equal amounts of 1.5 M AOT in cyclooctane. Both MEI
and MEII were stirred for approximately 45 min. The
microemulsions MEI and MEII were then combined at a
1:1 ratio, and cyclooctane was added to the resulting mi-
croemulsion to control the water droplet volume fraction
(φd = [water]/[oil]). The time elapsed between combining
MEI and MEII with cyclooctane and transferring the re-
acting microemulsion to the reactor was approximately
1 min. The concentrations of the BZ reactants for the
aqueous phase of the reacting microemulsion were [mal-
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onic acid (MA)] = 0.25 M, [H2SO4] = 0.20 M, [NaBrO3]
= 0.20 M, and [ferroin] = 0.01 M. The [water]:[AOT] ra-
tio of the reacting microemulsion (ω) was 12.347, and the
water droplet volume fraction was φd = 0.60. While the
patterns shown here have a φd = 0.60, Turing-Hopf fronts
were observed over a large range of lower φd values, down
to 0.35.

The BZ-AOT system is able to produce a number
of different types of qualitatively different patterns over
its parameter space. Near the region where we re-
port Turing-Hopf front formation, Turing patterns have
been observed with: [MA] = 0.25 M, [H2SO4]=0.20 M,
[NaBrO3] = 0.20 M, [ferroin] = 0.01 M, ω = 13.9, φd =
0.348 [10]. Dashed waves have been reported nearby in
parameter space with [MA] = 0.3 M, [H2SO4] = 0.2 M,
[NaBrO3]= 0.18 M and [bathoferroin] = 0.0049 M, ω =15
and φd= 0.36 [23] with segmented spirals at the same con-
ditions with a different φd (0.71) [24]. It is thought that
the interaction of excitable waves and the Turing insta-
bility is responsible for these segmented patterns. [25].
Localized Turing rings have been observed previously in
this system as well with [MA]w =0.25, [H2SO4]w =0.25,
[NaBrO3]w = 0.2, [bathoferroin]w = 0.0049.[X]w denotes
the concentration of species X in the aqueous phase. φd=
0.41, ω = 15 [15]. These patterns later developed into os-
cillons, and were suggested to be due to the subcritical
Turing instability interacting with the Hopf instability.

We carried out quasi-2D experiments using two glass
windows separated by a Teflon gasket of 0.09 mm thick-
ness. The glass windows were contained in a sealed reac-
tor body. Light was passed through the bottom of the re-
actor to allow images to be captured by a charge-coupled
device (CCD) camera. Images were captured at one im-
age per second. MATLAB was used to make space-time
plots of the patterns and to determine the speeds of the
Turing-Hopf fronts.

We employed a cylindrical quartz capillary with an
internal diameter of 0.5 mm for the 3D experiments
[10]. This capillary was sealed and then submerged in
an index-matching fluid (cycloctane). For reconstruc-
tion purposes, the capillaries were rotated at 4.5 sec-
onds/revolution. Images (over several rotations at each
time point) were acquired using CCD cameras. The in-
verse Radon transform was used in MATLAB in order to
tomographically reconstruct the three-dimensional cap-
illary and the pattern from the two-dimensional projec-
tions over one rotation [10].

III. RESULTS

III.1. Quasi-two-dimensional Turing-Hopf Rings

Figure 1 shows the invasion of Turing patterns into
a bulk oscillation domain via Turing-Hopf front rings in
our quasi-two-dimensional reactor. The rings are the re-
gions of bright amplitude (high concentration of oxidized
catalyst) around the spots and spot-pairs. There is also

Turing-Hopf advancement from the bubble in the upper
right corner. Figure 2 details the development of the indi-
cated target-shaped invasion structure. Turing patterns
are present within the rings while the bulk oscillation re-
gion is outside. A supplemental online video shows the
time evolution of these patterns [26].

Figure 2 shows in more detail the development of one
of the spontaneously formed invasion centers in Figure 1.
Panel (A) shows the development of the pattern in space,
with a uniform region in (a) giving way to a symmetry-
breaking localized spot (b) and then surviving a bulk
oscillation (c). Image (d) in this figure shows the Tur-
ing rings that form behind the Turing-Hopf ring front.
The last image of this sequence shows the low-amplitude
Turing patterns that remain after many minutes in this
batch system.

Panel (B) of Figure 2 shows the behavior in time along
a line through the localized spot in panel (A) and the sur-
rounding region. Instead of the typical two-dimensional
space-time plot with space and time axes, this is a three-
dimensional rendering with the vertical axis representing
the amplitude of the pattern, which is quantified using
each pixel’s gray scale intensity. A parula color map in
yellow, green and blue is used to help with visualization of
the amplitude intensity. The light regions in the images
in panel (A) have higher pixel intensities and are more
yellow in the false color of panel (B). Initially, the system
is in a low amplitude uniform state. Then there is the on-
set of bulk oscillations with a relaxational waveform seen
along the right-hand edge of the space-time plot parallel
to the time axis. The localized spot forms in the wake of
the first bulk oscillation, failing to relax to the reduced
minimum like the rest of the bulk. This spot maintains
a relatively constant amplitude while growing in space.
When the bulk reaches its second oxidation spike, it in-
teracts with the localized spot, leaving a dark center in
the spot surrounded by light rings. The innermost ring
adjusts over time until the width of the dark center is
the same as the wavelength of the rest of the ring Turing
pattern. The outermost ring has an amplitude that is
larger than that of the inner Turing pattern rings, but
lower than that of the bulk oscillation. The amplitude of
the front ring oscillates, which is most visible along the
front edge furthest from the labeled time axis.

III.2. Three-dimensional Turing-Hopf Balls and
Shells

Figure 3 shows Turing pattern invasion via Turing-
Hopf front advancement in a three-dimensional reactor
(capillary tube). These images encode the transmittance
of light that passes through the capillary tube, rendering
a projection of any three-dimensional structures within.
A bright, not exactly spherical ball with a dark center
is shown in image (a), and this grows to touch the wall
of the capillary (b). Turing structures form on the wall
as the front continues to advance along the vertical axis
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FIG. 1. Invasion of Turing patterns into the bulk oscillation
region. The arrow indicates which Turing-Hopf ring is being
followed in Fig. 2. The time elapsed is 526 s.

of the capillary tube as shown in (c) and (d). The bulk
reaches the bright peak of its oscillation in (e) and (f),
which retards the front growth briefly as the Turing pat-
terns become more distinct just behind the front ((g)
and (h)). The front (shell) continues to advance and
covers the reaction area, leaving Turing patterns in its
wake. These patterns break up from stripes into spots
over time, as seen in the final image in the figure.

Figure 4 also shows three-dimensional Turing pattern
invasion via Turing-Hopf front advancement. As in Fig-
ure 3, these images show the transmittance of light that
passes through the capillary tube, which allows one to see
a projection of the three-dimensional structures within.
Image (a) shows half of a ball pinned to the wall of the
capillary, a phenomenon seen more clearly in the isosur-
face from the reconstruction at this time in Figure 5(a).
The ball continues to grow and hollow out (b). The
bulk reaches its bright peak of oscillation, which inter-
feres with the edge of the ball ((c) and (d)). The front
(shell) continues to advance ((e) and (f)) as the Turing
patterns behind the front become more distinct. The
reconstruction for the pattern in (f) is shown in Figure
5(b). The last image in the sequence shows the Turing
patterns that remain after the front advancement. The
nearly parallel fronts near the bottom of the reactor re-
sult from a change from Turing-Hopf front advancement
to Turing pattern domain growth via frozen waves.

IV. DISCUSSION

IV.1. Advancing Turing Pattern Domains

Turing pattern domains may invade bulk oscillation
domains by several predicted and observed dynamical
mechanisms. The most well-studied is the ”frozen wave”
mechanism, in which a phase wave slows to a stop as

FIG. 2. Quasi-two dimensional Turing-Hopf front growth.
(A) Bulk oscillations (a) are invaded by a localized spot (b)
that survives an interaction with the next oscillation peak (c)
to develop into Turing patterns behind the Turing-Hopf front
(d). This pattern growth is one of the many shown in Figure
1, the one the arrow points to. The final image shows the low
amplitude Turing patterns that remain after the front has
invaded at (e)1500 s. Images are 2.2 x 1.2 mm. The times
corresponding to these images [(a)250 s (b) 397 s (c) 417 s
(d)562 s] are marked in (B). (B) The amplitude of the line
through the patterns in part (A) is plotted as a function of
space and time (2.2 mm x 937 s).

it approaches the established Turing pattern domain.
When it stops, it becomes the outermost pattern stripe
of the Turing domain. Frozen waves have been demon-
strated in recent theoretical work by Berenstein and
Carballido-Landeira, [20] where they focused on devel-
oping an understanding of how abutting subdomains of
Turing and bulk oscillations interact in a reactive mi-
croemulsion. Frozen waves have been reported in the
BZ-AOT reactive microemulsion system with ferroin in
octane and also in hexane [15].

A second mechanism of Turing advancement into bulk
oscillation domains has the Turing pattern generating a
phase wave. Turing spots in a quasi-one-dimensional sys-
tem with the chlorite-iodide-malonic acid system have
been observed to display this behavior [16]. Vanag
found a regime in the ruthenium-catalyzed BZ system
where the outermost Turing pattern features generate
phase waves behind which new fragments of Turing pat-
terns emerge [15]. Turing-Hopf fronts generated in the
FitzHugh-Nagumo model have also been predicted to
generate phase waves as they advance [19].

Our work (Fig. 2) clearly shows a Turing domain and a
bulk oscillation domain separated by a front structure. It
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FIG. 3. A Turing-Hopf ball grows into a bulk oscillation domain. Images are 2D projections of the ball in the capillary at the
following times: (a) 56 s (b) 165 s (c) 271 s (d) 316 s (e) 331 s (f) 351 s (g) 387 s (h) 425 s (i) 1509 s. Turing patterns that
remain after the growth of the front are shown at 1509 s.

FIG. 4. Invasion by pinned Turing-Hopf half-ball. Images are the 2D projections of the half-ball in the capillary at the following
times: (a)118 s (b) 238 s (c) 285 s (d) 329 s (e) 369 s (f) 502 s (g) 1569 s. Turing patterns that remain after the growth of the
front are shown at 1569 s.
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FIG. 5. Three -dimensional reconstruction of the Turing-Hopf
half ball with (a) and (b) corresponding to the projections (a)
and (f) in Fig. 4. The reconstructions are shown with their
90 degree rotations for clarity.

is evident from these two features that the system is in a
region of parameter space where both a Turing instability
and a Hopf bifurcation occur. However, the nature of
the structure only becomes apparent on examining the
amplitude of the front structure. The front structure
oscillates, but with an amplitude between those of the
Turing amplitude behind the front and the oscillations
in the bulk. This is evidence that the Turing and Hopf
modes mix and that the front is a Turing-Hopf structure.

Or-Guil et al.[19] and Berenstein et al. [20] predict that
the front can change directions for Turing-Hopf fronts
and with frozen waves. Frozen waves have been observed
in a one-dimensional array of coupled oscillators where
the front advancement is reversed via melting fronts [18].
We, in our batch system, observe a change from Turing-
Hopf advancement to frozen wave advancement. The ad-
vancement of the front slows as the Turing patterns take
over the Hopf domain (Figure 2). During the transition
between these two features, the advancing front meets
the advancing phase wave and retreats, a behavior we
dub a ’reflecting wave’. The rings at the bottom of Fig-
ure 4 show the planes added with each oscillation cycle
for the frozen waves. The supplemental video shows the
three advancement mechanisms and the transitions be-
tween them [26].

The slowing and transition of the front from advancing
to retreating predicted by Or-Guil stems from the relative
stability of the modes, and they established a dominance
principle for this. The slowing of the front may be due
to this relative stability of the Turing and Hopf modes.
However, in our case, the transition to the frozen wave
advancement mechanism is likely due to the aging of the
solution in batch, which moves the system with respect

to the codimension two point.

IV.2. Birth of the Spatial Structures

In this region of parameter space, shown by a typical
example in Figure 2, a uniform, non-oscillatory state is
first observed, which then becomes unstable, leading to
relaxation oscillations in the bulk.

The bulk oscillation becomes unstable to localized
structures, which do not have a characteristic wavelength
and show no discernible oscillations. The internal struc-
ture may collapse, creating a hole before or after the ox-
idation spike of the following bulk oscillation. The first
Turing ring or internal ball forms around this region, and
the patterns continue to grow in the form of rings left be-
hind the advancing front. This can be more clearly seen
in the supplemental video[26].

Typically, Turing patterns arise from perturbations to
the uniform steady state. However, the Turing patterns
that form here do not do so from the uniform steady
state. We interpret the destabilization of the bulk oscilla-
tions to give spatially localized structures to be a result of
the Turing instability interacting with the Hopf bifurca-
tion. Similar growth structures have been observed when
localized Turing structures form and are embedded in a
non-oscillatory domain in the subcritical Turing regime
of the chlorite-iodide-malonic acid reaction [5]. Localized
Turing rings that later develop into oscillons have been
observed in this system not far away in parameter space
[15]. Vanag et al. suggested that these might arise from
the interaction of a subcritical Turing instability inter-
acting with the Hopf instability.

IV.3. Geometric Considerations

In Figure 1 a gas bubble can be seen in the upper right
corner. In the supplemental video, we can see that along
with the spot structures a light front begins to form at the
interface of the bubble and the edge of the solution, an
example of an edge effect[26]. This front behaves as the
spots do, expanding away from the interface. The phase
wave slows down as it approaches the edge, and patterns
are generated behind that front. The two fronts meet and
are replaced by a Turing stripe. Later, the outer front
continues advancing away from the bubble. Edge effects
are also possible in three dimensions, as shown by the
pinning of the half-ball. We note that both the ball and
the half-ball (Figure 4) when they meet the boundary are
traveling on a curved surface. Turing patterns on curved
surfaces have attracted significant recent interest [27].

Or-Guil and Bode note that the honeycomb pat-
terns generated by Turing-Hopf fronts in the FitzHugh-
Nagumo model are much more regular and have fewer
phase errors than the honeycomb planforms of the Tur-
ing patterns that appear from the steady state [19]. Per-
haps the most striking feature about these Turing-Hopf
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fronts is the regularity of the Turing patterns that they
lay down. In the two-dimensional case, concentric Tur-
ing stripes are left behind the front. Aligned Turing
stripes generated from the Turing bifurcation are very
rare in BZ-AOT and CDIMA. Typically in CDIMA, Tur-
ing stripes are formed from labyrinthine patterns by us-
ing illumination as shown in [28] or [13]. Mı́guez and
colleagues observed that there was a directional and ve-
locity dependence of the stripes at the front, with stripes
forming perpendicular to the front at the fastest front
velocities. Frozen waves also align as stripes [15], as one
stripe is added to the outer edge with each bulk oscilla-
tion.

Peña [28] used illumination to create stripes and also to
force the resulting stripes so they underwent changes in
morphology with the transverse zig-zag instability, which
was modeled with the Brusselator. In our supplemen-
tal video, the breakup instability can be observed as the
stripes form spots, which remain [26]. In addition, a
transverse instability can be seen in the advancing fronts.
These types of instabilities have been reported in the
Gray-Scott model[29].

V. CONCLUSIONS

We have demonstrated by considering the amplitudes
of the pattern components that Turing domains can ad-

vance into a bulk oscillation region following a Turing-
Hopf front. We have shown this in two dimensions and
explored what the three-dimensional analogs look like,
for a ball that forms in the center of the cylindrical capil-
lary and a ball that is pinned on the wall, both of which
ultimately develop advancing Turing-Hopf front shells.

Pinning to the wall and other edge effects suggest a
potential for planform control by strategic placement of
barriers. Planform control could be useful for systems
that have Turing and Hopf bifurcations, like electrode-
position at surfaces [12].
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