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It has been proposed recently by Loureiro & Boldyrev (2017) and Mallet et al. (2017) that strongly
anisotropic current sheets formed in the inertial range of magnetohydrodynamic turbulence become
affected by the tearing instability at scales smaller than a critical scale λc, larger than the dissipation
scale of turbulence. If true, this process can modify the nature of energy cascade at smaller scales,
leading to a new, tearing-mediated regime of MHD turbulence. In this work we present a numerical
study of strongly anisotropic, two-dimensional turbulent eddies and demonstrate that the tearing
instability can indeed compete with their nonlinear evolution. The results therefore provide the first
direct numerical support for the picture that a new regime of MHD turbulence can exist below λc.

PACS numbers: 52.35.Ra, 52.35.Vd, 52.30.Cv

I. INTRODUCTION

Plasma turbulence occurring in natural systems, such
as the interstellar medium, solar corona, solar wind,
planet magnetospheres, etc., typically spans a very broad
range of scales. At scales larger than the ion kinetic
scales, the plasma dynamics can be modeled in the frame-
work of magnetohydrodynamics [e.g., 1–4]. Magneto-
hydrodynamic turbulence can be viewed as nonlinear
Alfvénic modes or eddies propagating along the local
background magnetic field. Such eddies are expected
to be anisotropic with respect to the background field
[e.g., 5]. Moreover, they assume the shapes of ribbons
or current sheets at progressively smaller scales [e.g., 6–
10]. This picture is consistent with (and may provide an
explanation for) the numerically observed morphology of
small-scale current structures in magnetohydrodynamic
turbulence [1, 11–16].

Given a very large Reynolds number, the ribbon-like
eddies in the inertial interval of MHD turbulence may
become affected by the tearing instability. This ques-
tion was first addressed in [17] in the framework of
the Iroshnikov-Kraichnan (IK) model of MHD turbu-
lence [18, 19]. The tearing mode considered in [17] was
essentially isotropic, which fit an assumption of the IK
model that MHD turbulence consists of isotropic (charac-
terized by a single size) weakly interacting Alfvén waves
at each scale [20]. Moreover, the tearing mode consid-
ered in [17] required a presence of a significant velocity
shear tuned to the magnitude and scale of the magnetic
field [21–23]. The growth rate of this mode depended
on the velocity shear, and it reduced to the standard
Furth-Killeen-Rosenbluth (FKR) result [24] as the veloc-
ity shear decreased [23].

In [25] and [26] it was proposed that MHD turbu-
lence should rather be modified at small scales by highly
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anisotropic tearing modes, which are beyond the FKR
regime. It was conjectured that a new, tearing-mediated
energy cascade should exist in the range of scales interme-
diate between the Alfvénic inertial interval and the dis-
sipation scale of MHD turbulence. The transition scale
to the tearing-mediated regime depends on the model
shape assumed for the turbulent eddies. If the sheared
magnetic structures have a “tanh-like” profile [27], the

scale is given by λc ∼ LS−4/7
L , where L is the outer scale

of turbulence and SL the corresponding Lundquist num-
ber. For a “sine-like” profile that is arguably more ap-
propriate for turbulent systems and that we study in this
work, the transition scale is estimated slightly differently,

λc ∼ LS−6/11
L [28] [29].

It was estimated that such a regime becomes relevant
if the magnetic Reynolds number[30] of turbulence be-
comes very large Rm & 106 [e.g., 28]. Due to this severe
computational constraint, direct numerical evidence in
support of the tearing-mediated turbulence regime does
not exist.[31]

In this work, we propose a method for studying
anisotropic MHD turbulence in the tearing-mediated in-
terval with a two-dimensional setup that models the
transverse dynamics of a current sheet. Our method
is somewhat analogous to the reduced-MHD approach
(RMHD) in simulations of MHD turbulence [e.g., 1, 2,
32, 33]. The RMHD equations apply when the simula-
tion domain (a rectangular box) is permeated by a strong
background magnetic field B0, say in the z-direction. As-
sume that the rms values of magnetic and velocity fluctu-
ations are normalized to unity, vrms ∼ brms ∼ 1. In order
for the turbulence to be critically balanced at the largest
scale, one needs to elongate the box in the z-direction
proportionally to the value of B0. In the case B0 � brms,
the fluctuations of the z-components of the magnetic and
velocity fields can then be neglected, and the MHD sys-
tem is approximated by the reduced-MHD equations (see
also [34, 35]).

The novelty of our approach is that instead of studying
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turbulence driven at large scales, we study the evolution
of a particular highly anisotropic eddy that is expected to
exist at scales much smaller than the outer scale of the
turbulence. For that we stretch the box in the x-direction
as compared to the y-direction, Lx � Ly. For the eddy
to be critically balanced, we need the following conditions
at the box scale: Lz/B0 ∼ Lx/bx ∼ Ly/by, where bx ∼ vx
and by ∼ vy are typical fields in the x and y directions.
The box-sized eddies in such turbulence are effectively
very anisotropic current sheets. It is important to note
that such eddies cannot be in a steady state; they are
destroyed by nonlinear interaction on their Alfvénic time
scale τA ∼ Lx/bx. During their life time, however, they
tend to develop small-scale turbulence inside them that,
for a sufficiently large Reynolds number, should resemble
regular, although very anisotropic, MHD turbulence.

If we increase the resistivity, however, the large-scale
magnetic fluctuations will become subject to tearing in-
stability [e.g., 24, 36, 37]. The analysis of [28] shows
that the fastest-growing tearing mode in such an eddy
has the growth rate γt ∼ (bx/Ly)S−3/7, where the local,
eddy-scale Lundquist number is defined as S = bxLy/η
and the magnetic field is measured in Alfvénic units.[38]
In order for the tearing rate to become comparable to
the eddy turnover rate γ ∼ 1/τA ∼ bx/Lx, we need to
require S = Sc ∼ (Lx/Ly)7/3. Therefore, if we need to
perform computations with a large Lundquist number S,
we have to choose a very anisotropic box.

On the other hand, in order to reliably measure the
scaling properties of the turbulence, the Reynolds num-
ber should be large. The local Reynolds number measur-
ing the strength of the nonlinear interaction is defined
as Re = byLy/η. It is smaller than the Lundquist num-
ber. For critically balanced fluctuations by ∼ bx(Ly/Lx),
the Reynolds number corresponding to Sc would thus be
Rec ∼ (by/bx)Sc ∼ (Lx/Ly)4/3. The Alfvénic evolution
time τA of such an eddy increases with the box elonga-
tion. If we assume that in order to resolve the inertial
interval we need at least Re ∼ 2000, and Ny = 512 grid
points in the shortest, Ly direction (see, e.g., [39]), we
encounter prohibitively strong limitations for the numer-
ical simulations, in both the number of grid points and
the running time.

In attempt to overcome these limitations, we use
a simplified, two-dimensional setup. Although two-
dimensional MHD is different from its three-dimensional
counterpart, there are certain similarities between strong
turbulence in the two cases. As observed numerically
[e.g., 14, 40–42], two-dimensional turbulence tends to
form sheet-like magnetic structures at small scales, and
its energy spectrum is close to −3/2, similar to the three-
dimensional case. The eddy turnover rate should there-
fore scale in the same way as in three-dimensional turbu-
lence. We believe that this should suffice for our study of
interplay of tearing and Alfvénic dynamics, at least on a
qualitative level.

II. NUMERICAL METHOD

We solve the incompressible MHD equations in a
two-dimensional anisotropic periodic box with the pseu-
dospectral code snoopy [43]. The equations are

∂tv = −(v ·∇)v −∇P + B ·∇B + ν∇2v + f , (1)

∂tB = ∇× (v×B) + η∇2B, (2)

where v(x, y, t) is the velocity field, B(x, y, t) =
b0 sin(2πy + φ)x̂ + b(x, y, t) the magnetic field, P the
pressure, and f(x, y, t) is the external force. The mag-
netic field is measured in Alfvénic units, vA = B/

√
4π%.

The large-scale magnetic field b0 sin(2πy + φ)x̂ is not an
exact solution of the resistive MHD equations, therefore
the kyLy/(2π) = ±1 components of the magnetic field
can change in time. We, however, update these particular
components at each time step to ensure that the ampli-
tude b0 does not change. The dimensionless pressure P
ensures the incompressibility of the flow. For simplicity,
we choose Pm = ν/η = 1. We normalize the variables
in such a way that Ly = 1, and b0 ∼ 1. The time is
measured in units of Ly/b0.

Currently, the exact dynamics of current sheet forma-
tion in MHD turbulence is not well understood.[44] The
fluctuations inside our anisotropic eddy therefore are ex-
cited from zero level by an eddy-scale driving force. The
amplitude of the anisotropic, solenoidal random force
f(x, y, t) is chosen to ensure vx ∼ vrms . b0; the box
anisotropy requires fy ∼ fx(Ly/Lx). The force is ap-
plied in Fourier space; we force the modes kxLx/(2π) =
±1,±2, kyLy/(2π) = ±1,±2, with amplitudes drawn
from a normal distribution and refreshed independently
on average every τf ∼ 1 (a time short compared to the
Alfvénic time of the eddy).

We simulate a strongly anisotropic eddy with dimen-
sions Lx × Ly = 64 × 1. It is interesting to point
out that in isotropically driven MHD turbulence, such
structures are expected to exists at scales ∼ 107 times
smaller than the outer scale of turbulence. We choose
the numerical resolution of Nx ×Ny = 32768× 512 grid
points. As discussed above, in order for the tearing-
instability rate to match the eddy-turnover rate, the local
Lundquist number, defined as S = b0Ly/η, should sat-

isfy S . (Lx/Ly)7/3 ∼ 14000, while for S � 14000, the
turbulence is expected to resemble the standard MHD
turbulence [28].

III. RESULTS

We performed three simulations which differ only in
the value of the Lundquist number: S = 64000, 16000,
and 4000. It is important to note that if tearing were ir-
relevant the Lundquist number would not affect the time
it takes to disrupt the eddy.

Consider, first, the case of the largest Lundquist num-
ber S = 64000. As seen in Fig. 1 (first panel), the
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Figure 1. Time history of energy components. Top panel:
S = 64000, middle: S = 16000, bottom: S = 4000. The
fluctuating vy and by fields are initially generated by the
driving force at the level corresponding to 1/64 of their x-
components. They grow due to nonlinear energy redistribu-
tion and/or tearing instability until they reach the magnitude
of the x-components, at which point the anisotropic eddy is
destroyed.

anisotropic eddy is gradually destroyed by growing fluc-
tuations of the by and vy fields. The growth is slow, on
the time comparable to the Alfvénic time scale, τA ∼ 65.
This time is shorter than the tearing time estimated as
τt ∼ (Ly/b0)S3/7 ∼ 115. It is, therefore, expected that
the tearing effects are not important, and indeed the
spectrum of the turbulence developing inside the eddy
during the eddy evolution is more consistent with that
observed in Alfvénic turbulence (−3/2) in [e.g., 39, 45–54]
than with the prediction for the tearing-dominated tur-
bulence (−19/9), as is shown in Fig. 2. Typical current
structures in this case are shown in Fig. 3. Plasmoid-like
structures are not very common, even when they appear
they do not have a chance to survive or grow to large
scales. This is consistent with the expectation that the
shearing flows associated with Alfvénic fluctuations tend
to impede the tearing activity.

The scaling of the alignment angle between the
magnetic and velocity fluctuations, defined as θλ =
sin−1 (〈δvλ × δbλ〉/〈|δvλ||δbλ|〉) (see, e.g., [51] for more
detail), is also broadly consistent with MHD turbulence,
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Figure 2. Compensated energy spectrum for the setup with
S = 64000, shown at several instances of the eddy evolution.
At the latest time interval the eddy has been destroyed by
the nonlinear interaction. The spectrum at this stage is close
to the spectrum of steady-state Alfvénic MHD turbulence.

even though its overall magnitude changes during the
eddy evolution, as shown in Fig. 4.

The case of S = 4000 is shown in the bottom panel of
Fig. 1. The Lundquist number is small enough so that
the tearing time, τt ∼ 35, is shorter than the Alfvénic
time. Therefore, we would expect the eddy to be dis-
rupted faster than in the top panel (S = 64000), due to
the action of the tearing instability. This observation is
consistent with the conjecture (and may serve as proof
of the principle) put forward in [25, 26, 28] that the tear-
ing instability can compete with the Alfvénic evolution
of very anisotropic eddies[55].

Finally, in the middle panel of Fig. 1 we show the case
S = 16000 where the Alfvénic and tearing times are com-
parable. The energy evolution is similar to that in the
case of S = 64000, although the saturation of the growing
y-components seems to start at a slightly earlier time, in
accordance with the increasing importance of the tear-
ing process. This case is especially important for our
consideration. The energy spectrum of the fluctuations
is shown in Fig. 5 for several different instances during
the eddy evolution. We observe that as the turbulence
is developing inside the eddy, its spectrum broadens in
k-space and approaches a slope close to −19/9, consis-
tent with the prediction for the tearing-mediated tur-
bulence [28]. In this case, the tearing instability has a
better chance to compete with the Alfvénic fluctuations.
The more pronounced plasmoid-like current structures
observed in this case – see Fig. 6 – strengthen this inter-
pretation. At the very late stages of the eddy evolution,
when the anisotropic eddy is destroyed, the spectrum of
the resulting steady-state fluctuations seems to be ap-
proaching the shallower −3/2 spectrum of regular MHD
turbulence.

The alignment angle measured for the case of S =
16000 however shows a difference with the predictions
of [28]. Fig. 7 shows that the alignment angle does not
increase at small scales, as predicted in [28]. The rea-
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Figure 3. Typical contours of the current jz for S = 64000. The top panel shows a section of the domain at t = 41, the bottom
one a different section at t = 45. The plasmoid-like structures are not common in the flow; when present they do not fully
develop, due to Alfvénic shearing flows.
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Figure 4. Alignment angle as a function of the short coordi-
nate y for the setup S = 64000 averaged over different periods
of the eddy’s evolution.

son for that is presently not clear. It may be related to
the principal differences between the 2D and 3D cases,
to the limited Reynolds number, or it may indicate that
the assumption of Alfvénization of tearing-mediated tur-
bulence made in [28] is incorrect.

IV. CONCLUSIONS

It has been proposed in [25, 26, 28] that tearing insta-
bility can play a significant role in the inertial interval
of magnetic turbulence at small scales. Very recently,
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Figure 5. Compensated energy spectrum for setup S = 16000
for several intermediate moments during the eddy evolution.
The spectrum broadens in k-space and seems to approach
the slope of −19/9, consistent with the prediction for the
tearing-mediated turbulence, before the eddy is destroyed at
late times.

detailed analytical and observational studies of this phe-
nomenon have been conducted [56–59]. In this work, we
have presented the first numerical study of an interplay
between Alfvénic and tearing instabilities in MHD tur-
bulence. Our results indicate that the tearing instability
can indeed modify the dynamics of highly anisotropic
turbulent eddies. In agreement with the analytic pre-
dictions, this process can lead to a new regime of MHD
turbulence at scales larger than the dissipation scale.
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Figure 6. Typical contours of the current jz for S = 16000. The top panel shows a section of the domain at t = 40, the
bottom one a different section at t = 45. The tendency of turbulence to create plasmoid-like structures is more pronounced as
compared to the case depicted in Fig 3.
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Figure 7. Alignment angle for setup S = 16000 averaged over
different periods of the eddy’s evolution.
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