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We present a numerical and theoretical investigation of nonlinear spectral energy cascade of
decaying finite-amplitude planar acoustic waves in a single-component ideal gas at standard tem-
perature and pressure (STP). We analyze various one-dimensional canonical flow configurations: a
propagating traveling wave (TW), a standing wave (SW), and randomly initialized Acoustic Wave
Turbulence (AWT). Due to nonlinear wave propagation, energy at the large scales cascades down
to smaller scales dominated by viscous dissipation, analogous to hydrodynamic turbulence. We
use shock-resolved mesh-adaptive direct numerical simulations (DNS) of the fully compressible one-
dimensional Navier-Stokes equations to simulate the spectral energy cascade in nonlinear acoustic
waves. The simulation parameter space for the TW, SW, and AWT cases spans three orders of
magnitude in initial wave pressure amplitude and dynamic viscosity, thus covering a wide range of
both spectral energy cascade and the viscous dissipation rates. The shock waves formed as a result
of energy cascade are weak (M < 1.4), and hence we neglect thermodynamic non-equilibrium effects
such as molecular vibrational relaxation in the current study. We also derive a new set of nonlinear
acoustics equations truncated to second order and the corresponding perturbation energy corollary
yielding the expression for a new perturbation energy norm E(2). Its spatial average, <E(2)> satis-
fies the definition of a Lyapunov function, correctly capturing the inviscid (or lossless) broadening of
spectral energy in the initial stages of evolution – analogous to the evolution of kinetic energy during
the hydrodynamic break down of three-dimensional coherent vorticity – resulting in the formation of
smaller scales. Upon saturation of the spectral energy cascade i.e. fully broadened energy spectrum,
the onset of viscous losses causes a monotonic decay of <E(2)> in time. In this regime, the DNS
results yield <E(2)> ∼ t−2 for TW and SW, and <E(2)> ∼ t−2/3 for AWT initialized with white
noise. Using the perturbation energy corollary, we derive analytical expressions for the energy, en-
ergy flux, and dissipation rate in the wavenumber space. These yield the definitions of characteristic
length scales such as the integral length scale ` (characteristic initial energy containing scale) and
the Kolmogorov length scale η (shock thickness scale), analogous to K41 theory of hydrodynamic
turbulence (A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30 , 9 (1941)). Finally, we show that the
fully developed energy spectrum of the nonlinear acoustic waves scales as Êkk2ε−2/3`1/3 ∼ C f(kη),
with C ≈ 0.075 constant for TW and SW but decaying in time for AWT.

I. INTRODUCTION

Nonlinear wave processes are observed in a variety
of engineering and physics applications such as acous-
tics [1, 2], combustion noise [3, 4], jet noise [5–7],
thermoacoustics [8, 9], surface waves [10], and plasma-
physics [11], requiring nonlinear evolution equations to
describe the dynamics of perturbations. In the case
of high amplitude planar acoustic wave propagation,
two main nonlinear effects are present: acoustic stream-
ing [2, 12] and wave steepening [1, 13]. Acoustic stream-
ing is an Eulerian mean flow and is attributed to the
kinematic nonlinearities [2]. Convective derivatives of
velocity in momentum conservation equation cause wave
induced Reynolds stresses [8] which have non-zero mean
values in time. In one dimension, longitudinal stresses
are generated which cause steady mass flow due to wave
propagation. On the other hand, wave steepening occurs
due to local gradients in the wave speed associated with
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thermodynamic nonlinearities [1]. Wave steepening en-
tails generation of smaller length scales via a nonlinear
energy cascade, which can be exemplified by developing
the product of two truncated Fourier series,

(
n∑

k=−n

ake
2πikx

)(
m∑

l=−m

ble
2πilx

)
=

=
∑

k

akb−k +
∑

k

∑

l
k+l 6=0

akble
2πi(k+l)x. (1)

The left hand side of the Eq. (1) represents a generic
quadratic nonlinear term appearing in a governing equa-
tion. Continued nonlinear evolution results in further
generation of smaller length scales, as depicted by the
second term on the right hand side of Eq. (1), ultimately
leading to spectral broadening. In the case of nonlin-
ear acoustic waves, the shock thickness is the smallest
length scale present in the flow, governed by the vis-
cous dissipation. The latter causes saturation of the
spectral broadening process, hence establishing an en-
ergy flow (primarily) directed from large scales to small
scales. Identical spectral energy dynamics are observed
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FIG. 1. Q-criterion iso-surfaces colored with the local velocity magnitude obtained from a direct numerical simulation of a
Taylor-Green vortex in a triply-periodic domain [−π, π]3 [14], exhibiting breakdown into hydrodynamic turbulence (a), velocity
perturbation field in a high amplitude nonlinear traveling acoustic wave (TW) (b), evolution of normalized spatial average of
u2 (c), (e), and velocity spectra |ûk|2 (d), (f) at times t0, t1, t2, t3. The spectral broadening occurs due to the nonlinear terms
in the governing equations generating smaller length scales resulting in energy cascade from larger to smaller length scales.

in classic hydrodynamic turbulence [15], where nonlinear
processes such as vortex stretching and tilting (only ex-
isting in three-dimensions) cause spontaneous generation
of progressively smaller vortical structures (i.e. eddies),
until velocity gradients become sufficiently large for vis-
cous dissipation to become relevant (see Figure 1).

In previous numerical investigations [9] – inspired by
the experimental setups in [16, 17] – the present authors
have demonstrated the existence of an equilibrium spec-
tral energy cascade in quasi-planar weak shock waves sus-
tained by thermoacoustic instabilities in a resonator. The
latter inject energy only at scales comparable to the res-
onator length (large scales); harmonic generation then
takes place, leading to spectral broadening and progres-
sive generation of smaller scales until viscous losses, oc-
curring at the shock-thickness scale, dominate the energy
cascade. Building upon the findings in [9], in the present
work, we mathematically formalize the dynamics of non-
linear acoustic spectral energy cascade in a more canon-
ical setup neglecting thermoacoustic energy sources and
focusing on purely planar waves.

Due to the absence of physical sources of energy, the
energy of nonlinear acoustic waves (if correctly defined)
decays monotonically in time due to viscous dissipation
at small length scales, analogous to freely decaying hy-
drodynamic turbulence (see Figure 1). We study the
spatio-temporal and spectro-temporal evolution of such
finite amplitude planar nonlinear acoustic waves in three
canonical configurations in particular: traveling waves
(TW), standing waves (SW), and randomly initialized
Acoustic Wave Turbulence (AWT). In spite of it’s the-
oretical nature, planar nonlinear acoustic theory is still

commonly used in practical investigations such as sonic
boom propagation (TW) [18], rotating detonation en-
gines (SW) [19], combustion chamber noise (AWT) [20],
and thermoacoustics [16, 17]. We study these configu-
rations for pressure amplitudes and viscosities spanning
three orders of magnitudes. Utilizing the second order
nonlinear acoustics approximation, we derive analytical
expressions for the spectral energy, energy transfer func-
tion, and dissipation. Analogous to the study of small
scale generation in hydrodynamic turbulence, well quan-
tified by the K41 theory [21–23], we also define the rele-
vant length scales associated to fully developed nonlinear
acoustic waves elucidating the scaling features of the en-
ergy spectra. To this end, we perform the direct numer-
ical simulations (DNS) resolving all the relevant length
scales [24] of nonlinear acoustic wave propagation.

Usually, problems in nondispersive nonlinear wave
propagation are studied utilizing the model Burgers
equation [11, 13, 25, 26]. The spectral energy and de-
cay dynamics of one dimensional Burgers turbulence
have been studied extensively by Kida [27], Gurbatov
et al. [28, 29], Woyczynski [30], Fournier and Frisch [31],
and Burgers [32]. However, the equations of second or-
der nonlinear acoustics can be reduced to Burgers equa-
tion only assuming planar TW, thus limiting its applica-
bility. Generalized problems involving an ensemble of
acoustic waves of different amplitudes, such as AWT,
have also been subjects of detailed analysis [27, 33]. Such
studies primarily involve formulation of the kinetic equa-
tions of complex amplitudes of weakly nonlinear har-
monic waves [34]. Utilizing the kinetic equations wave
interaction potentials are defined in the context of wave-
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wave interactions. However, such analysis are restricted
to complex harmonic representation of waves in space
and time and hence, fail to elucidate the inter-scale en-
ergy transfer dynamics due to general nonlinear wave in-
teractions. In this work, we utilize the continuum gas dy-
namics governing equations to elucidate the spectral en-
ergy cascade and decay dynamics of nonlinear acoustics.
The nonlinear equations governing high amplitude acous-
tics yield novel analytical expressions for spectral energy,
spectral energy flux, and spectral dissipation rate valid
for planar nonlinear acoustic waves with general phas-
ing. The dissipation causes power law decay of energy
in time due to gradual increase of the dissipative length
scale. Such decay dynamics occur due to separation of
energy containing and diffusive length scales and resem-
ble those of decaying homogeneous isotropic turbulence
(HIT) [35–38].

We present a framework for studying nonlinear acous-
tic wave propagation phenomenon in one dimension uti-
lizing the second order nonlinear acoustics equations
and DNS of compressible 1D Navier-Stokes (resolving all
length scales). We derive the former utilizing the en-
tropy scaling considerations for weak shocks as discussed
in Section II. In Section III, we derive a novel perturba-
tion energy corollary for nonlinear acoustic perturbations
utilizing the second order governing equations yielding a
new perturbation energy function. Its spatial average
defines the Lyapunov function of the system and decays
monotonically in the presence of dissipation and absence
of energy sources which is confirmed through the DNS
data shown in Section IV along with brief explaination
of numerical technique utilized. In Section V, we de-
rive the spectral energy conservation equation thus iden-
tifying the spectral energy flux and spectral dissipation
utilizing the energy corollary. Furthermore, we discuss
the evolution of the primary length scales involved in
the spectral energy cascade and decay. Finally, in Sec-
tion VI, we show the scaling of spectral energy, spec-
tral energy flux, and spectral dissipation. Throughout,
the theoretical results are supported utilizing the DNS
of three specific cases of acoustic waves namely, single
harmonic traveling wave (TW), single harmonic stand-
ing wave (SW), and random broadband noise (AWT).

II. GOVERNING EQUATIONS AND SCALING
ANALYSIS

In this section, we derive the governing equations
for nonlinear acoustics truncated up to second order
(in the acoustic perturbation variables) for a single-
component ideal gas. We begin with fully compress-
ible one-dimensional Navier-Stokes equations for contin-
uum gas dynamics and analysis of entropy scaling with
pressure jumps in weak shocks formed due to the steep-
ening of nonlinear acoustic waves (Section IIA). We
then briefly discuss the variable decomposition and non-

dimensionalization in Section II B, followed by the deriva-
tion of second order governing equations for nonlinear
acoustics in Section IIC.

A. Fully compressible 1D Navier-Stokes and
entropy scaling in weak shocks

One dimensional governing equations of continuum gas
dynamics (compressible Navier-Stokes) for an ideal gas
are given by,

∂ρ∗

∂t∗
+
∂(ρ∗u∗)

∂x∗
= 0, (2)

∂

∂t∗
(ρ∗u∗) +

∂

∂x∗
(
ρ∗u∗2

)
= −∂p

∗

∂x∗

+
∂

∂x

((
4

3
µ∗ + µ∗B

)
∂u∗

∂x∗

)
, (3)

ρ∗T ∗
(
∂s∗

∂t∗
+ u∗

∂s∗

∂x∗

)
=

∂

∂x∗

(
µ∗C∗p
Pr

∂T ∗

∂x∗

)
+

(
4

3
µ∗ + µ∗B

)(
∂u∗

∂x∗

)2

, (4)

which are closed by the ideal gas equation of state,

p∗ = ρ∗R∗T ∗, (5)

where p∗, u∗, ρ∗, T ∗, s∗ respectively denote total pressure,
velocity, density, temperature, and entropy of the fluid,
x∗ and t∗ denote space and time, and µ∗ denotes dynamic

(a)

(b)

FIG. 2. Weak shock wave structure (a) pressure p∗ and (b)
entropy s∗ propagating with a speed a∗s > a∗0 obtained from
DNS (see Section IV). ∆s∗/R∗ and s∗max/R

∗ are the entropy
jump and maximum entropy respectively. With increasing
viscosity, the peak in entropy remains constant. The DNS
data has been obtained for base state viscosity values given
in Table I.
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viscosity. In this work, we perform DNS of Eqs. (2)-(4) to
resolve all the length scales of planar nonlinear acoustic
waves. For our simulations (see Section IV), we choose
the gas specific constants for air at standard temperature
and pressure (STP),

R∗ = 287.105
m2

s2 ·K , µ∗B = 0, P r = 0.72. (6)

Planar nonlinear acoustic waves steepen and form weak
shocks. For weak shocks, the smallest length scale
(shock-thickness) is also significantly larger than the
molecular length scales. Hence, in this work, we neglect
the molecular vibrational effects in the single component
ideal gas (µ∗B = 0) , typically modeled via bulk viscos-
ity effects [39]. Across a freely propagating planar weak
shock (Fig.2), the entropy jump (∆s∗ = s∗2 − s∗1) is given
by the classical gas-dynamic relation [40],

∆s∗

R∗
=

1

γ − 1
ln

(
1 +

2γ

γ + 1

(
M2 − 1

))

− γ

γ − 1
ln

(
γ + 1

γ − 1 + 2/M2

)
, (7)

where M is the Mach number, given by,

∆p∗

γp∗1
=
p∗2 − p∗1
γp∗1

=
2

γ + 1

(
M2 − 1

)
, (8)

and ∆p∗ = p∗2−p∗1 is the pressure jump with p∗1 and p∗2 be-
ing the pre-shock and post-shock pressures, respectively.

FIG. 3. Entropy jump ∆s∗ = s∗2 − s∗1 and maximum en-
tropy generated s∗max versus pressure jump ∆p∗ across a pla-
nar shock wave. In the labeled region (∆p∗/γp∗1 < 1, re-
ferred as ‘weak shocks’ hereafter), the entropy jump ∆s∗

scales as O
(
∆p∗3

)
, whereas the maximum entropy generated

s∗max scales as O
(
∆p∗2

)
, approximately. Markers denote DNS

data (see Section IV), ( , ) µ∗ = 7.5×10−3 kg·m−1·s−1; ( , ),
µ∗ = 7.5×10−4 kg·m−1·s−1; ( , ), µ∗ = 7.5×10−5 kg·m−1·s−1

for varying values of ∆p∗. Solid lines correspond to Eqs. (7)
and (9).

Near the inflection point of the fluid velocity profile, the
entropy reaches a local maximum (s∗ = s∗max). According
to Morduchow and Libby [41], maximum entropy s∗max

assuming µ∗B = 0 and Pr = 3/4, can be obtained as,

s∗max

R∗
=

1

γ − 1
ln

(
1 +

γ − 1

2
M2 (1− ξ) ξ γ−1

2

)
, (9)

where,

ξ =
γ − 1

γ + 1
+

2

γ + 1

1

M2
. (10)

For weak shock waves, (∆p∗/γp∗1 < 1), entropy jump
∆s∗ and maximum entropy s∗max scale with pressure
jumps as (cf. Fig. 3),

∆s∗ = O
(
∆p∗3

)
, s∗max = O

(
∆p∗2

)
, (11)

independent of µ∗ (cf. Eqs. (7) and (9)). The overall
entropy jump ∆s∗ is due to irreversible thermoviscous
losses occurring within the shocks. However, the over-
shoot in entropy (s∗max > ∆s∗) is due to both reversible
and irreversible processes, and is not in violation of the
second law of thermodynamics [41]. Moreover, in the
range of pressure jumps considered in the DNS (see Sec-
tion IV), the maximum Mach number of the shock is
around M ≈ 1.4, which is well within the limits of valid-
ity of the continuum approach [42]. Hence, it is physi-
cally justified to draw conclusions regarding the smallest
length scales through the governing equations based on
continuum approach and assuming thermodynamic equi-
librium.

B. Perturbation variables and
non-dimensionalization

In this section, we utilize the previous consideration on
the second order scaling of the maximum entropy s∗max

inside a weak shock wave to derive second order nonlin-
ear acoustics equations. To this end, we decompose the
variables in base state and perturbation fields and derive
equations containing only linear and quadratic terms in
perturbation fields. Denoting the base state with the
superscript ()0 and the perturbation fields with the su-
perscript ()′, we obtain,

ρ∗ = ρ∗0 + ρ∗′, p∗ = p∗0 + p∗′, (12a)

u∗ = u∗′, s∗ = s∗′, T ∗ = T ∗0 + T ∗′, (12b)

where no mean flow u∗0 = 0 is considered and s∗0 is ar-
bitrarily set to zero. We neglect the fluctuations in the
dynamic viscosity as well, i.e.,

µ∗ = µ∗0. (13)

While in classic gas dynamics, pre-shock values are used
to normalize fluctuations or jumps across the shock (e.g.
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see Eq. (8)), hereafter we choose base state values to non-
dimensionalize the nonlinear acoustics equations,

ρ =
ρ∗

ρ∗0
= 1 + ρ′, p =

p∗

γp∗0
=

1

γ
+ p′, (14a)

u =
u∗

a∗0
= u′, s =

s∗

R∗
= s′, T =

T ∗

T ∗0
= 1 + T ′, (14b)

x =
x∗

L∗
, t =

a∗0t
∗

L∗
. (14c)

where L∗ is the length of the one-dimensional periodic
domain. As also typically done in classical studies of ho-
mogeneous isotropic turbulence [24, 38, 43–46], periodic
boundary conditions represent a common (yet not ideal)
way to approximate infinite domains; as such, a spuri-
ous interaction between the flow physics that one wishes
to isolate and the periodic box size may occur. For the
TW and SW test cases analyzed herein, L∗ corresponds
to the initial (and hence largest) reference length scale
of the acoustic perturbation; in the AWT case, the value
of L∗ should be chosen as much larger than the integral
length scale ` or Taylor microscale λ (see Section V),
which truly define the state of turbulence.

Due to thermodynamic nonlinearities, wave propa-
gation velocity increases across a high-amplitude com-
pression front, resulting in wave-steepening [25] and
hence generation of small length scales associated with
increasing temperature and velocity gradients responsi-
ble for thermoviscous dissipation. Increase in thermo-
viscous dissipation results in positive entropy perturba-
tions peaking within the shock structure. For pressure
jumps ∆p∗/γp∗1 < 1, the maximum entropy scales ap-
proximately as O

(
∆p∗2

)
(cf. Fig. 3). Moreover, as we

discuss in the later section (see Section III), the sec-
ond order nonlinear acoustic equations impose a strict
limit of |p′| < 1/γ (' 0.714 for γ = 0.72) for base
state normalized (Eq. (14)) (not pre-shock state nor-
malized (Eq. (8))) perturbations. Hence, in our simu-
lations (see Section IV), we consider a suitable range of
10−3 < p′ < 10−1, which satisfies the aforementioned
constraints. Thus, the second order scaling of entropy
holds in our simulations.

Below, we utilize this entropy scaling to derive the cor-
rect second order nonlinear acoustics equations governing
the spatio-temporal evolution of dimensionless perturba-
tion variables p′ and u′, as defined in Eq. (14).

C. Second order nonlinear acoustics equations

For a thermally perfect gas, the differential in dimen-
sionless density ρ can be related to differentials in dimen-

sionless pressure p and dimensionless entropy s as,

dρ =

(
∂ρ

∂p

)

s

dp+

(
∂ρ

∂s

)

p

ds,

=
ρ

γp
dp− ρ(γ − 1)

γ
ds. (15)

Nondimensionalizing the continuity Eq. (2) and substi-
tuting Eq. (15), we obtain,

∂ρ

∂t
+
∂ρu

∂x
= 0,

∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x
= (γ − 1)p

(
∂s

∂t
+ u

∂s

∂x

)
. (16)

Substituting the dimensionless forms of Eqs. (4) and (5)
and utilizing the decomposition given in Eqs. (14), we
obtain the following truncated equation for pressure per-
turbation p′,

∂p′

∂t
+
∂u′

∂x
+ γp′

∂u′

∂x
+ u′

∂p′

∂x
= ν0

(
γ − 1

Pr

)
∂2p′

∂x2

+O
(
p′s′, s′2, p′3,

(
∂u′

∂x

)2
)
. (17)

Similarly, the truncated equation for velocity perturba-
tion u′ is obtained as,

∂u′

∂t
+
∂p′

∂x
+

∂

∂x

(
u′2

2
− p′2

2

)
=

4

3
ν0
∂2u′

∂x2

+O
(
ρ′2p′, ρ′3p′

)
. (18)

In Eqs. (17) and (18), ν0 is the dimensionless kinematic
viscosity given by,

ν0 =
µ∗0

ρ∗0a
∗
0L
∗ , (19)

and quantifies viscous dissipation of waves relative to
propagation. Equations (17) and (18) constitute the non-
linear acoustics equations truncated up to second order,
governing spatio-temporal evolution of finite amplitude
acoustic perturbations p′ and u′. The entropy scaling
(s∗max = O

(
∆p∗2

)
) discussed previously results in the

dissipation term on the right hand side of Eq. (17). Left
hand side of Eqs. (17) and (18) contains terms denoting
linear and nonlinear isentropic acoustic wave propaga-
tion. Detailed derivation of Eqs. (17) and (18) is given in
Appendix A, where we also show that the nonlinear terms
on the left hand side (LHS) of Eqs. (17) and (18) are inde-
pendent of the thermal equation of state. The functional
form of the second order perturbation energy norm (E(2),
Eq (32)) – being exclusively dictated by such terms (see
Section III) – is independent of the thermal equation of
state of the gas. The results shown in this work focus
on ideal-gas simulations merely for the sake of simplicity,
with no loss of generality pertaining to inviscid nonlinear
(up to second order) spectral energy transfer dynamics.
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We note that, Eq. (17) consists of the velocity deriva-
tive term (γp′∂u′/∂x), and is different from those ob-
tained by Naugol’nykh and Rybak [47], which in dimen-
sionless form read,

∂p′

∂t
− (γ − 1)p′

∂p′

∂t
+
∂u′

∂x
+ p′

∂u′

∂x
= 0, (20)

∂u′

∂t
+
∂p′

∂x
+

∂

∂x

(
u2

2
− p2

2

)
= 0. (21)

We adopt Eqs. (17) and (18) throughout the study since
they represent the truncated governing equations exactly.
Unlike Naugol’nykh and Rybak [47], we do not approxi-
mate the density ρ using the Taylor series and only use
the total differential form given in Eq. (15).

Additionally, we note that Eqs. (17) and (18) can be
combined into the Westervelt’s equation [1] only if the
Lagrangian defined as,

L =
u′2

2
− p′2

2
, (22)

is zero, which holds only for linear pure traveling waves.
The derivation of the Burgers equation in nonlinear
acoustics follows from the Westervelt’s equation [1].
Hence, it is inadequate in modeling general nonlinear
acoustics phenomena involving mixed phasing of nonlin-
ear waves which occurs in the Standing Wave (SW) and
Acoustic Wave Turbulence (AWT) cases analysed here
in.

III. SECOND ORDER PERTURBATION
ENERGY

In this section we derive a new perturbation energy
function for nonlinear acoustic waves utilizing Eqs. (17)
and (18). To this end, we derive the perturbation energy
conservation relation (energy corollary) for high ampli-
tude acoustic perturbations. We show that the spatial
average of the perturbation energy function satisfies the
definition of the Lyapunov function for high amplitude
acoustic perturbations and evolves monotonically in time
(cf. Fig. 5). Utilizing the energy corollary, we derive spec-
tral energy transport relations in further sections.

Multiplying Eqs. (17) and (18) with p′ and u′ respec-
tively and adding, we obtain,

∂

∂t

(
p′2

2
+
u′2

2

)
+

∂

∂x

(
u′p′ +

u′3

3

)
+ γp′2

∂u′

∂x
=

ν0

(
γ − 1

Pr

)
p′
∂2p′

∂x2
+

4

3
ν0u
′ ∂

2u′

∂x2
. (23)

Spatial averaging of Eq. (23) over a periodic domain [0, L]

yields,

d
〈
E(1)

〉

dt
= −

〈
γp′2

∂u′

∂x

〉
− ν0

(
γ − 1

Pr

)〈(
∂p′

∂x

)2
〉

− 4

3
ν0

〈(
∂u′

∂x

)2
〉
, (24)

where 〈.〉 is the spatial averaging operator,

〈.〉 =
1

L

∫ L

0

(.) dx, (25)

and

E(1) =
u′2

2
+
p′2

2
, (26)

is the first order isentropic acoustic energy. Equation (24)
suggests that, in a lossless medium (ν0 → 0),

〈
E(1)

〉

would exhibit spurious non-monotonic behavior in time
due to the first term on right hand side. Such non-
monotonic behaviour is confirmed by the DNS results
shown in Fig. 5. Consequently, the linear acoustic en-
ergy norm E(1) does not quantify the perturbation en-
ergy correctly for high amplitude perturbations since the
spatial average

〈
E(1)

〉
supports spurious growth and de-

cay in the absence of physical sources of energy. The
corrected perturbation energy function can be obtained
upon recursively evaluating the velocity derivative term
(γp′2∂u′/∂x in Eq. (23)) utilizing Eq. (17) as,

γp′2
∂u′

∂x
= − ∂

∂t

(
γp′3

3

)
− ∂

∂x

(
γu′p′3

3

)
−

γ

(
γ − 1

3

)
p′3
∂u′

∂x
− ν0(γ − 1)

Pr
γp′3

∂p′

∂x
. (27)

FIG. 4. Comparison of perturbation energy function for non-
linear acoustic waves E(2) with the linear acoustic energy E(1)

in the case of p′ = u′ (assumed for illustrative purpose). The
correction f(p′) is independent of u′.
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Furthermore, the third term in above Eq. (27) on the
right can be further evaluated as,

γ

(
γ − 1

3

)
p′3
∂u′

∂x
= − ∂

∂t

(
γ

4

(
γ − 1

3

)
p′4
)

− ∂

∂x

(
γ

4

(
γ − 1

3

)
u′p′4

)
− γ

(
γ − 1

3

)(
γ − 1

4

)
p′4
∂u′

∂x

− ν0(γ − 1)

Pr
γ

(
γ − 1

3

)
p′3
∂2p′

∂x2
, (28)

and so on. Continued substitution according to Eqs. (27)
and (28) yields the closure of the system and the following
energy corollary,

∂E(2)

∂t
+
∂I

∂x
= ν0

(
γ − 1

Pr

)
h(p′)

∂2p′

∂x2
+

4

3
ν0u
′ ∂

2u′

∂x2
, (29)

where,

I(p′, u′) = p′u′ +
u′3

3
+ u′f(p′), (30)

is the intensity (energy flux) of the field, h(p′) is given
by,

h(p′) = p′ +
∂f(p′)

∂p′
=
∂E(2)

∂p′
. (31)

and E(2) is given by,

E(2)(p′, u′) =
u′2

2
+
p′2

2
+ f(p′) = E(1) + f(p′), (32)

and defines the second order perturbation energy for
high amplitude acoustic perturbations. The energy corol-
lary Eq. (29) is mathematically exact for the governing
Eqs. (17) and (18).

The correction term f(p′) in E(2) appears due the
thermodynamic nonlinearities and can be derived in the
closed form as,

f(p′) =

∞∑

n=2

Tn =

∞∑

n=2

(−1)n+1 γp
′n+1

n+ 1

n∏

i=3

(
γ − 1

i

)
,

(33)
where T2 and T3 can be identified in Eqs. (27) and (28),
respectively. Isolating the nth term of the above infinite
series as,

Tn = (−1)n+1 γp
′n+1

n+ 1

(
γ − 1

3

)(
γ − 1

4

)
· · ·
(
γ − 1

n

)

︸ ︷︷ ︸
n−2 terms

.

(34)
Multiplied fractions in the Eq. (34) above yield the nth
term as,

Tn = − 2γ

(γ − 1) (2γ − 1)
(γp′)

n+1
(

1/γ

n+ 1

)
. (35)

Finally, the energy correction f(p′) can be recast as,

f(p′) =

∞∑

n=2

Tn =− 2γ

(γ − 1) (2γ − 1)

(
(1 + γp′)

1/γ − 1−

p′ +
(γ − 1) p′2

2

)
. (36)

The correction function f(p′) defined in Eq. (36) accounts
for second order isentropic nonlinearities and is not a
function of entropy perturbation. Hence, E(2) accounts
for the effect of high amplitude perturbations on per-
turbation energy isentropically. We note that this sepa-
rates E(2) fundamentally from generalized linear pertur-
bation energy norms, such as the ones derived by Chu [48]
for small amplitude non-isentropic perturbations, and by
Meyers [49] for acoustic wave propagation in a steady
flow. Moreover, as discussed in the previous section (and
shown in Appendix A), since the isentropic nonlinearities
on the LHS of Eqs. (17) and (18) are independent of the
thermal equation of state, the functional form of E(2) and
I are also independent of the equation of state. However,
the dissipation term on the right hand side of the energy
corollary Eq. (29) may change with the thermal equation
of state.

The energy correction f(p′) is infinite order in pressure
perturbation p′ and converges only for perturbation mag-
nitude |p′| < 1/γ thus naturally yielding the strict limit
of validity of second order acoustic equations in mod-
elling wave propagation and wave steepening. Figure 4
shows the newly derived second order perturbation en-
ergy E(2) compared against the isentropic acoustic en-
ergy E(1). Both E(2) and E(1) are non-negative in the
range |p′| < 1/γ (p′ = u′ is assumed for illustrative pur-
pose). Furthermore, E(2) is asymmetric in nature, with
larger energy in dilatations compared to compressions of
same magnitude, as shown in Fig. 4. Such asymmetry
signifies that the medium (compressible ideal gas in the
present study) relaxes towards the base state faster for
finite dilatations compared to compressions.

For compact supported or spatially periodic perturba-
tions, the energy conservation Eq. (29) shows that the
spatially averaged energy

〈
E(2)

〉
decays monotonically

in time (in the absence of energy sources) accounting for
the nonlinear interactions i.e.,

˙V =
d
〈
E(2)

〉

dt
= −ν0

(
γ − 1

Pr

)〈
∂2E(2)

∂p′2

(
∂p′

∂x

)2
〉

− 4

3
ν0

〈(
∂u′

∂x

)2
〉

= 〈D〉 = −ε ≤ 0, (37)

where D is the perturbation energy dissipation and ε is
the negative of its spatial average. The spatial average〈
E(2)

〉
is non-negative (E(2) ≥ 0), and Eq. (37) and Fig. 5

confirm that
〈
E(2)

〉
evolves monotonically in time in the

absence of physical energy sources. Hence, the spatial
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(a) (b) (c)

FIG. 5. Spatial profile of finite amplitude waves (top) for TW(a), SW(b), and AWT(c). Evolution of the average perturbation
energy (< E(2) > (–); < E(1) > (−−)) evaluated from the DNS data (bottom) scaled by the initial value against scaled time t/τ
(cf. Eq. (55)) for increasing values of perturbation amplitude Arms defined in Eq. (38) at ν0 = 1.836×10−7 (see Table I). The
curves are shifted vertically by 0.25 for illustrative purpose only. With increasing perturbation amplitude Arms, the variation
of linear acoustic energy norm < E(1) > becomes increasingly non-monotonic. The vertical dashed line (bottom) highlights
the end of approximately inviscid spectral energy cascade regime. In this regime, the energy is primarily redistributed in the
spectral space due to the nonlinear propagation (ε ' 0).

average of the perturbation energy function
〈
E(2)

〉
de-

fines the Lyapunov function V of the nonlinear acoustic
system governed by the set of second order governing
Eqs. (17) and (18) exactly. The spatial average

〈
E(2)

〉

should be used for studying the stability of nonlinear
acoustic systems [50, 51], which, however, falls beyond
the scope of this work.

Wave-front steepening entails cascade of perturbation
energy into higher wavenumbers thus broadening the en-
ergy spectrum. Fully broadened spectrum of acoustic
perturbations exhibits energy at very small length scales
which causes high thermoviscous energy dissipation. We
analyse the separation of length scales and energy de-
cay caused by nonlinear wave steepening and thermovis-
cous energy dissipation in the following sections. To this
end, we utilize the direct numerical integration of Navier-
Stokes Eqs. (2)-(5) resolving all the length scales (DNS)
and the exact energy corollary Eq. (29) for second order
truncated Eqs. (17) and (18).

IV. HIGH FIDELITY SIMULATIONS WITH
ADAPTIVE MESH REFINEMENT

We perform shock-resolved numerical simulations of
1D Navier-Stokes (DNS) Eqs. (2)-(5) with Adaptive
Mesh Refinement (AMR). We use the perturbation en-
ergy E(2) defined in Eq. (32) to define the characteristic

ν0 1.836×10−5 1.836×10−6 1.836×10−7

Arms,0 10−3 10−2 10−1

u∗rms (m/s) 0.347 3.472 34.725

p∗rms (kPa) 0.142 1.419 14.185

TABLE I. Simulation parameter space for TW, SW, and
AWT cases listing base state dimensionless viscosity ν0 (cf.
Eq. (19)), initial characteristic perturbation amplitude Arms,0

(cf. Eq. (38)), and dimensional characteristic perturbation in
velocity u∗rms and pressure p∗rms fields (Eq. (39)).

dimensionless perturbation amplitude Arms as,

Arms =
√〈

E(2)
〉
, (38)

which is varied in the range 10−3 − 10−1. The dimen-
sionless kinematic viscosity at base state ν0 is also varied
from 1.836×10−5 to 1.836×10−7. The base state condi-
tions in the numerical simulations correspond to STP, i.e.
p∗0 = 101325 Pa and T ∗0 = 300 K.

The goal of spanning Arms and ν0 over three orders of
magnitude is to achieve widest possible range of energy
cascade rate and dissipation within computationally fea-
sible times. Equation (38) yields the definitions of the
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FIG. 6. Illustration of the binary tree implementation of
Adaptive Mesh Refinement (AMR) technique (top left). The
mesh is refined based on the resolution error in pressure field
in each cell acting as a node of a binary tree. The pressure
field shown (middle) corresponds to the randomly initialized
AWT case with Arms = 10−1, ν0 = 1.836×10−6 (Table I) at
t/τ = 0.04. The inset shows the resolved shock wave with
(+) denoting the cell interfaces. The mesh refinement levels
(bottom) show the depth d of the binary tree.

perturbation Reynolds number ReL , characteristic per-
turbation velocity field u∗rms, and pressure field p∗rms as,

ReL =
Armsa

∗
0L
∗

ν∗0
, u∗rms = a∗0Arms, p∗rms = ρ∗0a

∗
0
2Arms,

(39)
where ReL denotes ratio of diffusive to wave steepening
time scale over the length L. In the simulations, we keep
ReL � 1, which corresponds to very fast wave steepen-
ing rates compared to diffusion. In further sections (see
Section V), we define the wave turbulence Reynolds num-
ber Re` based on the integral length scale `. Below, we
briefly discuss the numerical scheme utilized for shock-
resolved simulations and outline the initialization of the
three configurations (TW, SW, and AWT) for numerical
simulations.

A. Numerical approach

We integrate the fully compressible 1D Navier-Stokes
Eqs. (2)-(4) in time utilizing the staggered spectral differ-
ence (SD) spatial discretization approach [52]. In the SD
approach, the domain is discretized into cells. Within
each cell, the orthogonal polynomial reconstruction of
variables allows numerical differentiation with spectral
accuracy. We refer the reader to the work by Kopriva

and Kolias [52] for further details.

To accurately resolve spectral energy dynamics at all
length scales, i.e. for resolved weak shock waves, we com-
bine the SD approach with the adaptive mesh refinement
(AMR) approach as first introduced by Mavriplis [53] for
spectral methods. The SD-AMR approach eliminates the
computational need of very fine grid everywhere for re-
solving the propagating shock waves. To this end, we
expand the values of a generic variable φ local to the cell
in the Legendre polynomial space as,

φ =

N∑

i=1

φ̂iψi(x) (40)

where ψi(x) is the Legendre polynomial of (i−1)th degree.
The polynomial coefficients φ̂i are utilized for estimating
the local resolution error ε defined as [53],

ε =

(
2φ̂2N

2N + 1
+

∫ ∞

N+1

2f2ε (n)

2n+ 1
dn

)1/2

, fε(n) = ce−σn,

(41)
where fε is the exponential fit through the coefficients of
the last four modes in the Legendre polynomial space.
As the estimated resolution error ε exceeds a pre-defined
tolerance, the cell divides into two subcells, which are
connected utilizing a binary tree (shown in Fig. 6). The
subcells merge together if the resolution error decreases
below a pre-defined limit.

B. Initial conditions

We utilize the Riemann invariants for compressible Eu-
ler equations to initialize the propagating traveling and
standing wave cases in the numerical simulations. The
Riemann invariants in terms of perturbation variables as-
suming nonlinear isentropic changes are given by,

R− =
2

γ − 1

(
(1 + ρ′)

γ−1
2 − 1

)
− u′, (42)

R+ =
2

γ − 1

(
(1 + ρ′)

γ−1
2 − 1

)
+ u′, (43)

where R− and R+ are the left and right propagating in-
variants, respectively, and u′ and ρ′ are normalized ve-

TW SW AWT
k0 1 1 1
kE 1 1 100
b0(k) 0 0 e−(|k|−kE)2

Êk A2
rmsδ(k0) A2

rmsδ(k0) A2
rms

TABLE II. Initial spectral compositions for traveling wave
(TW), standing wave (SW), and acoustic wave turbulence
(AWT). δ (·) is the Dirac delta function.
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locity and density perturbations, as defined in Eq. (14).
Initial conditions for TW and SW cases correspond to
R− = 0 and R− = R+ respectively.

To initialize the broadband noise case, we first choose
p′ and u′ pseudo-randomly from a uniform distribution
for the whole set of discretization points in x. Low-pass
filtering of p′ and u′ yields,

˜̂pk(t = 0) = p̂kb0(k), ˜̂uk(t = 0) = ûkb0(k)

b0(k) =

{
1 k0 ≤ |k| ≤ kE
e−(|k|−kE)2 |k| > kE

. (44)

where p̂k and p̂k are the Fourier coefficients of pseudo-
random fields p′ and u′, respectively. ˜̂pk and ˜̂uk are the
low-pass filtered coefficients. Inverse Fourier transform of
Eq. (44) yields smooth initial conditions with the initial
spectral energy Êk, as defined in Section V (cf. Eq. (49)).
For TW and SW, only single harmonic (k = 1 in the
current work) contains all of the initial energy. However,
for AWT, Êk is governed by the correlation function of
velocity and pressure fields. In Table II, we summarize
the initial spectral energy for all three cases based on
Eq. (44).

V. SCALES OF ACOUSTIC ENERGY
CASCADE AND DISSIPATION

In this section, we derive the analytical expressions of
spectral energy, energy cascade flux, and spectral energy
dissipation utilizing the exact energy corollary Eq. (29)
(see Section III). We then identify the integral length
scale `, the Taylor microscale λ, and the Kolmogorov
length scale η for TW, SW, and AWT cases in a periodic
domain utilizing the DNS data (see Fig. 7 and Table III).
Temporal evolution laws of these length scales yield en-
ergy decay laws, which are used for dimensionless spectral
scaling relations (see Section VI).

A. Spectral energy flux and dissipation rate for
periodic perturbations

The exact perturbation energy conservation equation
is given by (cf. Eq. (29)),

∂E(2)

∂t
+
∂I

∂x
= D (45)

Integrating over the periodic domain, the above energy
corollary can be converted into the following statement of
conservation of perturbation energy in the spectral space,

d

dt

∑

|k′|≤k

Êk′ + Π̂k =
∑

|k′|≤k

D̂k′ , (46)

Length scale
Integral Taylor Kolmogorov

length scale Microscale length scale
` λ η

Definition
√∑

k Êk/k
2∑

k Êk

√
2δ〈E(2)〉

ε
δ√
〈E(2)〉

Characteristic
(k0, kE) (kE , kδ) (kδ,∞)

spectral range

TABLE III. Summary of the three length scales `, λ, and
η, respective definitions, and the range of spectrum charac-
terized by them. The integral length scale characterizes the
energy containing range (k0, kE). The Taylor microscale is
the characteristic of the energy transfer and dissipation range
(kE , kδ). The Kolmogorov length scale corresponds to the
highest wavenumber generated as a result of nonlinear acous-
tic energy cascade.

where the first term corresponds to the temporal rate
of change of cumulative spectral energy density,

dÊk
dt
≈ d

dt

( |ûk|2
2

+
|p̂k|2

2

)
+ <

(
p̂−k

dĝk
dt

)
, (47)

and ĝ is the Fourier transform of g(p′) given by,

g(p′) =
γ

γ − 1

(
(1 + γp′)

1/γ − 1− p′
)
. (48)

The spectral energy Êk is given by,

Êk =
|ûk|2

2
+
|p̂k|2

2
+ <

(
p̂−k

(
f̂(p′)

p′

)

k

)
. (49)

It is noteworthy that the correction in spectral energy
does not follow directly from the nonlinear correction
function f(p′) derived in the physical space. In Eq. (47),
we have made the following approximation,

d

dt

(
<
(
p̂−k

(
f̂(p′)

p′

)

k

))
≈ <

(
p̂−k

dĝk
dt

)
(50)

Second term Π̂k in Eq. (46) is the flux of spectral energy
density from wavenumbers |k′| ≤ k to |k′| > k and is
given by,

Π̂k =
∑

|k′|≤k

<
(
p̂−k′

(
∂(û′g)

∂x

)

k′

+ p̂−k′

(
̂
u′
∂p′

∂x

)

k′

+

1

2
û−k′

∂
∂x

(
u′2 − p′2

)
k′

∧)
. (51)

Finally, the spectral dissipation D̂k is given by,

D̂k = ν0
γ − 1

Pr
<
(
p̂−k

((
1 + ∂g

∂p′

)(
∂2p′

∂x2

)∧)

k

)

− 16π2

3
ν0k

2|ûk|2. (52)
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(a)

(b)

(c)

(d)

FIG. 7. Schematic illustrating the global picture of various
length scales associated with spectral energy cascade in non-
linear acoustics in both spatial (a) and spectral (b) − (d)
space. (a) shows the perturbation velocity u′ (−−) and pres-
sure p′ (–) fields in AWT obtained from the DNS data for
ν0 =1.836×10−7 and Arms = 10−1. (b) shows the correspond-
ing spectral energy Êk in log-log space. The spectral flux
Π̂k and dissipation D̂k are shown in (c) and (d) respectively.
The integral length scale ` corresponds to the characteristic
distance between the shock waves traveling in the same di-
rection. The Kolmogorov length scale η corresponds to the
shock wave thickness. The Taylor microscale λ is the diffusive
length scale and satisfies ` � λ � η. L corresponds to the
length of the domain.

Detailed derivation of Eqs. (46)-(52) is given in ap-
pendix B. Figure 7 summarizes the typical shape of the
spectral energy Êk, spectral energy flux Π̂k, and the spec-
tral dissipation D̂k along with the relative positions of the
three relevant length scales, the integral length scale, `,

the Taylor microscale, λ, and the Kolomogorov length
scale η in the spectral space. The spectro-temporal evo-
lution of any configuration of nonlinear acoustic waves
can be quantified utilizing these length scales and the
respective evolution in time which is discussed in detail
in the subsections below. Table III summarizes these
length scales and the characteristic spectral range. In
further sections, we discuss all the spectral quantities as
functions of absolute value of wavenumbers and drop the
|.| notation for convenience.

The spectral energy flux Π̂k, defined in Eq. (51), is
in terms of interactions of the Fourier coefficients of the
pressure p̂k and velocity ûk perturbations. For compact
support or periodic perturbations, Π̂k approaches zero in
the limit of very large wavenumbers k →∞,

lim
k→∞

Π̂k =

〈
∂I

∂x

〉
= 0. (53)

The last two terms in Eq. (51) result in Π̂k → 0 for large
k for general acoustic phasing. Hence, they are most
relevant in SW and AWT cases. In a pure traveling wave
(TW), u′ = p′ at first order due to which the last two
terms in Eq. (51) become negligible. Furthermore, the
sequence of Π̂k also converges monotonically i.e.,

lim
k→∞

(
Π̂k−1 − Π̂k

)
→ 0+, (54)

as shown in Figs. 7(c) and 8. The flattening of the
spectral energy flux Π̂k (Eq. (54)) begins at a specific
wavenumber kδ associated to the Kolmogorov length
scale, η, as shown in Fig. 7. The spectral energy Êk devi-
ates off the k−2 decay near the wavenumber kδ. Figure 8
shows the spectro-temporal evolution of the spectral en-
ergy Êk and the flux Π̂k for TW, SW, and AWT prior to
formation of shock waves.

For TW, Π̂k increases in time due to spectral broad-
ening. In SW, Π̂k, while increasing, also oscillates at low
wavenumbers due to the periodic collisions of oppositely
propagating shocks. A combination of these processes
takes place in a randomly initialized smooth finite am-
plitude perturbation, which at later times develops into
AWT. At later times, nonlinear waves in all three con-
figurations fully develop in to shock waves. Up to the
shock formation, the spectral dynamics of all configura-
tions simply involve increase of the spectral flux Π̂k. The
dimensionless shock formation time τ can be estimated
as,

τ =
2

(γ − 1)Arms,0
. (55)

Upon shock formation, the dynamic evolution of TW and
SW remains phenomenologically identical. The isolated
shocks propagate and the total perturbation energy of the
system decays due to thermoviscous dissipation localized
around the shock wave. However, for AWT, along with
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(a) (b) (c)

FIG. 8. Spectro-temporal evolution of Êk (top) and spectral flux Π̂k (bottom) for a TW (a), SW (b) and AWT (c). Spectral
flux Π̂k for a traveling wave simply increases towards high wavenumbers. For a standing wave, Π̂k oscillates at low wavenumbers
cyclically due to collisions of oppositely traveling shock waves while high wavenumber behaviour resembles that of a traveling
shock. For AWT, the spectral broadening occurs for k > kE with small fluctuations in time for k < kE .

collisions of oppositely propagating shocks, those propa-
gating in the same direction coalesce due to differential
propagating speeds. As we discuss below, this modifies
the energy decay and spectral energy dynamics in AWT
significantly compared to TW and SW.

In the sub-sections below, we elucidate the energy dy-
namics before and after shock formation for TW, SW,
and AWT. To this end, we define and discuss the rele-
vant length scales as mentioned above, namely: the Tay-
lor microscale λ, the integral length scale `, and the Kol-
mogorov length scale η. Particular focus is given to the
AWT case due to modified dynamics caused by shock
coalescence.

B. Taylor microscale

In hydrodynamic turbulence, the Taylor microscale
λ separates the inviscid length scales from the viscous
length scales [15, 24]. Due to the spectral energy cascade
in planar nonlinear acoustics, we note that the spectral
energy varies as Êk ∼ k−2 due to the formation of shocks
and the spectral dissipation due to thermoviscous diffu-
sion varies as D̂k ∼ k2Êk. Consequently, the dissipa-
tion acts over most of the length scales with k > kE
(Fig. 7(d)), unlike hydrodynamic turbulence where the
viscous dissipation dominates only the smaller length
scales [15, 24]. As shown in Fig. 7(c), length scales in
the range (kE , kδ) exhibit both dissipation D̂k and en-
ergy transfer Π̂k. For k > kδ, Π̂k begins to converge
monotonically to 0 and the interval (kδ, 1/η) primarily

exhibits dissipation D̂k only. The Taylor microscale λ
quantifies the length scale associated to the whole dissi-
pation range.

Utilizing the definition of the total perturbation en-
ergy

〈
E(2)

〉
and the dissipation rate ε (cf. Eq. (37)), the

microscale λ can be defined as,

λ(t) =

√
2δ
〈
E(2)

〉

ε
, (56)

where δ is the thermoviscous diffusivity, given by,

δ = ν0

(
4

3
+
γ − 1

Pr

)
. (57)

Equation (56) indicates that the Taylor microscale can
be identified as the geometrical centroid of full energy
spectrum, i.e.

λ ∼

√√√√
∑
k Êk∑
k k

2Êk
. (58)

As the smaller length scales (higher harmonics) are
generated, the dissipation rate ε tends to increase reach-
ing a maximum in time. The increase of dissipation rate ε
implies decrease of the length scale λ in time. Minima of
λ indicates the fully-broadened spectrum of energy lim-
ited by the thermoviscous diffusivity at very large scales.
Further spatio-temporal evolution of the system is dom-
inated by dissipation thus indicating the purely diffusive
nature of the Taylor microscale, i.e.,

λ→ C
√
δt. (59)
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(a) (b) (c)

FIG. 9. Temporal evolution of scaled total energy <E(2)> A−2
rms,0 (–) (top), dissipation rate εA−3

rms,0 (−−) (mid) and normalized
Taylor microscale λ/

√
δτ (bottom) for TW (a), SW (b) and AWT (c) against the scaled time t/τ for varying perturbation

Reynolds number ReL. The time t0 signifies fully broadened spectrum of the perturbation field.

The temporal evolution of λ is qualitatively similar for
TW, SW, and AWT, the constant C in Eq. (59) differs
for TW and SW compared with AWT due to the differ-
ent spatial structure of perturbations. The time t0 at
which λ reaches minimum signifies fully developed non-
linear acoustic waves. In case of AWT, it signifies fully
developed acoustic wave turbulence.

Figure 9 shows the decay of scaled total perturbation
energy

〈
E(2)

〉
A−2rms,0 and total dissipation rate εA−3rms,0 for

the TW, SW, and AWT. We note that the total energy
decays as a power law t−2 for both TW and SW, whereas,
for AWT, the initial decay law is t−2/3. Asymptotic evo-
lution (at large t) of the Taylor microscale follows from
the decay laws as λ =

√
δt and λ =

√
3δt respectively.

Since energy decay law of a single harmonic traveling and
standing waves is rather trivial, we focus primarily on the
AWT case for further discussion.

C. Integral length scale

We identify the integral length scale ` as the charac-
teristic length scale of the energy containing scales. In
general, random smooth broadband noise (AWT) devel-
ops into an ensemble of shocks, propagating left and right

in a one-dimensional system. For an ensemble of shock
waves distributed spatially along a line, ` corresponds
to the characteristic distance between consecutive shock
waves traveling in the same direction, as shown schemat-
ically in Fig. 7. Formally, we define ` as,

` =

√√√√
∑
k
Êk
k2∑

k Êk
, (60)

which is identical to the integral length scale defined in
Burgers turbulence [28]. Definition in Eq. (60) yields
the centroid wavenumber of the initial energy spectrum
(unlike Taylor microscale, which corresponds to the full
energy spectrum) and hence is characteristic of the large
length scales of fully developed AWT. To elucidate the
evolution of the total perturbation energy

〈
E(2)

〉
utilizing

the integral length scale, we assume the following model
spectral energy density Êk,

Êk =

{
C1k

n k0 ≤ k ≤ kE
C2k

−2 kδ > k > kE
, (61)

where kn corresponds to the shape of initialized energy
spectrum in the range (k0, kE) (Fig. 7). In this work, we
only utilize the white noise initialized AWT cases which
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correspond to n = 0 (see Table II). Moreover,

C2 = C1k
n+2
E . (62)

The wave numbers kE and kδ vary in time due to decay-
ing energy. By definition, the mean of perturbations is
zero. Hence, the smallest wavenumber containing energy
k0 (cf. Fig. 7) is the reciprocal of the domain length L,
i.e.,

k0 = 1/L. (63)

We note that the above model spectral energy Êk holds
for two primary reasons. Firstly, the energy cascade re-
sults in the k−2 decay of the spectral energy Êk due to
formation of shock waves [28]. In the limit of vanishing
viscosity δ → 0, such decay extends up to k → ∞ in
which case the developed shock waves render the system
C0 discontinuous. Secondly, the shape of the spectral
energy Êk for k → k0 corresponds to kn, which is also
the shape of initial energy spectral at time t = 0. Such
argument corresponds to the concept of permanence of
large eddies in hydrodynamic turbulence [43], which in
spectral space can be written as,

Êk(t) ≈ Êk(t = 0), as k → k0. (64)

Gurbatov et al. [28] utilized a similar argument in the

(a)

(b)

FIG. 10. Evolution of the integral length scale ` (a) and
the Reynolds number Re` (b) defined in Eqs. (60) and (69),
respectively, for all the cases of AWT considered. For small
thermoviscous diffusivity, ` increases approximately as t1/3

before saturating to the dimensionless domain length L = 1
and Re` remains approximately constant.

context of Burgers turbulence. Combining the Eqs. (60)-
(64), the integral length scale ` is given by,

` ≈





√
n+1
n−1

(
kn−2
E +kn−3

E k0+···kn−2
0

knE+kn−1
E k0+···kn0

)
n 6= 1

√
2 ln(kE/k0)
k2E−k20

n = 1.
, (65)

where we have used the simplifying approximation of
kδ � kE . We note that the Eq. (65) indicates the depen-
dence of ` and consequently the energy decay law on n. In
the present work, we perform numerical simulations for
an uncorrelated white noise (filtered) which corresponds
to n = 0, and

` ≈ 1√
k0kE

. (66)

As a result of permanence of large eddies, the decay of en-
ergy in the initial regime of AWT is associated only to the
decreasing kE or increasing integral length scale `. Inte-
grating Eq. (61) in the spectral space and differentiating
in time yields (for n = 0 in the current simulations),

d
〈
E(2)

〉

dt
= C1

(
2
dkE
dt

(
1− kE

kδ

)
+

(
kE
kδ

)2
dkδ
dt

)
(67)

≈ − 2C1

k0`3
d`

dt
. (68)

Above relation shows that derivation of the energy decay
power law amounts to finding the kinetic equations of
the integral length scale ` and the limiting wavenumber
kδ. For TW and SW, ` remains constant by definition.
Consequently, the energy decay rate only depends on de-
crease of wavenumber kδ and the coefficient C2 due to the
thermoviscous diffusion (cf. Eq. (72) ). However, for an
ensemble of shock waves in AWT, ` increases monoton-
ically in time, as shown in Fig. 10(a) due to the coales-
cence of shock waves propagating in the same direction.
At large times, the domain consists of only two shock
waves propagating in opposite directions.

In the context of Burgers turbulence in an infinite one-
dimensional domain, Burgers [32] and Kida [27] have de-
rived the appropriate asymptotic evolution laws for the
integral length scale ` based on the dimensional argu-
ments. However, in the present work, the finiteness of
the domain renders the asymptotic analysis infeasible.
Our numerical results indicate that ` ∼ t1/3 (kE ∼ t−2/3)
for randomly distributed shock waves at various ReL val-
ues considered, as shown in Fig. 10(a). Equations (68)
and (66) show that such scaling is consistent with the
observed energy decay law

〈
E(2)

〉
∼ t−2/3 thus validat-

ing the result in Eq. (68). It is noteworthy that decay
kE ∼ t−2/3 is a result analogous to the one discussed in
Burgers turbulence [27, 28, 32] considered in an infinite
one-dimensional domain. Due to infinitely long domain,
the average distance between the shocks approaches 1/kE
(not `) simply due to larger number of shocks in the
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domain separated by the distance 1/kE since kE corre-
sponds to the largest wavenumber carrying initial energy,
thus implying that mean distance between the shocks in-
creases as t2/3 as noted by Burgers [32].

Based on the integral length scale, the Reynolds num-
ber Re` can be defined as,

Re` = ReL`, (69)

which captures the ratio of the diffusive time scale to the
wave turbulence time. Upon formation of shock waves,
the perturbation energy decays due to coalescence. Shock
waves coalesce locally thus increasing the characteristic
separation between the shock waves thus causing ` to
increase. In this regime, the Reynolds number Re` re-
mains constant (Fig. 10(b)) which denotes that the ratio
of shock coalescence time scale (`L∗)/(a∗0Arms) and the
diffusive time scale (`L∗)2/ν∗0 remains constant. As the
wave turbulence decays further, ` → L with continued
decay of energy. Consequently, Re` also begins to decay.

D. Kolmogorov length scale

For spectral energy Êk ∼ k−2 over the intermediate
range of wavenumbers, k ∈ (kE , kδ) (cf. Fig. 7), the
Taylor microscale can be estimated as,

λ ∼ 1√
kEkδ

, (70)

utilizing the Eq. (58). Equation (70) shows that λ, de-
spite being a dissipative scale, is not the smallest scale
generated due to the energy cascade. Analogous to
the hydrodynamic turbulence, we define the Kolmogorov
length scale η [15] as the smallest length scale generated
as a result of the acoustic energy cascade. The length
scale η can be approximated by the balance of nonlinear
steepening and energy dissipation, i.e.,

A2
rms

η
∼ δArms

η2
, η ∼ δ

Arms
, (71)

where Arms is defined in Eq. (38). Figure 7 illustrates the
integral length scale ` and the Kolmogorov length scale η
in a typical AWT field. Visual inspection indicates `� η
which is as expected. We note that η and 1/kδ evolve
in time similarly, differing only by a constant value. For
AWT, this is immediately realizable since, Eq. (70) shows
that kδ ∼ t−1/3 and Eq. (71) shows that η ∼ t1/3 which
implies kδη remains constant when the energy decays.
For TW and SW, the spectral energy given by Eq. (61)
corresponds to the degenerate case of k0 = kE = 1. For
such a form of spectral energy, the energy evolution (cf.
Eq. (68)) changes to,

d
〈
E(2)

〉

dt
=

1

k0

dC2

dt

(
1− k0

kδ

)
+
C2

k2δ

dkδ
dt
. (72)
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FIG. 11. Fully developed spectra of compensated energy (a),
spectral energy flux (b), and cumulative dissipation (c) for
TW at time instant t0 ≈ 0.03. Harmonics with wavenumbers
such that kη < 1 contain all the energy. The spectral energy
flux vanishes at kη ≈ 1 thus indicating numerical resolution
of all the energy containing harmonics. The marked regime
0.1 < kη < 1 signifies the dissipation range. The constant
C ≈ 0.075. (–) Arms,0 = 10−1; (−−) Arms,0 = 10−2; (· · · )
Arms,0 = 10−3

As shown in Fig. 9, the Taylor microscale λ→
√
δt. Con-

sequently, for kE = k0 constant, Eq. (70) shows that
kδ ∼ t−1. Equation (72) shows that the decay of per-
turbation energy is due to decay in C2 and kδ. Our nu-
merical results (cf. Fig. 9) show that for TW and SW,〈
E(2)

〉
∼ t−2 which suggests that C2 ∼ t−2 for kδ � 1

from Eq. (72). Hence, the compensated energy spectrum
k2Êk ∼ t−2 for both TW and SW indicating that dissi-
pation D̂k remains active over all the length scales k > k0
while the energy decays.

Equation (71) shows that the Reynolds number based
on the Kolmogorov length scale or the shock thickness



16

Reη = ηReL remains constant in time,

Reη =
ρ∗0a
∗
0L
∗ηArms

µ∗0
=

4

3
+
γ − 1

Pr
. (73)

Above relation shows that Reη = O (1) indicating that
η is the length scale at which diffusion dominates the
nonlinear wave steepening.

VI. SCALING OF SPECTRAL QUANTITIES

In this section, we discuss the variation and scaling of
the energy Êk, the spectral energy flux Π̂k, and the cumu-
lative dissipation

∑
k′<k D̂k′ for high amplitude TW, SW,

and AWT cases utilizing the length scale analysis pre-
sented in the previous sections. We show that the spec-
tral energy Êk and the cumulative dissipation

∑
k′<k D̂k′

for all the cases can be collapsed on to a common struc-
ture versus the reduced wavenumber kη however, the flux
Π̂k lacks such a universality.

As discussed in previous section (cf. Eq. (72)), the
decay of total energy

〈
E(2)

〉
and dissipation rate ε for

TW is given by,
〈
E(2)

〉
∼ t−2, and ε ∼ t−3, (74)

which are well known results for the Burgers equation as
well [54].

While the results in Eq. (74) are well known, we note
that such power law decay results in a universally con-
stant structure of shock waves in the spectral space, as
shown in Figs. 11 and 12. Utilizing the estimate of Kol-
mogorov length scale η given in Eq. (71), the energy dis-
sipation rate ε and the Kolmogorov length scale η can be
related as,

ε ∼ A3
rms

`
, and η ∼ δ

(ε`)
1/3

. (75)

Hence, the energy spectrum Êk can be written in the
following collapsed form (Fig. 11a).

Êkk
2ε−2/3`1/3 ∼ CF (kη). (76)

In Eq. (76), the integral length scale ` is used for mak-
ing the left hand expression dimensionless. For TW and
SW, the integral length scale ` remains constant by defi-
nition (` = L). Hence, C in Eq. (76) is constant and can
be attributed to the Kolmogorov’s universal equilibrium
theory for hydrodynamic turbulence. F (.) is a function
which decays as the reduced wavenumber kη increases
to 1. From the numerical simulations for cases listed in
Table I we obtain,

C ≈ 0.075. (77)

Scaling of Π̂k with the energy dissipation rate ε shows
the relative magnitude of spectral energy flux compared
to the energy dissipation. For increasing Reynolds num-
bers ReL, we note that Π̂k/ε increases but still remains
less than 1 in the energy transfer and dissipation range,
as shown in Fig. 11(b). This highlights the primary
difference between energy spectra of nonlinear acous-
tic waves and hydrodynamic turbulence, in which, the
energy transfer range does not exhibit viscous dissipa-
tion [24]. However, in nonlinear acoustics, the dissipation
occurs over all the smaller length scales which do not con-
tain energy initially (Fig. 7(d)). Moreover, for kη ≈ 0.1,
the flux Π̂k rapidly approaches to zero. In the regime
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FIG. 12. Fully developed spectra of compensated energy (a),
spectral energy flux (b), and cumulative dissipation (c) for SW
averaged over one time cycle after t0 ≈ 0.04. Harmonics with
wavenumbers kη < 1 contain all the energy. The spectral
energy flux vanishes at kη ≈ 1 thus indicating numerical res-
olution of all the energy containing harmonics. The marked
regime 0.1 < kη < 1 signifies the dissipation range. The con-
stant C ≈ 0.075. (–) Arms,0 = 10−1; (−−) Arms,0 = 10−2;
(· · · ) Arms,0 = 10−3
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kη > 0.1, scaled cumulative dissipation
∑
k′<k D̂k′/ε→ 1

as kη → 1.

Such functional forms of spectral energy, spectral en-
ergy flux, and cumulative dissipation can also be realized
for the SW case. At later times, the nonlinear evolution
results in two opposite traveling shock waves which col-
lide with each other twice in one time period. Such col-
lisions cause instantaneous peaks in the dissipation rate
ε and corresponding oscillations in the Taylor microscale
λ, as shown in Fig. 9. However, the total energy

〈
E(2)

〉

decays monotonically by definition. In the spectral space,
such collisions generate periodic oscillations in the spec-
tral energy flux Π̂k, as shown in Fig. 8. Averaging over
one such time cycle yields the energy spectra forms sim-
ilar to that for TW, as shown in Fig. 12. Such cycle
averaging is allowed since the total energy

〈
E(2)

〉
and

the dissipation rate ε decay such that averaged behavior
is identical to the one of traveling waves. Furthermore,
the value of the constant C is identical for SW. We fur-
ther note that for the case with lowest Reynolds number
ReL (ν0 = 1.836× 10−5 and A0,rms = 10−3), the spectra
exhibit energy for kη > 1 (Fig. 12(a) since the Eq. (71)
underpredicts η. This suggests that the nonlinear spec-
tral energy transfer is small compared to the spectral
dissipation, as shown by Fig. 12(b).

As discussed in previous sections, the decay phe-
nomenology of AWT is different from that of TW and
SW. Typical acoustic field u′(x, t), p′(x, t) for a randomly
initialized perturbation at a time after shock formation is
shown in Fig. 7(a). The velocity field corresponds to ran-
domly positioned shocks connected with almost straight
slant lines (expansion waves) and the pressure field with
identical distribution of shocks but connected with hori-
zontal lines. Shocks traveling in the same direction col-
lide inelastically and coalesce, while those traveling in op-
posite directions pass through. As discussed previously,
the integral length scale ` defines the average distance
between the adjacent shock traveling in the same direc-
tion. Due to gradual coalescence of the shocks, ` in-
creases in time. Moreover, as t → ∞, it is obvious that
two opposite traveling shocks remain in the domain and
` → L. We note that such behaviour is similar to the
Burgers turbulence [27]. Figure 13 shows the fully devel-
oped compensated spectra at scaled dimensionless time
t/τ = t0 ≈ 6× 10−4. For AWT, the compensated energy
spectrum Êkk

2ε−2/3`1/3 defined in Eq. (76) does not re-
main constant in the energy transfer range of wavenum-
bers due to decay laws of energy and dissipation derived
in the previous section. Moreover, for lowest ReL case,
the spectra exhibit energy for kη > 1 (Fig. 13(a)) due to
underprediction of η obtained via balancing of nonlinear
wave propagation and thermoviscous dissipation effects.
The dissipation acts at large length scales also in the low-
est ReL case. Consequently, the spectral energy flux Π̂k

is very small compared to dissipation ε and the length
scale η is primarily governed by diffusion only.
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FIG. 13. Fully developed spectra of compensated energy, (a),
spectral energy flux (b), and cumulative dissipation (c) against
scaled wavenumber kη for the randomly initialized broadband
noise (AWT) cases with Arms,0 and ν0 listed in Table I at
dimensionless time t/τ = τ0 ≈ 6× 10−4. The marked regime
0.1 < kη < 1 signifies the dissipation range. (–) Arms,0 =
10−1; (−−) Arms,0 = 10−2; (· · · ) Arms,0 = 10−3

VII. CONCLUDING REMARKS

We have studied the spectral energy transport and de-
cay of finite amplitude planar nonlinear acoustic pertur-
bations governed by fully compressible 1D Navier-Stokes
equations through shock-resolved direct numerical sim-
ulations (DNS) focusing on propagating single harmonic
traveling wave (TW), standing wave (SW), and randomly
initialized Acoustic Wave Turbulence (AWT). The maxi-
mum entropy perturbations scale as p′2 for normalized
pressure perturbation p′ ∼ O

(
10−3 − 10−1

)
. Conse-

quently, the second order nonlinear acoustic equations
are adequate to derive physical conclusions on spectral
energy transfer in the system. Utilizing the second order
equations, we derived the analytical expression for cor-
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rected energy corollary for finite amplitude acoustic per-
turbations yielding infinite order correction term in the
perturbation energy density. We have shown that the
spatial average of the corrected perturbation energy den-
sity can be classified as a Lyapunov function for the sec-
ond order nonlinear acoustic system with strictly mono-
tonic behaviour in time.

Utilizing the corrected energy corollary, we derived
the expressions for spectral energy, spectral energy flux,
and spectral dissipation, analogous to the spectral energy
equation studied in hydrodynamic turbulence. Utilizing
the spectral expressions, we performed theoretical study
of three possible length scales characterizing a general
nonlinear acoustic system, namely, the integral length
scale `, the Taylor microscale λ, and the Kolmogorov
length scale η.

In traveling waves (TW) and standing waves (SW), `
remains constant in the decaying regime. Spatial aver-
age of perturbation energy decays as

〈
E(2)

〉
∼ t−2 and

dissipation rate as ε ∼ t−3 in time. The Kolmogorov
scale increases linearly in time (η ∼ t) in the decaying
regime. Moreover, the spectral energy for both travel-
ing and standing waves assumes the self-similar form:
Êkk

2ε−2/3`1/3 ∼ 0.075f(kη).

In acoustic wave turbulence (AWT), due to grad-
ual increase of the integral length scale ` caused by
the shock coalescence, the approximate decay laws are〈
E(2)

〉
∼ t−2/3 and ε ∼ t−5/3, similar to the Burgers

turbulence [32]. While, various cases for AWT qualita-
tively collapse with the scaling Êkk2ε−2/3`1/3, quantita-
tive scaling can only be obtained utilizing a statistically
stationary ensemble of shock waves combined with ran-
dom forcing, which falls beyond the current scope.
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Appendix A: Derivation of Second-Order Acoustics
Equations; Role of the Thermal Equation of State

For a chemically inert generic gas, infinitesimal changes
in dimensionless density ρ(p, s) in terms of pressure p and

entropy s are given by,

dρ =

(
∂ρ

∂p

)

s

dp+

(
∂ρ

∂s

)

p

ds,

=
ρ

γp
dp−

(
ρ∗0T

∗
0R
∗

γp∗0

)
ρ2T

p

(
γ − 1

γ

)
ds. (A1)

Substituting the above relation in the dimensionless con-
tinuity Eq. (16), we obtain,

∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x

=

(
ρ∗0T

∗
0R
∗

p∗0

)(
γ − 1

γ

)
ρT

(
∂s

∂t
+ u

∂s

∂x

)
. (A2)

Non-dimensionalizing the entropy Eq. (4) utilizing the
Eq. (14), we obtain,

ρT

(
∂s

∂t
+ u

∂s

∂x

)
=

ν0
Pr

C∗p
R∗

∂2T

∂x2
+

4ν0
3

a∗20
R∗T ∗0

(
∂u

∂x

)2

.

(A3)
Substituting the above equation in Eq. (A2), we obtain,

∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x

=

(
ρ∗0T

∗
0R
∗

p∗0

)
γ − 1

γ

(
ν0
Pr

C∗p
R∗

∂2T

∂x2
+

4ν0
3

a∗20
R∗T ∗0

(
∂u

∂x

)2
)
.

(A4)

Substituting the decomposition of variables (cf. Eq. (14))
in the above Eq. (A4), we obtain the pressure perturba-
tion equation for a generic gas,

∂p′

∂t
+
∂p′

∂x
+ u′

∂p′

∂x
+ γp′

∂u′

∂x

=

(
ρ∗0T

∗
0R
∗

p∗0

)
γ − 1

γ

(
ν0
Pr

C∗p
R∗

∂2T ′

∂x2
+

4ν0
3

a∗20
R∗T ∗0

(
∂u′

∂x

)2
)
.

(A5)

As shown in Section II B, the entropy perturbations are
atmost 2nd order in pressure, independent of viscosity.
Consequently, the first and second term on right hand
side of Eq. (A3) are second and third order in pressure
perturbations, respectively. Truncating the Eq. (A5) up
to second order, we obtain the second order equation for
pressure perturbations for a generic fluid as,

∂p′

∂t
+ u′

∂p′

∂x
+
∂u′

∂x
+ γp′

∂u′

∂x
=

ν0
Pr

(
ρ∗0T

∗
0R
∗

p∗0

)(
γ − 1

γ

)(
∂T

∂p

)

s,0

C∗p
R∗

∂2p′

∂x2

+O
(
p′s′, s′2, p′3,

(
∂u′

∂x

)2
)
, (A6)

Substituting the decomposition of variables (cf. Eq. (14))
in dimensionless Eq. (3) and neglecting changes in kine-
matic viscosity, we obtain,

∂u′

∂t
+ u′

∂u′

∂x
+

1

1 + ρ′
∂p′

∂x
=

4

3
ν0
∂2u′

∂x2
. (A7)
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Equations (A6) and (A7) do not involve any assumption
regarding the thermal equation of state of the gas and
hold for any chemically inert generic gas.

Assuming a thermal equation of state for an ideal gas
in Eq. (A6) and utilizing binomial expansion in Eq. (A7),
we obtain Eqs. (17) and (18) as,

∂p′

∂t
+
∂u′

∂x
+ γp′

∂u′

∂x
+ u′

∂p′

∂x
= ν0

(
γ − 1

Pr

)
∂2p′

∂x2

+O
(
p′s′, s′2, p′3,

(
∂u′

∂x

)2
)
,

(A8)

∂u′

∂t
+
∂p′

∂x
+

∂

∂x

(
u′2

2
− p′2

2

)
=

4

3
ν0
∂2u′

∂x2

+O
(
ρ′2p′, ρ′3p′

)
. (A9)

We note that the LHS of Eqs (A6) and (A7) (up to sec-
ond order) are identical to those of Eqs. (A8) and (A9),
respectively, hence independent from the thermal equa-
tion of state. As shown in section III, the functional form
of the second order perturbation energy norm E(2) (Eq
(32)) is exclusively dictated by such terms, and hence is
also independent from the thermal equation of state. The
results shown in this work focus on ideal-gas simulations
merely for the sake of simplicity, with no loss of general-
ity pertaining to inviscid nonlinear (up to second order)
spectral energy transfer dynamics.

Appendix B: Derivation of Spectral Energy Transfer

Equation (46) can be obtained from the conservation
of perturbation energy upon considering the second order
governing relations (Eqs. (17) and (18)) and substituting
the Fourier expansions of p′ and u′,

p′ =

∞∑

k=−∞

p̂ke
2πikx, u′ =

∞∑

k=−∞

ûke
2πikx, (B1)

yielding,

dp̂k
dt

+2πikûk + 2πiγ

∞∑

k′=−∞

k′p̂k−k′ ûk′ + . . .

2πi

∞∑

k′=−∞

k′p̂k′ ûk−k′ = −4π2ν0

(
γ − 1

Pr

)
k2p̂k,

(B2)

dûk
dt

+2πikp̂k + 2πi

∞∑

k′=−∞

k′ûk−k′ ûk′ + . . .

− 2πi

∞∑

k′=−∞

k′p̂k−k′ p̂k′ = −16π2

3
ν0k

2ûk. (B3)

Multiplying eqs. (B2) and (B3) by p̂−k and û−k and
adding the complex conjugate, we obtain,

d

dt

( |p̂k|2
2

+
|ûk|2

2

)
+ 2πγ<

(
p̂−k

∞∑

k′=−∞

ik′ûk′ p̂k−k′

)

+ <
(
p̂−k

(̂
u
∂p

∂x

)

k

+
û−k

2

(
∂
∂x

(
u2 − p2

))∧
k

)

= −4π2ν0
γ − 1

Pr
k2|p̂k|2 −

16π2

3
ν0k

2|ûk|2. (B4)

The second term in the above equation can be evaluated
recursively utilizing the Eq. (17) yielding,

2πγ<
(
p̂−k

∞∑

k′=−∞

ik′ûk′ p̂k−k′

)
= <

(
p̂−k

dĝk
dt

)
+

<
(
p̂−k

(̂
∂ug

∂x

)

k

)
− ν0

(
γ − 1

Pr

)
<
(
p̂−k

̂(
∂g

∂p

∂2p

∂x2

)

k

)
,

(B5)

which, upon substitution in Eq. (B4) yields,

dÊk
dt

+ T̂k = D̂k, (B6)

where, the spectral energy transfer function Tk is given
by,

T̂k = <
(
p̂−k

(̂
∂ug

∂x

)

k

+ p̂−k

(̂
u
∂p

∂x

)

k

+
û−k

2

(
∂
∂x

(
u2 − p2

))
k

)∧

, (B7)

and the spectral dissipation term Dk is given by,

Dk = −ν0
(
γ − 1

Pr

)(
4π2k2|p̂k|2 −<

(
p−k

(
∂g
∂p

∂2p
∂x2

)
k

∧))
−

16π2

3
ν0k

2|ûk|2. (B8)

Summation of Eq. (B4) for k′ < k yields Eq. (46) and
the expressions thereafter.
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