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Abstract

In this study, we numerically investigate the interactions between pentagonal truncated pyra-

mids in a nematic liquid crystal host. The colloidal arrangements are investigated by minimizing

the Landau-de Gennes free energy in presence of homeotropic anchoring surface energy upon the

particles. We further explain the interactions using symmetry breaking in the director field and

particle-particle relative arrangements. In case of long-range separations, interactions exhibit some

deviations from those observed in case of dipolar symmetry. We also exhibit that, in some cases,

decreasing the bending elastic distortions between two adjacent lateral faces will cause a non-

horizontal side-to-side configuration. In many-body interactions, we evaluate the ability of the

bent and branch configurations to form complex self-tiling assemblies pentagonal truncated pyra-

mid blocks.
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I. INTRODUCTION

The formation of nano- and micro-scale colloidal structures in uniform nematic liquid

crystals (NLCs) is generally controlled by anchoring the liquid crystal mesogens on sur-

faces [1–4] and the shape of the colloids [5–11]. Anchoring causes the director, n̂, around

an isolated colloid to be elastically distorted from the uniform orientation in the far-field,

n̂0. Depending on the spatial arrangement and anchoring strength of the molecules at the

surface of the colloid, director discontinuities may appear in the form of points or lines in

the media in which defects are observed [12].

In spherical geometries, the particle-defect exhibits elastic deformations with dipole or

quadrupole symmetries in the electrostatic analogy which decays with distance, D, as D−3

or D−5, respectively [1–3, 13–15]. In case of close particle-particle separations, the defects

topologically have complex and entangled structures due to symmetry breaking [16, 17] and

play a crucial role in anisotropic interactions [13, 18–20]. The self-assembled structure of

the colloids is ultimately acquired by the competition between short and long-range colloidal

interactions in the nematic host [21–23].

In case of ellipsoids, the aggregations of the elongated and flattened spheroid colloids are

specified by the aspect ratios of the ellipsoids [6, 24]. The micro- and nano-rod colloids with

homeotropic anchoring are observed to spatially form chain or side-by-side configurations

with dipolar and quadrupolar symmetries [5, 25]. The competition between the long-range

elastic and electrostatic interactions of nano-rod colloids with positive surface charges leads

to triclinic nematic pinacoidal lattices [26].

In a non-spherical case, the low symmetry of the particles cause the NLC elastic defor-

mations around the colloids to be individually reliant on the colloidal shape and spatial

arrangements that are relative to the bulk director field. The self-assembly of such colloidal

building blocks has drawn considerable attention in both soft condensed matter science and

technology [7, 8, 27, 28]. The pentagonal colloidal platelets that are immersed in NLC form

quasi-crystalline structures that are known as Penrose tiling patterns [27]. The self-assembly

of rectangular and hexagonal micro-sheets with planar anchoring in NLC results in the cre-

ation of a large 2D tiling texture [28]. The close contact interactions of platelets exhibit

that platelets with quadrupolar elastic deformation are bounded more strongly than the

platelets with dipolar symmetry [29]. The faceted nano-cubes and triangular nano-prisms
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with homeotropic anchoring induce large disclination loops in NLC, which screw six of the

cubic particle edges and two of the triangular faces, respectively [30].

Recently, it has been exhibited that polygonal truncated pyramids (PTPs) can create

2D complex crystalline and quasi-crystalline colloidal structures. In such structures, close

contact interactions are observed to be geometrically dependent on the tiling fragments and

arrangements, besides, the long-range interactions exhibit a dipolar type, independent of

the polygon symmetry [31]. Further, the polygonal platelet colloids with planar anchoring

induce dipolar or quadrupolar symmetry when polygons have odd or even side numbers, re-

spectively [7]. The strong binding energy between the blocks results in their stability against

external perturbations, this allows the PTP lattices to be considered as candidates for usage

in colloidal photonic and electro-optic applications [31]. The rearrangement of the disclina-

tion lines at the edges of the polygonal prisms alters the symmetry of director orientation

around the colloids and the nature of elastic interactions in the colloidal structures [32]. The

self-tiling of the pentagonal truncated pyramids with homeotropic anchoring can also form

quasi-crystalline Penrose patterns in contrast to that formed in case of pentagonal platelets

with planar anchoring. Thus the PTP colloids that exhibit a low symmetry can display

novel kinds of particle-particle interactions with distinct features in NLC. Further, their

different spatial arrangements increase their versatility, which allows their usage in different

applications.

In this study, we numerically investigate the interactions between pentagonal truncated

pyramids (pentagonal-TPs) in a NLC host. We also investigate the colloidal arrangements

with homeotropic anchoring by minimizing the Landau-de Gennes free energy. Further, the

disclination line defects that are observed around the colloids with different arrangements

are also investigated.

II. GEOMETRY

We investigate the colloidal-pair interactions of identical pentagonal truncated pyramids

in a uniform NLC, n̂0 = (0, 0, 1). The immersed particles also exhibit homeotropic anchoring.

In Fig. 1, the radius, R(= 0.5µm), is the system length scale that joins the center to one

of the vertices in the small pentagonal base. The height, H(= R/5), specifies the distance

between the pentagonal bases. In this case, the thickness of the particle would be H + 2r
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FIG. 1: (a) A schematic of the calculation cell. The director has been set parallel to the z-axis

at the boundaries. (b) and (c) are respectively parallel and anti-parallel pentagonal truncated

pyramids with opposite apex-base direction with respect to the z-axis. (d) A sharp part of the

lateral face. α is the angle between lateral edge and height, H. The edges are rounded with

roundness radius, r, to keep the director away from unrealistic behaviors. (e) and (f) are the top

and bottom parts of (d), respectively, where β = 90◦−α and γ = 72◦. (g) An adaptive tetrahedral

mesh is manually used to perform the finite element method calculations.

where r(= 0.05R) refers to the roundness of the edges. The large base radius can be

given as R + H tanα, where α is the tilted angle of the lateral faces. PTPs have been

experimentally investigated over a vast range of edge sizes and therefore α angles [31]. Here

we use pentagonal-TPs with α = 15◦ close to what has been experimentally studied. The

cell dimensions are Lx = Ly = 25R and Lz = 15R.

III. MODEL

We employ a traceless and symmetric tensor order parameter, Qij(~r) = S(~r)(3n̂i(~r)n̂j(~r)−
δij)/2 +P (~r)(l̂il̂j − m̂im̂j)/2, to characterize the nematic fluid. The scalar order parameter,

S, and the director orientation, n̂, are locally determined by the largest eigenvalue of the

tensor order parameter, λmax = S, and its corresponding eigenvector, respectively. Though

the nematic order is observed to be uniaxial, it may be locally biaxial near the surfaces

when strong deformations are observed. Generally, the tensor order parameter exhibits

three different eigenvalues, λ1 = −(S + P )/2, λ2 = −(S − P )/2 and λ3 = λmax = S with

the corresponding eigenvectors of l̂, m̂ and n̂(= l̂ × m̂), respectively (λ3 > λ2 > λ1). Thus,
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the biaxiality can be given as P = λ2 − λ1. Due to the presence of particles with specific

anchorings in the uniform nematic host, the director undergoes elastic distortions around

the particles. In a uniform nematic phase without an intrinsically biaxial order, biaxiality

is observed in the vicinity of defects [33]. The Landau-de Gennes model can explain such

distortions in terms of the tensor order parameter and its spatial derivatives as

FLdG =

∫
Ω

dV
(
a0(T − T ∗)

2
QijQji −

B

3
QijQjkQki

+
C

4
(QijQji)

2 +
L1

2
∂kQij∂kQij

)
,

(1)

where the indices refer to the Cartesian coordinates, the Einstein summation convention is

assumed, and Ω refers to the volume of NLC [34]. The initial three terms mainly describe

the bulk isotropic-nematic (IN) transition in the thermotropic liquid crystals. It generally

determines the equilibrium scalar order parameter, Seq, in terms of temperature, T . The

material-dependent coefficients, such as a0, B, and C, are positive and temperature inde-

pendent. T ∗ is the isotropic supercooling temperature. The final term is the contribution of

the elastic distortions in the NLC. The constant L1 is related to the Frank elastic constants

using one-constant approximation as Ksplay = Ktwist = Kbend = 9L1S
2
eq/2 [35]. The normal

anchoring effect on the surface of the particles can be given by Nobili’s tensorial surface

potential as

FSurface =
W

2

∫
∂Ω

dS(Qij −Qs
ij)(Qji −Qs

ji), (2)

where W is a positive constant that controls the anchoring stiffness, ∂Ω denotes the area

of all the immersed particles in nematic media and the tensor order parameter, Qs
ij =

Seq(3ν̂iν̂j − δij)/2, is specified by the preferred direction at the surface, ν̂ [36, 37]. Here,

we impose homeotropic anchoring for the case in which ν̂ is a normal unit vector normal

to the surface of the pentagonal-TPs. We have chosen the Landau parameters of 5CB

as a0 = 0.087 × 106J/m3K, T ∗ = 307.15K, T = 305.17K, B = −2.12 × 106J/m3, C =

1.73×106J/m3, L1 = 4×10−11J/m, and have imposed strong normal anchoring by choosing

W = 10−2J/m2 [16, 33, 38].

To simplify the calculations, we use dimensionless free energy and rescale the order pa-
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rameter as S = η(B/C)Ŝ, where η = 1/4. As a result, the total free energy becomes

F̂ =
F
f0R3

=

∫
Ω

dV
R3

(
τ

2
qijqji −

1

3η
qijqjkqki

+
1

4
(qijqji)

2 − f̂eq(τ)

)
+

1

2

ξ2

R2

∫
Ω

dV
R3

∂kqij∂kqij

+
1

2

w

R

∫
∂Ω

dS
R2

(qij − qsij)(qji − qsji),

(3)

where f0 = η4B4/C3, qij = Ŝ(3n̂in̂j − δij)/2 is the rescaled tensor order parameter, τ =

a0(T − T ∗)C/η2B2 ' −1.05 is an effective dimensionless temperature, f̂eq(τ) = (3τ/4)Ŝ2
eq −

(1/4η)Ŝ3
eq +(9/16)Ŝ4

eq is the dimensionless bulk free energy density in terms of dimensionless

temperature, Ŝeq = (1 +
√

1− 24τη2)/6η is the equilibrium rescaled order parameter, ξ =√
L1C/η2B2 ' 0.03R is a nematic coherence length and w = WC/η2B2 ' 0.122R is the

anchoring length [39].

IV. NUMERICAL METHOD

A finite element method (FEM) [40] was employed to minimize the total dimensionless

free energy. The automatic mesh generator Gmsh [41] was used to decompose the calculation

domain into tetrahedral elements. The tensor order parameter elements were further linearly

interpolated within each mesh element. The validity of linear interpolation depends on the

order parameter deviations within each element that are controlled by the mesh size. As

depicted in Fig. 1(e), the tetrahedral elements have been refined around the particle. Recent

studies that use the Delaunay triangulation/tetrahedralization algorithm set the element

size, Le, on the particles to Le = 0.0025R and on the cell boundaries to Le = R [42]. The

conjugate gradient (CG) method [43] is used to minimize the free energy and the iteration

steps were terminated when the free energy difference of the two sequential steps dropped

below 10−10. For each the spatial orientation of particles, the initial director profile was

numerically adopted from the optimized director arrangement of the closest particle-particle

separation [40].
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FIG. 2: (a) The director orientation at far distances and around a pentagonal-TP. A disclination

line defect of strength −1/2 surrounds the object at the large base. The dashed lines in the selected

section exhibit the director behavior inside a liquid crystal colloid with a pentagonal-TP shape for

boundaries that display homeotropic anchoring. The director lies in the plane and forms a point

topological defect of strength +1/2 in a disclination line loop. (b) The effective energy of an

isolated particle at different spatial arrangements with respect to the x − y-plane, (c) θ = 0◦, (d)

θ = 30◦, (e) θ = 60◦ and (f) θ = 90◦. The free energy difference is given by ∆F = F(θ) − Fref

where Fref = F(θ = 0) = 1.950×103kBT . For oblique orientations, a part of the closed line defect

jumps from the large base to the small base. In all the arrangements, the defect line is observed

to pass through sharp edges. The scalar order parameter has been specified for lower than 0.5Ŝeq.

(g) The green tube exhibits the biaxiality of the isosurface with P̂ = 0.1. The tube contains the

defect loop.

V. RESULTS

As depicted in Fig. 2(a), the director field deviations, which are due to the normal an-

choring on the surface of the particles that are immersed in a uniform nematic media, lead to

a closed disclination line defect with a pentagonal shape that surrounds the lateral faces at

a large base [31]. In each cross-section of the disclination loop in which the NLC effectively

displays a quasi-two-dimensional behavior, the defect structure is formally described by the

winding number, k = ψ/2π = −1/2, where ψ is the amount of rotation of the director around
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the defect core in radians [34]. The closed disclination loops of strengths −1/2 and +1/2

are topologically equivalent to the hyperbolic m = −1 and radial m = +1 hedgehog charges,

respectively [35]. The sum of hedgehog charges, which are due to point defects and discli-

nation loops, is specified by surface Euler characteristic, χEuler, as
∑

imi = ±χEuler/2 [12].

The pentagonal-TP defect charges are similar to those of the spheres in uniformly aligned

liquid crystal media with the same Euler characteristic, χEuler = 2, and normal boundary

conditions [31]. Because of the colloidal geometry, the closed defect does not exhibit a mir-

ror symmetry with respect to the mid-plane of an individual pentagonal-TP. The cost of

the elastic distortions ensures that the base of an isolated pentagonal truncated pyramid

is always perpendicular to the orientation of the uniform bulk director when homeotropic

surface anchoring is imposed on the particle. As shown in Figs. 2(d)- 2(f), the defect line is

not bound to the large base in oblique orientation cases. Fig. 2(g) depicts that the biaxial

order, P̂ (= (C/η B)P ), is induced only around the edges of the base plate in which the

director field is strongly deformed.

In many-body systems, the two-by-two colloidal interactions play an important role in the

collective behavior of the particles. Figs. 3 and 4 depict the effective potential energies of two

particles versus colloidal center-center distance for cases in which the two pentagonal-TPs

approach each other from their flat and tilted faces.

As shown in Fig. 3(g), the pentagonal-TPs attract each other in the parallel (
⊙

/
⊙

)

configurations and repel each other in the anti-parallel (
⊙

/
⊗

or
⊗

/
⊙

) configurations

when particles approach each other along the same pyramid axis. In each configuration, the

long-range interactions exhibit no dependency on the relative colloidal orientations, ∆χ, and

show slight deviations from the dipolar elastic interaction, (D/R)−3, where D is the center-

center distance. In attractive regimes, the colloids can be influenced by the torques that

are applied at the short distances, the non-zero orientations (∆χ 6= 0) can lead to Fig. 3(a)

by a set of rotational and translational movements. The colloids undergo strong repulsive

forces when the small bases are set against each other. Furture, the repulsive interactions

are almost independent on the relative colloidal orientations at any separation distance.

In the side-to-side cases that are shown in Figs. 4(a-f), the interactions of two parti-

cles have been investigated as a function of distance between parallel pyramid axes. The

bottom bases lie in the same plane when they are perpendicular to the far unperturbed

director field. In case of large separations, the pentagonal-TPs attract each other in the
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FIG. 3: Interactions of two identical pentagonal-TPs at θ = 0◦ with homeotropic anchoring and

same pyramid axis in a uniform nematic media. ∆χ is the difference between the orientations of the

particles around the pyramid axis. (a) and (b) exhibit parallel (
⊙
/
⊙

) configurations, whereas

(c-f) exhibit anti-parallel (
⊙
/
⊗

or
⊗
/
⊙

) configurations. (g) The effective potential energies of

two particles versus the colloidal center-center distance, D, for the configurations that are shown

above. The inset log-log plot compares the long-range interactions with the dipolar potential. The

scalar order parameter has been specified for lower than 0.5Seq.

anti-parallel (
⊙⊗

) configurations and repel each other in the parallel (
⊙⊙

) configura-

tions (see Fig. 4(g)). Independent of the colloidal interaction types, the free energy potentials

have been evaluated by long-range dipolar potential and indicate a fairly good agreement.

In parallel configurations, symmetry breaking, which will be discussed in detail later, takes

place at small distances so that the repulsive interactions transform into attractive interac-

tions. The configurations that are shown in Figs. 4(e) and (f) are energetically comparable

when parallel configurations can overcome the energy barrier, ∼ 0.45 × 104kBT . In config-

urations 4(a) and (c), symmetry breaking is observed for separations that are smaller than
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��
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FIG. 4: Interactions of two identical pentagonal-TPs at θ = 0◦ with homeotropic anchoring in a

uniform nematic media. The particles are arranged side by side when their top bases (or their

bottom bases) stand in the same plane. ∆χ is the difference between the orientations of the

particles around their pyramid axes. (a), (c) and (e) exhibit parallel configurations, (
⊙⊙

). (b),

(d) and (f) exhibit anti-parallel configurations, (
⊙⊗

). (g) The effective potential energies for

the above configurations are determined in terms of the distance between the particle axes, D.

The inset log-log plot compares the long-range interactions with the dipolar potential. The green

triangular points in the circle refer to the non-horizontal states of (e) with φ1 = φ2 which are

explained in Fig. 6. The scalar order parameter has been specified for lower than 0.5Seq.

those depicted in 4(e).

Fig. 5 displays the defect rearrangements in parallel (
⊙⊙

) configurations in case of close

contact interactions. Generally, these rearrangements usually change the nature of the inter-

actions at short distances. In Figs. 5(a-c), the splay deformations are the main contribution
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FIG. 5: The defect rearrangements of two identical pentagonal-TPs at small separations with

parallel configurations (
⊙⊙

). The particles have been studied at θ = 0◦ with homeotropic

anchoring in a uniform nematic media. The director orientations and the defect textures at close

contact edges and faces are depicted for (a) ∆χ = 0◦ and D = 2.2R, (b) ∆χ = 36◦ and D = 2.0R,

(c) ∆χ = 36◦ and D = 2.4R, (d) ∆χ = 0◦ and D = 2.1R, (e) ∆χ = 36◦ and D = 2.0R, and (f)

∆χ = 36◦ and D = 2.25R. The director field is exhibited in 2D planes that include the pentagonal-

TP centers and the far-field director alignment. (g)-(i) are the effective potential energies of the

parallel configurations (
⊙⊙

) that are mentioned earlier in Fig. 4(g). The energies quantitatively

explain the relation between the particle interactions and the defect rearrangement. (g) is the

effective potential energy used for investigating the configurations depicted in (a) and (d), (h) is

the effective potential energy used for studying the configurations shown in (b) and (e), and (i) is

the effective potential energy used for studying the configurations shown in (c) and (f). The scalar

order parameter has been specified for lower than 0.5Seq.

in the elastic distortions when the PTPs approach each other. Indeed, the director around

the particles tends to maintain its inherited symmetry from the large separations. In these

situations, the disclination line defects are observed at large bases, and the total free energies

are observed to display a repulsive behavior (Figs. 5(g-i)). We further manually break the

director symmetry in the numerical optimizations by randomly initializing the director field

around the particles [44]. As shown in Figs. 5(d) and (e), the bend deformation is observed

to become the dominating effect of splay distortion, and the defect loops are rearranged
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on the lateral faces between particles. Figs. 5(g) and (h) show that the particles attract

each other at small separations. Furthermore, an energy level crossing is observed by the

superposition of both repulsive and attractive free energy branches. Experimentally, we can

switch between repulsive and attractive states by applying laser tweezers that rearrange the

disclinations at the edges [32]. In Fig. 5(i), there are meta-stable states at approximately

D = 2.31R for which the total energy differences between the 5(c) and (f) configurations

are observed to be relatively small and in the order of 10kBT . Thus, the transition between

the 5(c) and (f) configurations is not continuous but may occur with the slightest thermal

fluctuation.

The symmetry breaking causes the configuration in Fig. 4(e) to be an energetically fa-

vorable scenario and may cause it to display the reduction in elastic interaction at the cost

of more spatial deformations. In that particular case, we are interested in studying those

non-horizontal particle orientations in configuration 4(e) at close contact that can decrease

the bending elastic distortions between the adjacent lateral faces and slightly increase the

bending energy around the bases of the particles. As shown in Fig. 6(a), the large bases show

non-zero angles with respect to the horizontal plane as 0 ≤ φ1 ≤ α and φ1 ≤ φ2 ≤ 2α− φ1.

The effective energy profile in figure 6(b) clearly not only exhibits that the configuration

shown in Fig. 4(f) is not the ground state at close contact separation but also that the

energy is low for each oblique orientation of particles (φ1, φ2 6= 0). According to the energy

profile, equilibrium configuration occurs at φ1 = φ2 ' 12.5◦ that causes an entangled defect

texture between particles. As shown in Fig. 6(c), two pentagonal disclination line defects

are observed to surround the particles near the large bases with two similar side loops and

a rectangular frame between close contact lateral faces.

Fig. 7 shows a potential barrier for a collection of parallel configurations from side-to-side

(
⊙⊙

) to base-to-base (
⊙

/
⊙

). Here, we have manually moved the left particle using some

translations and rotations(see Figs. 7(b-g)). Numerically, the initial director profile of each

spatial particle-particle configuration is chosen using the equilibrium director arrangement of

the final closest separation. The potential barrier height ensures that the configurations that

are depicted in Figs. 7(a) and (h) exhibit energetically steady states in the short-range elastic

interactions and that the transition energy is much larger as compared to the system thermal

fluctuations. Therefore, in case of the spatial distribution of each parallel configuration, the

final particle-particle arrangement leads to one of the previously mentioned steady states.
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n̂0 (a)
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y10◦

y5◦
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∆F(×104kBT ) (b)

(c)

FIG. 6: (a) A non-horizontal schematic of the pentagonal-TPs with the parallel configuration

investigated by varing φ1 and φ2. The value of the angles are chosen so that the relation φ1+φ2 ≤ 2α

is satisfied when α(= 15◦) is the tilted angle of the lateral faces. For a case in which φ1 +φ2 = 2α,

the side faces of the particles are completely in contact with each other. Here, we focus just on the

0 ≤ φ1 ≤ α and φ1 ≤ φ2 ≤ 2α− φ1 region and give the 0 ≤ φ2 ≤ α and φ2 ≤ φ1 ≤ 2α− φ2 region

the same physical treatment. Both the triangle regions exhibit mirror symmetry with respect to

the φ1 = φ2 line. The particle-particle separation is D = 1.8R in the case for which φ1 = φ2 = 0◦.

(b) The effective potential energy profile in terms of the oblique orientation of particles, φ1 and

φ2. (c) The entangled disclination line defect in the case for which φ1 = φ2 = 12.5◦. The scalar

order parameter has been specified for lower than 0.5Seq.

At the early stages of this path the jumped part of the line defect in Fig. 7(a) leaves the

small base and slowly goes back to the large base that causes an increase in free energy. The

short-range elastic interactions also induce torques on the pentagonal-TPs at ∆χ = 0◦ and

cause their defects to become similar.

In an attempt to understand the complex 2D crystalline and quasi-crystalline self-

assemblies by the pentagonal truncated pyramid blocks, we investigated the bent and branch

self-tiling patterns when a pentagonal-TP closes to an already assembled structure in a side-

13



(a) (b) (c)

(d) (e) (f) (g) (h)

−1.25

−1

−0.75

−0.5

−0.25

0

(a)

(b)

(
)

(d)

(e)

(f)

(g)

(h)

(i)

∆
F
(×

10
4
k
B
T
)

FIG. 7: Interaction of two identical pentagonal-TPs at θ = 0◦ with homeotropic anchoring for a

collection of configurations from side-to-side
⊙⊙

to base-to-base
⊙
/
⊙

. Each configuration is

specified by a difference in the orientation of the particles around their pyramid axes, ∆χ, the

distance between their pyramid axes, D⊥ and the distance between their large bases, D‖. (a)

∆χ = 36◦, D⊥ = 1.85R and D‖ = 0, (b) ∆χ = 36◦, D⊥ = 1.858R and D‖ = 0.2R, (c) ∆χ = 36◦,

D⊥ = 1.806R and D‖ = 0.4R, (d) ∆χ = 36◦, D⊥ = 1.211R and D‖ = 0.4R, (e) ∆χ = 36◦,

D⊥ = 0.606R and D‖ = 0.4R, (f) ∆χ = 36◦, D⊥ = 0 and D‖ = 0.4R, (g) ∆χ = 18◦, D⊥ = 0 and

D‖ = 0.4R and (h) ∆χ = 0◦, D⊥ = 0 and D‖ = 0.31R. (i) The potential barrier between the two

minima configurations, (a) and (h). The scalar order parameter has been specified for lower than

0.5Seq.

to-side fashion. Figs. 8(a) and (b) represent the formations of the bent and branch patterns,

respectively. As shown in Fig. 8(c), both the patterns exhibit nearly similar behavior at

large and close contact separations. However, the branch patterns provide more favorable

conditions for self-tiling at intermediate distances with ∼ 1.67× 103kBT energy differences.

Such side-to-side long and short elastic interactions of the pentagonal-TP blocks can exper-

imentally form beautiful and known colloidal structures such as ring, diamond, and Penrose

tiling [31].
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FIG. 8: Interaction of a pentagonal-TP with two already-conjoined pentagonal-TPs with an equi-

librium distance of OO′′ = 1.8R, for the bent and branch orientations, (a) Ô′′OO′ = 144◦ and

(b) Ô′′OO′ = 72◦. The identical pentagonal-TPs are distributed at θ = 0◦ with homeotropic an-

choring. (c) The effective potential energy in terms of OO′′(= D) separations. The scalar order

parameter has been specified for lower than 0.5Seq.

VI. SUMMARY

We have demonstrated that an isolated pentagonal truncated pyramid with homeotropic

anchoring is always perpendicular to the uniform director orientation and that a closed pen-

tagonal line defect having a strength of, −1/2, surrounds the lateral face near the large

base. The pentagonal-TPs attract each other in the parallel configurations (
⊙

/
⊙

) and

repel each other in the anti-parallel (
⊙

/
⊗

or
⊗

/
⊙

) configurations in the base-to-base

arrangements. In the side-to-side arrangements, the pentagonal-TPs attract each other in

the anti-parallel configurations (
⊙⊗

) and repel each other in the parallel (
⊙⊙

) config-

urations. In parallel configurations with small separations, the repulsive interactions are

observed to transform into attractive interactions due to symmetry breaking. In this state,

the non-horizontal particle orientations at close contact distances decrease the bending elas-
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tic distortions between the adjacent lateral faces. We have depicted that the side-to-side

(
⊙⊙

) and base-to-base (
⊙

/
⊙

) configurations are energetically steady and that they do

not easily transform into each other. Finally we have compared the ability of bent and

branch patterns to form complex self-tiling assemblies using pentagonal truncated pyramid

blocks.
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