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We studied the van der Waals interactions of two finite, solid, cylindrical rods at arbitrary angle

and position with respect to each other.

An analytic interpolative formula for the interaction

potential energy is constructed, based on various asymptotic cases. The potential can be readily
used for numerical and analytic description of multi-wall carbon nanotubes, metallic nanorods,
rod-shaped colloids, or any other similar objects with significant van der Waals interactions.

I. INTRODUCTION

Often thought of as short-ranged and weak, van der
Waals (vdW) interactions in fact play a profound role in
our everyday life, and in a variety of research fields, from
materials science to chemistry and biology [1, 2]. For in-
stance, vdW forces are responsible for stacking of layers
in graphite and other heterostructures [3, 4], for protein
stability [5], for various types of self-assembly [6] adhe-
sion and capillary phenomena, and even for a Gecko’s
remarkable ability to stick to any surface [7, 8]. These
interactions become especially important on micro- and
nanoscales. Second in strength only to electrostatics,
it often drives aggregation of nanoparticles and colloids
1, 2].

The theory behind vdW interactions was first de-
veloped by London [9], and interpreted as an effect
of correlated quantum fluctuations of dipole moments
[1, 2, 10, 11]. When retardation and multi-body effects
are neglected, it is described as a simple 1/7% potential.
This potential can be integrated for a variety of shapes
of the interacting objects, such as lines, flat surfaces,
spheres, etc [1, 2, 10, 12]. In this paper we focus on a par-
ticular case of rod-like particles with vdW interactions.
It is motivated by an important role that rod-shaped ob-
jects play in modern nanoscience. They include carbon
nanotubes, metallic nanorods, microtubules and others
[13-18].

The problem has been partially addressed in the past,
primarily in the context of carbon nanotubes [19-23].
The key challenge is that, although exact numerical in-
tegration of vdW potential for a pair of rods is certainly
possible, the result is not expressed as a compact closed
form. This makes it very problematic to use such cal-
culation as a part of e.g. multi-particle simulation. In
this paper, we present a compact closed form description
of vdW rods which is not exact, but a high accuracy in-
terpolation in a multi-parameter space. Specifically, we
consider two uniform rods of the same length L, diameter
a, and give an approximate formula for vdW potential as
function of their relative positions and orientation. To-
gether with L and a, there are 6 independent parameters
in this problem.

The plan of this paper is as follows. In the next section,
we explore the limit of long rods, without account for any

effects of terminals. We first construct the potential in
the near- and far-field limits, both for parallel, and non-
parallel. The near-field regime is defined as (r — a) < a,
the the far-field as r > a. The near-parallel orientation
corresponds to sin@ < ¢, and the non-parallel is the
opposite limit: sin® > ¢. From the four limiting cases,
we then construct a single interpolative formula.

In the following section, we discuss the effects of rods’
ends in the far-field approximation, both for parallel and
non-parallel rods. Finally, by combining results from
both sections, a unified formula will be obtained.

II. RESULTS

A. Model

FIG. 1. Basic setup: two identical rods of diameter a and
length L. Xo and Yy are longitudinal displacements of the
rods’ centers with respect to their axes’ nearest points.



Our system is shown in Fig. 1. Unit vectors n, are 1,
are directed along the two rods, and n, is perpendicular
to both of them. In addition to the “director” vectors of
the two rods, n, are n,, we assume that the positions of
their centers, X. and Y, are given as well:

X, =X; + Xpn,
Y.=Y:+Ypn,,
Here X; and Y are the two closest points that belong

to the axes of the two rods, respectively. Xy and Y| are
their longitudinal displacements (see Fig 2),

xp = [(Fe = ¥e) Byl (B 0y) = (X = ¥o) By
(A, -B,)" —1
Yy [(Xe = Yo) - fig] (R - 1ay) — (Xo — Yo) -

1— (f, -n,)’

The axis-to-axis distance between the rods is

r=|(Xe.—-Y,) 0.,
where
R . n, X f,
»=sgn((Xe—Y,) (0, xny)) m
z Y

With this definition of n,, the origin of the XY Z sys-
tem is at point Y1, and vector n, points towards the “X”
rod. The angle between two rods is defined as

sinf = [f, x f,|.

The attractive vdW energy for two objects (in our case,
rods) can be calculated as

d3r1 d3I'2
5 (1)
[r1 —rof®
Here A is a material-dependent Hamaker constant, and

integration over r; and ry is carried out within each of
the objects, respectively.

B. Infinite Length with Finite Diameter
1. Non-Parallel Rods

We start by considering infinitesimally thin rods, which
corresponds to the far-field regime, a < r. Let (X,0,7r)
and (0,Y,0) be two points that belong to the two different
rods (in our non-orthogonal coordinates (n,, fi,, 0. )). As

FIG. 2. Two views of a pair of non-parallel rods.

seen from Fig. 2, the distance, d, between these points,
can be found as
d?> =712 4+ (X sin6)? + (Y — X cos )2.

With the substitution z = X800 gpd y = Y==Xcosb

T T
the potential becomes
—Aoio 2o ry2 dy dx
U=~ — / yQ 2)3" (2)
n2rdising| J,, J,, (1+z%+y?)
where 01 = 09 = “Ta? is the cross-sectional area of each

rod. In the limit of infinitely long rods, we obtain:

oo —Arat
U= 32 [sin 0] 74 ®)

Here the superscript reminds us that this is a far-field
result, and the subscript shows that the rods are non-
parallel. We can use this thin-rod result to calculate the
vdW potential of two finite-thickness rods:

// —A d0'1 dO’Q (4)
27 |sin 0| (z1 — z2)*

Here integration is carried out over the cross-section ar-
eas of each rod, and z; and z, are z coordinates of the
respective area elements (see Appendix A for details).
The result of this integration can be expressed as a sim-

ple formula in the near-field regime ((r — a) < a), which
complements the above far-field result:

—Ana?
32 \sir:rg\ rd g > 1
Ux = (5)
—Aa

12 |sin 6| (r—a)

In order to see how the energy transitions from the
near-field to the far-field, Uy is evaluated exactly using



numerical integration. A fit of the exact solution using
Eq. 5 was interpolated with

¢
(r—a)(r+ B)*’
Using the asymptotes, we can find B and C such that

the equation has the correct r-dependence in the two
limiting cases:

U:

-V
[sin 6| (r — a) (r—I— ( (377)% - )a>3

Here Vp = 4747,

This is a good fit in the near- and far- fields, but
it slightly deviates from the exact in the intermediate
range. We found that the prefactor of a in Eq. 6,

(% (3#)% - 1) ~ 0.06, can be used as a fine-tuning pa-

U= (6)

rameter €, and a near-perfect fit is achieved for e = 0.12,
as shown in Fig. 3,

-V
U>< == 0 3 (7)
[sin@| (r —a) (r+ea)
r—a
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FIG. 3. Comparison of the exact numerical solution for skew
rods with finite diameter (solid red), and the approximations
given by Eq. 7 (dashed black) and Eq. 6 (dot-dashed gray).

2. Parallel Rods

Next, we would like to see what happens when finite-
diameter rods become parallel. The interaction for infi-
nite length rods in the far-field can be found using Eq. 1,
and the near-field can be calculated with the help of Der-
jaguin’s approximation [1]. Together, the near- and far-
field results for parallel rods are given by

4
L r»
U” ~ ALa (8)
— a r—a
24\/5(7“7a)3/2 Ta <L

We start with Eq. 7, which we know works well in both
the near- and far-fields for non-zero angles, but replace
|sin 8] with a correction term to match the parallel-rods
results in both limits, Eq. 8:

A
U~ —— (9)
By(r —a)(r +ea)3

The exact result for parallel rods of finite diameter can
be obtained by numerical integration of the thin-rod (far-
field) potential:

=] =R

Here r15 is the distance between respective area ele-
ments.

As shown in Fig. 4, the result of this integration is
in excellent agreement with our interpolation formula,
Eq. 9. The best fit is achieved for g = 2.35.

3AL dO’ldO'Q

10
8 7“12 (10)
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FIG. 4. Comparison of the exact numerical solution of parallel
rods with finite diameter (solid red), and the approximations
given by Eq. 9 with 8 = 2.35 (dashed black) and the Derjaguin
approximation (dot-dashed gray).

By combining Uy and Uj, the long-rod result for arbi-
trary angle and diameter can be obtained:

A

. (1)
(Jsin 0] + 2.35 Y70y (1 — ) (r + a)?

Urods ~



C. Finite Length in the Far-Field
1. Orthogonal Rods

In the previous section we found an accurate solution
for long rods with finite diameters, but without account
for any effects related to rod terminals. Below we explore
how the proximity of the rods’ ends alter the above result.

First, we use Eq. 2, with § = $ and limits 71 = y; =
—00, Y2 = 00, and xo = %, to find the interaction, Uk,
between an infinite rod and a semi-infinite rod perpen-

dicular to each other.

U, = U (12)

3% 4 2(%)3 1
A1+ (5)2)372

We next evaluate the exact solution for two perpendic-
ular semi-infinite rods, Ugs, with limits =1 = y; = —o0,
Ty = %, and yo = %, using Eq. 2 and observe that a fac-
torized formula based on Eq. 12 is a good approximation,
as shown in Fig. 5.
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FIG. 5. Comparison of with the approximation from

Eq. 13 (dashed black) formed from U°°7 with £ = 25. The

error is less than 1% of the maximum.

Equation 13 is a good fit for two semi-infinite rods, and
we can modify it to make the rods finite. Using Eq. 13
we define a function I' as

G (2y) =Gz )] [G(y+) =G (y-)]. (14)

Here 4 = L(Xo£ %), y£= = L(Yo £ £). This factor gives
a perfect description of the finite- 51ze correction to our
long-rod result for perpendicular rods:

Xo+% Yp+L
U:U§OF<O2’O2>.

F(xﬂ:?yﬂ:) =

r r

However, as the angle 6§ between rods changes, this cor-
rection becomes increasingly inadequate, especially in the
limit of parallel rods.

As a remedy, we introduce an alternative, quasi-linear
corrective factor:

+)— 9@, M9 (y+) —gy-)l},
(15)

with g(z) = %sgn(z) min {1, 2 |z|}. The advantage of
this function is two-fold: first, it is much simpler to eval-
uate vy and its derivatives (which is needed for finding
forces); second, it can be easily modified to describe the
parallel rod limit.

The plots of v and T in Fig. 6, shows a modest devia-
tion between them for the case of perpendicular rods.

Y(z+,y+) = min {[g (=

-1.0

FIG. 6. Comparison of two versions of finite-size factors,
L L L
'y(XOf 2 ,@) (dashed), and F(XOi ,ﬁ) (solid), for

= 10. The difference is less than 5% around )f“ = 0, but

L _
>
increases in a narrow region near the edges.

2. Rods at a Finite Angle

Figure 5 shows that the X- and Y-dependence is cap-
tured perfectly by Eq. 13, for perpendicular rods. We
next ask if we can capture the angle-dependence as
well. Tt’s tempting to use Eq. 13 with G(Xlsme‘) and

G (M) We found that this approximation, while not



perfect, is indeed acceptable since significant deviations
are limited to when the rods are simultaneously not per-
pendicular and X and Y are near zero, i.e., when the ends
of the rods are near each other. This is a very specific
situation, and away from this the fit is almost perfect,
as shown in Fig. 7. The figure also shows Eq. 13 with
function G replaced by its quasi-linear version, g.

X |sin 4|
—4 2 ! 9 4 r

FIG. 7. Approximations from Eq. 13, modified for a finite an-
gle case with |sin 6| for X and Y. Both original (G, dashed) ,
and quasi-linear (g, dot-dashed) corrections are shown. Exact
results are given solid lines. % = 25.

Hence, the potential for finite length, non-parallel rods
in the far-field regime can be written as

U = Uy <(X0 +1) siné] (Yo + ) sin9> s

r r

8. Parallel Rods

The parallel rod-limit is substantially different from
the one discussed above. The interaction potential can
in fact be approximately obtained from Eq. 8, by replac-
ing L with the overlap length, A = L — | X, — Yp| (we
assume N, = n,). More precisely, it can be calculated
by integration for two semi-infinite rods:

U(A)i—Aalog /A /°° X dy
o e (V= X)2 402

From this integral, one can obtain the dependence of
the interaction energy on the relative displacement of two
finite rods, and it is indeed nearly proportional to the
overlap, as shown in Fig. 8. We can now modify our
finite size correction ~ in such a way that in the limit of
parallel rods it is also proportional to the overlap:

U
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FIG. 8. Comparison of the exact far-field solution for parallel
rods overlapping by % with the approximation derived
from Eq. 8, for % =5 and £ = 1.05. The error is less than
10% of the maximum.

—Voy (Xu, Ya)
U= 17
(|sin@| +2.35%) rt’ (17)

where

L [sinf]  4]|cosd 4Y, cos
Xy=Xot = —
* ( 0 2) (r+a + 3L 3L

B L |sinf]  4]|cosd| 4X¢cost
Yi_(yoi2><r+a+ 3L 3L

A 2D heat map of (X4, Yy) is shown in Fig. 9 for
0 = 0° and 6 = 90°.

D. Final Form of the Attractive Energy

The final step is to combine the solution for finite thick-
ness and no end effects (Eq. 11), with the far-field finite-
length result, v(X,Yy). One possibility is to simply use
v as a corrective factor to Eq. 11: U,oqsy. This satisfies
the case of finite rods in the far-field or away from the
ends of the rods, but there is a “shadow effect” in the
near-field that makes the rods appear longer than they
are. This shadow effect comes from the divergence of the
(-2-) factors in U,ogs, and it is not physical when either

rT—a

| Xo| or |Yp| is greater than £ for perpendicular rods, or L
for parallel rods. In addition, a is, in general, a function
of X and Y. To account for non-uniform shaped rods
and fix the shadow effect, we have included a function -,
as a prefactor to a in the linear term of the denominator.
This makes it possible to define the shape of the rods’
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FIG. 9. Heat map of v(X<,Y+) with £ = 25, for (a) 6 = %
and (b) 6 = 0. As the angle between the rods changes from
perpendicular to parallel, the non-zero region in the 2D plot
transforms from a closed square to an infinitely long linear
region, illustrating that «(X+,Y:) becomes proportional to

the overlap A as the angle goes to zero.

terminal by causing the diameter to shrink to zero in a
specific way, effectively forming a “cap”. To account for
the difference in the maximum |Xg| or |Yp| that leads to
a collision for different angles, v, was designed to equal
one, and to begin to decay to zero as v goes to zero. Us-
ing this v, will ensure that the rod diameter is uniform
for most of its length, but will be zero when the rods are
in positions where they should not collide as r decreases.
For simplicity we have used v, = y(X%,Y{), with X¢
and Y{ defined below, but it can be replaced by other
functions to describe rod-like objects of different shapes
(e.g. ellipsoids). With the ~, correction, the potential
has a physical global behavior. The final form of the
attractive potential energy, U,qw, is shown below. Fig-
ure 10 shows a two-dimensional plot of the magnitude of
Uvaw-

UVdW(X07Y07T7La 9) =

—Ama* v (X+,Yy)

32 (|sin @] + 2.35—”(?7‘@) (r —vga) (r+0.12q)3

(18)

Y(r+,y+) = min{[g (z4) — g (z-)],[9 (y+) — g (y-)]}

_ L [sinf] 4 |cosb)| 4Y cos 0
Xi_(X0i§)<r+a+ 3L 3L

(Xo+ %) 2(r + a)(L F 2Yy cos 0) -
a da(r +a)|cos 0| + 3Lalsing| =

X4 =

1.4

1 . 3
o) = gosn (o) min {13 ol} 70 = (X2 ¥2)

- L |sinf| 4 |cosf)| 4X¢ cosf
Yi_<yoi§>(r+a+ 3L 3L

(Yo+ )

2(r + a)(L F 2X( cosh) 14
4a(r + a) |cos 0] + 3La |sin 6| T

Yy =



E. Repulsion, Force field, and Torques.

For practical use of the obtained results, one needs to
combine the vdW attraction with certain model repul-
sion. The latter may be system specific, as in the case
of nanorods and colloids stabilized electrostatically, or
with ligands. Nevertheless, as long as the repulsion has
hard core character, the details are not very important.
Here we propose two versions of a full potential. They
combine our vdW result Uyqw with either algebraic or
exponential repulsion:

¢ 2
Utotal = Uvaw (1 - (—> ) (19)
T — ’}/aa
Uiotal = Uvaw (1 el ) (20)

Figure 11 shows the algebraic version of this combined
potential, Eq. 19.
I1oU
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FIG. 10. Two-dimensional plot of W with % =0,0=73,
and % = 25. The red region diverges as the rods make contact
and it essentially outlines the rod. The area inside of the rod,
where the other rod cannot physically penetrate is colored in
white.

Another important practical aspect of application of
our results to real simulations (in particular, Molecu-
lar Dynamics) is the need to derive the force fields and
torques from the potential. This is done in Appendix B.
The final results are presented below.

Here centers of rods 1 and 2 are X. and Y., re-

spectively, with indexes 1 and 2 selected by condition
| Xo| < |Yo|. The force acting on rod 1, Fy, is

Uiotal
A
5
0 r
1 1.6 1.8 20 a
-5
0 (deg)
-10 -0 —5
— 1 =90

FIG. 11. Uyqw with power-law repulsion from Eq. 19, plotted
for several angles with % = % =0, % =25, and £ = 0.12.

1!
( r+0. 12a> ] ’
where

' = [@(2 \Y“|> 9(2 |Y“|>] K 1 +1>
3 + 3 - |cos 6] + 4(r+a) |sin 6|
+ ! +
cos 6
2 2 3L |[sinf]\ .
- @(——Y)—@(——YL) (1 0 ) "
[ 5~ vsl 5 vl +leos 6| + )

|cos 0] 4 3L |sin 0] N
n
cos 6 4cosO(r + a) Y

1 14 1
T — Yaa M.}rg ’

and ©(x) is the Heaviside step function.
The force acting on rod 2 is, of course, —F}.
torques on the rods are found to be

Fi = Uwaw (21)

cos 0 R
n
|cos O] + % |sin 6] Y

+ (cosﬁ +

The

UV t 0
le—XofleFl dWCO
L+ L|sm9| VT =74 )
UvdW C0t9

TQZYE)flyXFl—I—

L|sm0\ VT =70

F. Interaction potential in 2D

In many experiments, interacting rods are confined to
a single plane. [24, 25]. For this important 2D regime we

ng



can develop a special version of the interaction potential
based on the same ideas as our general 3D result. First,
we observe that the parallel potential Eq. 9 is immedi-
ately applicable to the 2D case if we replace axis-to-axis
distance r in 3D with the minimum in-plane separation
s between the axes of the rods. In addition, the factor "
would correctly account for an effect of a reduced over-
lap when the two parallel rods are shifted with respect
to each other. In the case when the rods are not parallel,
the corresponding 3D result, Eq. 3 can also be re-used
to describe far-field interaction between rods in 2D. To
do this, r should be replaced with the shortest distance
between the cores of the rods s, and the potential should
be multiplied by a factor 3/16. These two observations
allow us to modify our overall interpolative result for the
use in 2D geometry:

—VoI'(X+,Ys)
(18 |sin g + 2.35 =)

Usp =~ (23)

a)(s+ ea)?

Here s is the minimal separation between the line seg-
ments which represent the cores of the two rods.

III. CONCLUSION

In this work, we have constructed a compact ana-
lytic description of van der Waals interaction between
two identical rods. Our model is applicable to metallic
nanorods, rod-like colloids, and multi-wall carbon nan-
otubes. The resulting potential, given by Eq. 19, can be
used directly, e.g. for Monte Carlo simulations. The force
fields and torques derived from it are practical for Molec-
ular or Brownian Dynamics. Note that for the problems
in which the end effects are not essential, a simpler ver-
sion of the potential Eq. 11 can be used. In that case, our
interpolative formula is indistinguishable from the exact
result, for any distance and angle between the rods. For
instance, this potential can be used to include van der
Waals effects in Onsager theory of Isotropic-Nematic lig-
uid crystal transition [26]. Van der Schoot and Odijk
[27] constructed such theory by calculating virial coeffi-
cients for various asymptotic cases. Our result opens a
possibility of a more precise model.

Limitations of our model include the usual neglect for
retardation and many-body effects, such as screening. On
the other hand, our approach is easily generalizable for
the cases beyond simple cylindrical geometry. Namely,
the shape of interacting objects is primarily determined
by the function v, in Eq. 19. Thus, by changing this
single function one can describe other axially symmetric
elongated shapes, e.g. ellipsoids. Our results are consis-
tent with the more accurate treatments by Parsegian [28]
and Israelachvili [29], which take into account many-body
effects, but do not give a compact closed-form potential.

Finally, one can combine our approach with the theory
of Zhbanov et al. [22, 23], making it suitable both for

single-wall and multi-wall carbon nanotubes of arbitrary
thickness.
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Appendix A: Derivation of the Asymptotes of Ux

The interaction potential energy for two rods is found
using

—A d3r1 d31‘2

U=— | ———.
w2 vy — o6

For thin rods the potential becomes

v Anee [T
n2rdsing| /,, " (1422 +9y?)3

where x1 /5 and y, /3 are the endpoints of the rods, mea-
sured along the n, and n, axes. The interaction between
skew rods with infinite length in the far-field (UY°) is
found as

e — —Aocioo / / dy dx _ —Aoi09
* T 24 sing| (1422 +y2)3  27rdsind|’
(A2)

U3 can be used to find the interaction between two
infinite, finite diameter rods as

// 7Ad0'1d0’2
27 [sin 0] (z1 — z2)*"

The distance between infinitesimal cross-sections de-
pends only on the n, direction, and is given by h+x+x/,
as shown in Fig. 12, where h = r — a is the surface-to-
surface distance between the rods.

a pa pw(z’) pw(z) _A dy dy' dx dz’
U f—
x /0 /0 /0 /0 27 [sin @] (h + x + /)4’
where  and 2’ are defined as the distance from the

edge nearest the opposite rod to a cross-section along
the length of the rod, as shown in Figs. 12 and 13.

1—(1—2%)2 is the width of the rod at a
cross-section x from the edge.

(A3)

w(z) =



FIG. 12. Distance between cross-sections of the rods is given
by h + x + 2’, and is completely in the fi, direction.

FIG. 13. Cross section of one rod showing the width w(x).

After integration over y and y’, the energy for a pair
of infinite rods with finite diameter is

—2Aa

e [

With the substitution v = £ it becomes

—2A

U =
* 7 walsing| J,

The first integral is done using contour integration with

the contour shown in Fig. 14. There is a pole at u = —%.

(/ vullzu 1_“ ) a(l—%,)dx'.
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FIG. 14. Contour of first integral with fourth-order pole at

U:—E.
a

The result of the contour integral leads to

z’ h
\V e ; +2—+1)

(m’ +Lh4y)3

'

Ux = 8a |51n9| /

To evaluate this integral, we chose to break it into two
approximations, h > a and h < a.

In the far-field, h > a, we take the lowest-order ap-
proximation, and arrive at

—Aad® R a! —Ama*
0 Z 1= e
Ux 4h* |sin 6| /0 \/ a < a> de 32 [sin 0| rt

In the last step, h is replaced with r.

In the near-field, h < a, taking care with the diver-
gence that occurs at the lower limit of the integral, we
expand the integrand for both h < a and 2z’ < a.

Taking both approximations to lowest-order and
rewriting the integrand in terms of % leads to

0 Vi gy —Aa
Ux = 8h? |81n9|/ (14 £)5/2 de’ = 12 |sind| (r —a)’

Appendix B: Forces and Torques
1. Force Between Rods

In this section we would like to evaluate the forces and
torques that the rods exert on one another. To calculate
the forces between the rods, we need to take the gradient
of the potential energy in the 1, n,, and n, directions.
The X-Y system is, in general, non-orthogonal, and the



force can be derived by recognizing that, for some «, £,
and 9,

VU = of, + Bh, + 64,

n, -n, =1 n. -

n,-n,=20 n,-n, =0 n, - n, = cosf

Using these equations leads to a system of equations
in «, B, and 9.

J

10

; ou
VU-ngc_—aXO =« + fcosb
; ou
VU~ny:a—YO:acos€+ﬂ
. ou

The system can be solved to give the gradient in XY Z
coordinates. We will consider that | Xo| < |Yp| is always
true, and call the rod with center of mass position X,
rod 1, and the rod with center of mass position Y, rod
2. The Y-component of the force is made negative so
that this always gives the force on rod 1.

_ _ |1 OUvaw OUvaw ) . 1 OUvaw OUvaw \ .. OUvaw \ .
F=="Vlaw = [sin2 9 ( ax, Y oy, ) T i g ( v 9%, ) Py + ( or ) nz} (B1)
[
Keeping only the dominant terms, and including a fac-
tor to tune the fit for different angles, the derivatives are 0 /31
approximated as below. F. =0 cos A, 1 £ B2
1 vdW 79\ 1 "+ ~L (B2)
3 .
OUyaw Oa 1 Oy * (A o ) nz]’
aX, VAW AT DAY T
0 0 0
OUyaw 0Ya 1 0y
~ Uvaw |aX + =
Yy aYy ~ 8Y0 where
arjvdVV
~ —U, A
or aw { + r+ ea}

1 1
A= 14+ —
T — V.0 L |sin 6| +92
a

With the derivatives of v and 7, given by

1o} —cosf 2 2
o =z [0 (5-1) -e (5 -]
0
87 3|sin @ cos 6 2 2
T () e (G-
1)) 4(r + a) 3 3

- (&
a (

9Xo

0va 3 2
L le(Z-|ve
Yy 4a[ (3 ‘*‘)

r+a

IR

Altogether, the force is

—3cosf 2 2
O(-—-Y¥)-6(=—-|Y°
a|cos 8| + 3La sin9|> { (3 | +|) (3 | |)}

= @(g—\Yf|>—®(%—|Yf|> 1 +1|h,
3 3 |cos O] + ﬁ |sin 0]

" 1 cosG .
n
0050 |cos O] + 4(T+a) |sin 6] v

£ = {@ (2 - m\) -0 (g - \YJ)} {(1 + Jcos 0] + iﬂing) A,

|cos 0] 3L |sin 0] N
n
cos 0 4cosO(r + a) vl

+ <c059 +

and O(z) is the Heaviside step function.

2. Torque on the Rods

Given the forces from Eq. Bl, we can write down the
torque. The derivative of U,qw is approximated as

OUyqw o U,qw cot 6
o7} 1+ 7L|2S:i31159| Vr(r—.a)

The torque experienced by rod 1 from rod 2, 71, comes

from the force F; = —F5 = F. Recalling the definition



n, X Ny, =sinfn,,

the torques are given by

U,qw cot 8 .
n,
L+ L\2§i?;159\ VT (r = 7ea)
Uyqw cot 8

l ..
1+ 7L|25'§19| V(= v.a)

T1:—X0flxXF—

(B3)
T2:Y0ﬁyXF+
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