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Colloidal clusters consist of small numbers of colloidal particles bound by weak, short-range attrac-
tions. The equilibrium probability of observing a cluster in a particular geometry is well-described
by a statistical mechanical model originally developed for molecules. To explain why this model fits
experimental data so well, we derive the partition function classically, with no quantum mechanical
considerations. Then, by comparing and contrasting the derivation in particle coordinates with that
in center-of-mass coordinates, we physically interpret the terms in the center-of-mass formulation,
which is equivalent to the high-temperature partition function for molecules. We discuss, from a
purely classical perspective, how and why cluster characteristics such as the symmetry number,
moments of inertia, and vibrational frequencies affect the equilibrium probabilities.

I. INTRODUCTION

A colloidal cluster consists of a small number of col-
loidal particles, often spherical, that are held together by
short-range attractions. Experimentally, such systems
can be made by isolating small numbers of colloidal mi-
crospheres in two [1, 2] or three dimensions [3, 4] in the
presence of micelles or small particles, which induce a de-
pletion attraction [5–7] between the microspheres. When
the attractive interactions are weak, the particles can
rearrange into different configurations on experimental
time scales. Studies of these configurations yield insights
into nucleation barriers [4, 8], the glass transition [9, 10],
and the emergence of a phase transition as the size of a
system increases [4, 11].

Over the past few years, the minimal-energy configu-
rations of small colloidal clusters have been studied ex-
tensively in experiment, theory, and simulation [1, 3, 4,
8, 10–20]. We and others [1, 3, 14, 17] have found that
a statistical mechanical model originally developed for
molecules can accurately predict the equilibrium occur-
rence frequencies of the minimal-energy structures. In
some ways, the agreement makes sense: the particles
have well-defined interactions, are small enough to dis-
play Brownian motion, and can reach thermal equilib-
rium on experimental timescales. There is no reason sta-
tistical mechanics shouldn’t describe their properties.

But it is perplexing that a molecular model usually
derived from quantum mechanical arguments can so ac-
curately predict the properties of a purely classical sys-
tem. Typical colloidal particles are around a micrometer
in diameter, or 10,000 times the diameter of a hydrogen
atom. Unlike the atoms that make up molecules, the
particles that make up clusters are in principle distin-
guishable, since each particle contains a different number
of molecules or has a different size. Even the rotations
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of spherical colloidal particles are—again, in principle—
observable; the particles might have a small optical
anisotropy or a slight eccentricity that can be used to
measure orientation. None of these features are taken
into account in the molecular model. Why and how does
it describe classical systems?

To answer this question, we derive the partition func-
tion for colloidal clusters, starting from classical statis-
tical mechanics and leaving out all quantum mechani-
cal considerations. Our goal is to clarify the underlying
physics; more rigorous and general derivations can be
found in the work of Holmes-Cerfon and coworkers [18–
20]. We use our derivations to explain how properties
such as the symmetry number, moments of inertia, and
vibrational frequencies affect the equilibrium probability
of observing a particular cluster structure. The roles of
these properties are often interpreted in terms of quan-
tum mechanics or dynamics, but, as we shall show, their
effects can be understood in terms of classical physics
and geometry.

A. Background

To motivate our work, we first describe the equilib-
rium between two cluster structures with N = 6 spheri-
cal particles. The equilibrium ratio of the two structures
was explored in simulation by Malins and coworkers [12]
and in experiment by Meng and coworkers [3] and Perry
and coworkers [4]. The experiments used micrometer-
scale spherical particles that were held together by short-
range, attractive depletion interactions.

For the six-particle system, there are two structures
that minimize the total potential energy: the octahedron
and tri-tetrahedron (Fig. 1). Both have the same number
of interacting pairs of spheres (“bonds”) and hence the
same potential energy, but the tri-tetrahedron occurs 24
times more often in an equilibrium ensemble.

To understand why the tri-tetrahedron occurs so much
more often, Meng and colleagues used a statistical me-
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FIG. 1. Equilibrium between octahedral and tri-tetrahedral
structures. Meng and collaborators experimentally observed
the tri-tetrahedron (bottom) 24 times as often as the octa-
hedron (top) [3]. This difference is due primarily to the tri-
tetrahedron’s higher rotational entropy.

chanical model originally developed for molecules, in
which the total partition function Q′ is written as the
product of partition functions for collective translations,
rotations, and vibrations: Q′ = Q′transQ

′
rotQ

′
vib. Each

term represents a different entropic contribution to the
free energy. Because the partition function is propor-
tional to the probability of observation in equilibrium,
the ratio of the partition functions for the tri-tetrahedron
and octahedron should be 24:1.

Meng and coworkers found that the largest contribu-
tion to the factor of 24 comes from a factor called the
symmetry number, which accounts for all the permuta-
tions of particles that lead to the same structure. The
number of ways in which six particles can form an octahe-
dron, which has multiple axes of fourfold, threefold, and
twofold symmetry, is much smaller than the number of
ways in which six particles can form the tri-tetrahedron,
which has only one axis of twofold symmetry. Thus, the
octahedron has a much larger symmetry number than
the tri-tetrahedron. In equilibrium, the tri-tetrahedron
is therefore favored by a factor of 12, corresponding to
the ratio of symmetry numbers. We discuss the origin of
the symmetry number and its physical interpretation in
more detail in Sections II and III.

The remaining factor of two comes from a term in the
rotational partition function that is proportional to the
product of the moments of inertia, which differs between
the two structures, and the vibrational partition func-
tion, which can be calculated using a harmonic approxi-
mation for the potential.

The model can be generalized to two-dimensional sys-
tems [1, 17] and to clusters with N > 6 particles,
where the number of minimal-energy structures increases
rapidly with N [3, 4, 19]. One interesting result from
these studies is the dominance of symmetry effects when

N is small: Meng and coworkers found that when N < 9,
the clusters always favor asymmetric configurations in
equilibrium.

B. Overview

In what follows, we explain why the partition function
can be written in the form above, and how the factors
that appear in the rotational and vibrational parts affect
the equilibrium probabilities. To do this, we first intro-
duce the elements and assumptions of our model in Sec-
tion II A and then derive the partition function in two
different coordinate systems: particle coordinates (Sec-
tion II B) and center-of-mass coordinates (Section II C).
The formulation in particle coordinates does not lend it-
self to analytical calculations, whereas that in center-of-
mass coordinates can be used to explicitly calculate the
observation probabilities. However, the derivation in par-
ticle coordinates is more general, and we use it to gain
physical insights into the terms in the center-of-mass for-
mulation. In the discussion (Section III) we equate the
two versions to explain the origin and roles of the symme-
try number and the dynamical quantities that appear in
the center-of-mass formulation—the moments of inertia
and the vibrational frequencies.

II. THE STATISTICAL MECHANICAL MODEL

A. Framework

We seek a model for the experimental observable Psk ,
the probability of observing a particular structure sk in
an equilibrium ensemble. For example, in the N = 6
case discussed above, there are two structures: s1 =
octahedron and s2 = tri-tetrahedron. In equilibrium,
Psk is proportional to Qsk , the partition function of sk:

Psk =
Qsk∑
lQsl

, (1)

where the summation ranges over all structures sl in the
ensemble. In experiments, one usually counts only clus-
ters that represent minima in the energy as part of the
ensemble. Higher-energy states are ignored. We calcu-
late the partition function in the two coordinate systems
illustrated in Fig. 2: particle coordinates and center-of-
mass coordinates.

1. Interactions

We assume that our system is at constant tempera-
ture and that the interactions between particles are pair-
wise additive and spherically symmetric. We also as-
sume that the potential is short-ranged. These are good
approximations for the experimental systems discussed
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FIG. 2. In particle coordinates (left) the positions of every
particle (qi) are measured from the origin of a lab frame. In
center-of-mass coordinates (right), we define a rotating frame
(dark gray) with an origin O at the cluster’s center of mass;
the position of O relative to the lab frame is given by q′. The
rotating frame is chosen to lie along the cluster’s principal
axes. The standard Euler angles (the first of which is φ′)
describe its rotation relative to the lab frame. Within the
rotating frame, the coordinates of the vibrational modes are
denoted by ξ′. Particles are also free to rotate about their own
centers of mass. Describing these rotations requires another
rotating coordinate system located at the center of mass of
each particle (light gray axes on left).

above: micrometer-scale electrostatically-stabilized par-
ticles subject to depletion interactions in water at moder-
ate to high salt concentrations. The repulsions are short-
ranged because the salt screens electrostatic interactions.
The depletion attraction is short-ranged because the par-
ticles that cause it are typically much smaller than the
diameter d of the colloidal particles.

2. Degrees of freedom

We define the phase space of our system by the posi-
tional degrees of freedom and their conjugate momenta.
We implicitly account for the degrees of freedom of the
solvent molecules by using a potential of mean force to
describe the interactions between the particles. This po-
tential is a thermal average over all the configurations of
solvent molecules [21]. Therefore the phase space is de-
termined by the degrees of freedom of the particles alone.

To illustrate how the degrees of freedom differ in the
two coordinate systems, we consider a dimer. In the par-
ticle coordinate system, the dimer has 12 positional de-
grees of freedom: each particle can translate in each of
the three dimensions, and each can rotate about three
independent axes centered on its center of mass. The ro-
tational motions can in principle be observed by tracking
small defects on the surfaces of the particles or by dyeing
part of each particle, as shown in Fig. 3. Interactions
such as depletion change the distribution of values for
each degree of freedom relative to a gas, but they do not
change the number or type of degrees of freedom.

In the center-of-mass coordinate system, the dimer also
has 12 degrees of freedom (Fig. 4). Three correspond to

Particle
Translations

Particle 
Rotations

+

FIG. 3. An individual colloidal particle has six positional
degrees of freedom: three translational and three rotational.
The three translational degrees of freedom have three conju-
gate linear momenta, and the three rotational degrees of free-
dom have three conjugate angular momenta. The rotational
degrees of freedom might be observed by watching small de-
fects on the surfaces of the particles or by dyeing one hemi-
sphere of each particle, as illustrated here.

translations of the center of mass, two to rotations of
the cluster about its center of mass, one to vibrations of
the bond, and the remaining six to internal modes. An
internal mode is one where particles rotate about their
own centers of mass, either in the same direction or in the
opposite direction as their partners. The top left internal
mode in Fig. 4 (bottom) is equivalent to rotations of the
entire dimer about its axis.

Importantly, none of these modes can be “frozen out,”
as might happen in a molecular system. In a diatomic
molecule such as N2, the excited vibrational states are
not accessible at room temperature, because the energy
levels are much larger than the thermal energy. In the
classical dimer, all 12 modes can be excited, and we ac-
count for all of them in our derivation. We do, however,
neglect modes associated with vibrations of the molecules
inside the particles.

3. Distinguishability

Whereas in a molecule like N2, the two nitrogen atoms
are fundamentally indistinguishable (if they are the same
isotope), in a colloidal system the particles are distin-
guishable, as discussed above. However, we can choose
not to distinguish the particles from one another. This is
a common—if not universal—tactic used in the analysis
of experiments on colloidal self-assembly [22]. The term
undistinguished, coined by Sethna [23], describes the par-
ticles in this situation. We assume undistinguished par-
ticles throughout.

B. Partition function in particle coordinates

In particle coordinates, each particle has six positional
degrees of freedom (Fig. 3)—three translational and three
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FIG. 4. In center-of-mass coordinates, a colloidal dimer has
12 degrees of freedom, three corresponding to full-body trans-
lations, two to full body rotations, one to vibration, and six
others to internal modes. The internal degrees of freedom
arise from the rotations of individual colloidal particles.

rotational—and six associated momenta—three linear
and three angular. Thus, a cluster of N particles has
6N positional degrees of freedom and 6N associated mo-
menta.

The translational degrees of freedom for the ith par-
ticle (qix, qiy, qiz) are measured as displacements from
the origin (Fig. 2, left), which is fixed in the lab frame.
The set of all translational degrees of freedom is Q =
(q1x, q1y, q1z, . . . , qNz). The linear momenta correspond-
ing to the translational degrees of freedom for the ith
particle are pi = (pix, piy, piz), and the set of all linear
momenta is P.

Each particle can also rotate about its own center of
mass. We describe these rotations using a rotating frame
with its origin at the particle’s center of mass (light gray
axes in Fig. 2, left). Each particle i can rotate through
Euler angles (φi, θi, ψi) relative to the lab frame. The
set of all such angles is Φ = (φ1, θ1, ψ1, . . . , φN , θN , ψN ).
The angular kinetic energy of the individual particles de-
pends on the set of all momenta L conjugate to the Euler
angles.

With the definitions above, we can express the Hamil-

tonian H for a system of N particles as

H = U(Q) +K(P) + U(Φ) +K(L), (2)

where U is potential energy—again, a potential of mean
force—and K is kinetic energy. The canonical partition
function Q is then

Q ∝
∫
e−βHdQ dP dΦ dL, (3)

where β = 1/(kBT ), kB being Boltzmann’s constant and
T the temperature of our system. We use a proportional-
ity symbol because we have yet to determine the bounds
and the prefactors.

The bounds on the integral must be consistent with
our definition of the structure s. If we were to integrate
over all of phase space, then the partition function would
include all possible structures. Instead, we integrate only
over those parts of phase space in which the particles are
arranged in a particular structure s.

One way to define the structure is through an adja-
cency matrix As [13, 16], a symmetric, N × N matrix.
An element Aij is equal to 1 if particle i is bound to
particle j, and 0 otherwise. To determine whether two
particles are bound, we must first set a cutoff distance `.
For instance, ` might be the maximum range of the deple-
tion force. For a short-range interaction, (` − d)/d � 1.
This definition requires assigning a unique label to each
particle in our structure.

We would like the partition function for a structure s
to integrate over all fluctuations of that structure, be-
cause experiments do not distinguish structures by their
center-of-mass positions, orientations, or distances be-
tween particles (as long as the center-to-center distance
between particles is less than `). The adjacency matrix
As is a convenient way to delineate the bounds on phase
space because it describes the structure irrespective of
such fluctuations. Therefore, if we set the bounds on the
integral in Eq. (3) to include the region of phase space
in which the adjacency matrix is As, the partition func-
tion will include contributions from the rotations of the
individual particles, translations of the entire cluster, ro-
tations of the entire cluster, and fluctuations in interpar-
ticle distances.

However, the adjacency matrix does not uniquely de-
fine a structure. There are N ! different adjacency matri-
ces that correspond to the same structure, because there
are N ! permutations of particle labels. Some of these
permutations are identical to other permutations plus
full-body rotations, as illustrated in Fig. 5. Therefore,
for any given adjacency matrix, we must divide the par-
tition function by a factor that accounts for how many
orientations are shared with a different adjacency matrix.
That factor is the symmetry number σs. It is equal to 24
for the octahedron, as shown in Fig. 5.

The symmetry number σs accounts for all the ways
in which permutations plus rotations yield an identical
cluster. We discuss σs in more detail in section III B. We
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FIG. 5. 24 of the 720 colorings, or label permutations, of
the octahedron. All of these colorings are equivalent through
rotations.

note here that because σs appears even in our classical
derivation, it cannot arise from any quantum mechanical
considerations. As noted by Gilson and Irikura [24], σs
is a mathematical artifact arising from how we define the
region of phase space that we integrate over.

A further complication is that a given adjacency matrix
can correspond to chiral enantiomers [16] or two or more
geometrically-distinct clusters [18]. Therefore, if we were
to integrate over the regions of phase space correspond-
ing to one such matrix, we would include contributions
from structures that an experimentalist might treat as
different. However, we will not use the partition function
in particle coordinates to evaluate the equilibrium prob-
abilities; we use this version only to gain insight into the
partition function in center-of-mass coordinates, which is
much more tractable. With this aim in mind, we restrict
our discussion to only those cases in which the adjacency
matrix defines a single structure.

Finally, we must include a prefactor of 1/h6N for di-
mensional consistency, where h is a placeholder for any
quantity with dimensions of momentum times length.

The exponent of 6N arises because there is one factor
of h for each conjugate pair of position and momentum
in phase space. We do not claim—nor do we need to
claim—that h is Planck’s constant, since the quantity h
must cancel in the statistical mechanical calculation of
any classical observable. It can appear only if a degree
of freedom is frozen out, in which case the calculation is
no longer classical.

The resulting partition function for a structure s is

Qs =
1

σsh6N

∫
As

e−βHdQ dP dΦ dL, (4)

where the subscript As reminds us that the integral is
over the region of phase space corresponding to just one
labeling.

The separability of the Hamiltonian in Eq. 2 allows us
to factor the partition function into configurational and
momentum components:

Qs =
1

σsh6N

∫
As

e−βHdQ dP dΦ dL

=
1

σsh6N

∫
As

e−βU(Q)dQ
∫
e−βK(P)dP

×
∫
e−βU(Φ)dΦ

∫
e−βK(L)dL

=
1

σsh6N
Qs,trans(Q,P)Qs,rot(Φ,L),

(5)

where the last line defines the translational (Qs,trans) and
rotational (Qs,rot) components of the partition function
in particle coordinates. Note that the terms “transla-
tional” and “rotational” refer to the degrees of freedom
of individual particles, not of the center of mass of the
entire cluster. Note also that this decomposition holds
for all classical systems, because the positions and the
momenta always decouple in the classical Hamiltonian.
The adjacency matrix determines the bounds only on the
integral over Q. The bounds on the linear-momentum in-
tegral extends from −∞ to +∞, and the bounds on the
integrals defining Qs,rot extend over all Euler angles and
associated momenta.

1. Translations and linear momenta

We first examine the part of the partition function cor-
responding to translations of individual particles. From
Eq. (5),

Qs,trans =

∫
As

e−βU(Q)dQ
∫
e−βK(P)dP. (6)

To understand how the structure affects the first inte-
gral, we assign effective volumes to each particle in the
cluster. We can think of the first particle as free to wan-
der the entire volume V of the container. The second
particle, which is bound to the first, is then constrained
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to a spherical shell around the first particle with inner
radius d and thickness `− d. The effective volume corre-
sponding to this particle depends on the interaction po-
tential, which weights the different regions of the shell.
A third particle would be similarly constrained to an ef-
fective volume defined by the other particles, and so on.

We can therefore write the configurational partition
function Zs as a product of volumes [25]:

Zs =

∫
As

e−βU(Q)dQ = V

N∏
i=2

Vs,i, (7)

where Vs,i is the effective volume that the ith particle is
allowed to explore in our structure s. Here we have as-
sumed that the volume of the container V is much larger
than the volume of a single particle. For certain struc-
tures, these effective volumes can be calculated explicitly
by transforming the integral in Eq. (7) to internal coor-
dinates [25, 26].

We then integrate over the momenta. The kinetic en-
ergy is that for a non-relativistic classical system:

K(P) =

N∑
i=1

1

2mi
(p2ix + p2iy + p2iz ).

Thus, the translational part of the partition function in
particle coordinates is

Qs,trans =

∫
As

e−βU(Q)dQ
∫
e−βK(P)dP

= Zs

∫
exp

(
−β

N∑
i=1

p2ix + p2iy + p2iz
2mi

)
dP

= Zs

N∏
i=1

(
2πmi

β

)3/2

,

(8)

where the last line follows from evaluating the Gaussian
integrals for each momentum component. We note that
because our (non-gravitational) potential does not de-
pend on the particle masses, Zs also does not depend on
the masses.

2. Rotations and angular momenta

Finally, we turn to the rotational component of the
partition function. From Eq. (5), this component is

Qs, rot =

∫
e−βU(Φ)dΦ

∫
e−βK(L)dL.

It accounts for the rotation of particles about their own
centers of mass.

We assume that the rotational potential energy de-
pends neither on the orientations of the particles nor
on their positions in the cluster. Hence we can say
U(Φ) = 0. This is a good approximation for spheri-
cal colloidal particles subject to depletion interactions,

which are isotropic and short-ranged. The rotational ki-
netic energy of the cluster is the sum of that of the indi-
vidual particles, and so the rotational component of the
partition function is the product of the rotational com-
ponents of each particle.

Therefore, Qs, rot is a constant that depends on the
number of particles N and their moments of inertia, but
not the structure s. We therefore drop the subscript s
on the rotational part and let Qs, rot = Qrot. Because
Qrot cancels when we calculate the probability of observ-
ing a structure s from Eq. (1), we need not calculate it
explicitly.

3. Complete partition function in particle coordinates

The complete partition function for a structure s in
particle coordinates is

Qs =
1

σsh6N
Qs,transQrot

=
Qrot

σsh6N
Zs

N∏
i=1

(
2πmi

β

)3/2

=
Qrot

σsh6N

(
2π

β

)3N/2
(
V

N∏
i=2

Vi

)
N∏
i=1

m
3/2
i .

(9)

The version for quasi-two-dimensional systems is given
in the Appendix.

The probability of observing structure s1 relative to
that of s2, where both structures have the same N par-
ticles, is

Ps1
Ps2

=
Qs1
Qs2

=
σs2
σs1

Zs1
Zs2

(10)

where Qrot has canceled because it does not depend on s.
The ratio of the probabilities is therefore inversely pro-
portional to the ratio of symmetry numbers and directly
proportional to the ratio of Zs, which is the product of
effective volumes.

Equation (10) has a straightforward physical interpre-
tation. Structures with greater flexibility or range of in-
ternal motion are favored in equilibrium because they
have larger effective volumes or, equivalently, larger Zs.
As we discuss below, Zs is related to vibrations and ro-
tations in center-of-mass coordinates. Equation (10) also
shows that structures with low symmetry are favored over
those with high symmetry. We discuss this effect in Sec-
tion III B.

Lastly, we note that the masses of the individual par-
ticles, even if different, have no effect on the ratio of
equilibrium probabilities, as long as the total masses of
the clusters are the same. The masses cancel from the
probability ratio under the assumptions we have made.
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C. Partition function in center-of-mass coordinates

Calculation of the equilibrium probabilities is simpler
in the center-of-mass coordinate system because we can
make the rigid-rotor-harmonic-oscillator approximation.
Below, we explain and justify this approximation and
then derive the partition function. We use a prime (′)
symbol to denote all quantities defined in center-of-mass
coordinates.

The rigid-rotor-harmonic-oscillator approximation al-
lows us to separate the Hamiltonian into terms that de-
scribe the translation of the center of mass, rotations
about the center of mass, and vibrations of particles
about their lowest-energy (equilibrium) positions [27].
For this approximation to hold, the amplitude of the vi-
brational motion must be small compared to the equilib-
rium distance between particle centers. In that case, we
can treat the rotations of the cluster using rigid-body me-
chanics and the vibrations using a normal-mode frame-
work.

We justify this approximation on three grounds. First,
we expect the vibrational motion to be small because the
interactions are short-ranged for a typical colloidal sys-
tem. Second, Meng and coworkers [3, 28] showed that
a harmonic potential is a reasonable approximation for
the combination of a depletion interaction and electro-
static repulsion. Third, and most importantly, Meng
and colleagues showed that the predictions of a statisti-
cal mechanical model based on the rigid-rotor-harmonic-
oscillator approximation gave excellent agreement with
experiment.

In applying this approximation, we must limit our
analysis to those clusters that rotate as rigid bodies.
We therefore exclude “singular” clusters, which are min-
ima of the potential energy but which contain zero-
frequency vibrational modes. Kallus and Holmes-Cerfon
have shown how to calculate the free energy for these
clusters [19]. We restrict our derivation to clusters that
have 3N − 6 bonds and no zero-frequency modes and
that represent a minimum of the potential energy. We
impose these restrictions because our primary goal is to
give physical insight into the form of the partition func-
tion.

We can describe such a cluster in center-of-mass coor-
dinates using three translational, three rotational, 3N−6
vibrational, and 3N internal degrees of freedom. As in
particle coordinates, there are a total of 6N positional
degrees of freedom and 6N associated momenta. How-
ever, each positional degree of freedom now describes a
collective motion of all the particles in the cluster.

We define our coordinate system as follows. There is a
lab frame with a fixed origin and a rotating frame with
an origin O at the center of mass of our cluster (Fig. 2,
right). We choose the rotating frame such that the axes
lie along the principal axes of the cluster. For symmetric
clusters, there may be more than one choice of principal
axes; we arbitrarily pick one set.

Six degrees of freedom describe the position and ori-

entation of the rotating frame relative to the lab frame.
The translational degrees of freedom q′ = (q′x, q

′
y, q
′
z) de-

scribe the position of O relative to the lab origin. Their
conjugate linear momenta are p′ = (p′x, p

′
y, p
′
z). The ro-

tational degrees of freedom Φ′ = (φ′, θ′, ψ′) are the stan-
dard Euler angles. Their conjugate angular momenta are
L′ = (p′φ, p

′
θ, p
′
ψ).

With the harmonic approximation, we can describe the
vibrations of the cluster using a set of 3N −6 orthogonal
harmonic modes. The displacement along the jth mode
is ξ′j , and the set of all vibrational displacements is ξ′ =
(ξ′1, . . . , ξ

′
3N−6). When all the particles are in their lowest

potential-energy configurations, ξ′ = 0. The momentum
conjugate to the vibrational coordinate for the jth mode
is χ′j , and the set of all vibrational momenta is χ′.

Under these assumptions the Hamiltonian in center-of-
mass coordinates becomes

H′s = H′s,trans +H′s,rot +H′s,vib +Hrot

= Us(q
′) +Ks(p

′) + Us(Φ
′) +Ks(L′)

+ Us(ξ
′) +Ks(χ

′) +Hrot(Φ,L),

(11)

where, for completeness, we have included a term describ-
ing the rotations of individual particles. The partition
function Q′s is then

Q′s =
1

σsh6N

∫
e−βH

′
sdq′ dp′ dΦ′ dL′ dξ′ dχ′ dΦ dL

=
Qrot

σsh6N

∫
e−βH

′
trans dq′ dp′

∫
e−βH

′
rot dΦ′ dL′

×
∫
e−βH

′
vib dξ′ dχ′

=
Qrot

σsh6N
Q′s,trans(q

′,p′)Q′s,rot(Φ
′,L′)Q′s,vib(ξ′,χ′),

(12)

where the last line defines the translational (Q′s,trans), ro-
tational (Q′s,rot), and vibrational (Q′s,vib) partition func-
tions in center-of-mass coordinates. As we did in parti-
cle coordinates, we express the contribution of individ-
ual particle rotations as Qrot, which is a constant for all
structures formed from the same N particles. We also di-
vide by the symmetry number σs to avoid overcounting
rotational states. We discuss the role of the symmetry
number in more detail in Section III B.

The expression for the partition function in Eq. (12)
is more tractable than the one in particle coordinates
[Eq. (9)] because we need not set any cutoff distances
that depend on the structure. Instead, we can integrate
over all possible values of the translational, rotational,
and vibrational coordinates.

The absence of bounds that depend on the structure
raises the question of where exactly we specify the struc-
ture when we calculate the integral. The structure is in
fact encoded in how the coordinates couple to the en-
ergies. For example, different structures have different
harmonic modes, and these modes couple to the vibra-
tional energy through a set of natural frequencies that are



8

different for each structure. Furthermore, although the
rotational modes of all the clusters are the same—they
represent rotations about three orthogonal axes—these
modes couple to the angular kinetic energy through the
principal moments of inertia, which differ from structure
to structure. Below, we analytically integrate the trans-
lational, rotational, and vibrational partition functions
and point out the terms that define the structure.

1. Center-of-mass translations and linear momenta

We start by calculating the translational partition
function in Eq. (12), which is given by

Q′s,trans =

∫
e−βU

′
s(q

′)dq′
∫
e−βK

′
s(p

′)dp′.

We assume that the potential energy of the cluster does
not vary with its position in space, such that U ′(q′) = 0.

The first integral in the translational partition func-
tion is then equal to the volume available to the cluster,
which is the total volume V of the container less any
volume that the cluster cannot access without penetrat-
ing a boundary. We can neglect this excluded volume if
V � Vs, where Vs is some measure of the volume of a
particular structure. With this approximation,∫

e−βU
′(q′)dq′ = V.

The second integral in the translational partition func-
tion can also be analytically integrated. The transla-
tional kinetic energy of the center of mass of the cluster
is given by

K ′(p′) =
1

2M
(p′2x + p′2y + p′2z ),

where M =
∑N
i=1mi is the total mass of the cluster.

After evaluating the resulting Gaussian integral, we find
that

Q′s, trans = V

(
2πM

β

)3/2

.

2. Center-of-mass rotations and angular momenta

The rotational partition function in center-of-mass co-
ordinates describes the free rotation of the cluster about
its center of mass:

Q′s,rot =

∫
e−βU

′
s(Φ

′)dΦ′
∫
e−βK

′
s(L

′)dL′. (13)

We assume that the potential energy of the cluster is
independent of its orientation, such that U ′(Φ′) = 0. We
need not include a Jacobian term when the rotational
partition function is written in the form above, which is

an integral over the the Euler angles Φ′ = (φ′, θ′, ψ′) and
their conjugate angular momenta L′.

However, it is more natural to express the second in-
tegral in Eq. (13) in terms of the angular velocities Ω′ of
the cluster about its principal axes:

Ω′1 = θ̇′ sinψ′ − φ̇′ sin θ′ cosψ′

Ω′2 = θ̇′ cosψ′ + φ̇′ sin θ′ sinψ′

Ω′3 = ψ̇′ + φ̇′ cos θ′,

where the dots denote time derivatives, and the sub-
scripts denote principal axes. The angular kinetic energy
of the cluster is then

K ′s(Ω
′) =

1

2

(
Is,1Ω′21 + Is,2Ω′22 + Is,3Ω′23

)
, (14)

where Is,1, Is,2, and Is,3 are the principal moments of
inertia, which depend on the specific structure s.

Following A. Wilson [29], we change variables from the
conjugate momenta (p′θ, p

′
φ, p
′
ψ) to the angular velocities

(Ω′1,Ω
′
2,Ω

′
3). We calculate the momenta from derivatives

of the Lagrangian L′ = K ′−U ′ with U ′ = 0 as discussed
above:

p′θ =
∂K ′s

∂θ̇′
= Is,1Ω′1 sinψ′ + Is,2Ω′2 cosψ′

p′φ =
∂K ′s

∂φ̇′
= −Is,1Ω′1 sin θ′ cosψ′

+ Is,2Ω′2 sin θ′ sinψ′ + Is,3Ω′3 cos θ′

p′ψ =
∂K ′s

∂ψ̇′
= Is,3Ω′3.

(15)

The change of variables introduces a Jacobian term

J =
∂
(
p′θ, p

′
φ, p
′
ψ

)
∂ (Ω′1,Ω

′
2,Ω

′
3)

= Is,1Is,2Is,3 sin θ′.

We can then integrate to yield the rotational partition
function:

Q′s,rot =

∫
e−βUs(Φ

′)dΦ′
∫
e−βKs(L′)dL′

=

∫∫
Je−βUs(Φ

′)e−βKs(Ω
′)dΦ′ dΩ′

= Is,1Is,2Is,3

∫
sin θ′ dΦ′

×
∫

exp

[
−β

2

(
Is,1Ω′21 + Is,2Ω′22 + Is,3Ω′23

)]
dΩ′

= 8π2

(
2π

β

)3/2√
Is,1Is,2Is,3,

(16)

3. Vibrational modes

Finally, we calculate the partition function associated
with the remaining 3N − 6 degrees of freedom. The vi-



9

brational partition function is given by

Q′s,vib =

∫
e−βU

′
s(ξ

′)dξ′
∫
e−βK

′
s(χ

′)dχ′.

The harmonic modes that we use to describe the vibra-
tions are the eigenvectors of the mass-weighted Hessian
(where the ikth entry is scaled by 1/

√
mimk). We select

only the 3N − 6 modes that have non-zero eigenvalues.
The jth eigenvector has an associated eigenvalue that we
denote ωj . Thus, the vibrational potential energy can be
expressed as a product of squared displacements along
the modes:

U ′s(ξ
′) = U0 +

3N−6∑
j=1

ω2
s,j

2
ξ′2j ,

where ξ′j is the displacement along the jth mode and U0

is the total potential energy in the absence of vibrational
excitations. We set U0 = 0 from here on.

The vibrational kinetic energy is

K ′s(χ
′) =

3N−6∑
j=1

1

2
χ′2j ,

where χj is the (mass-weighted) momentum along the
jth mode.

We can then analytically integrate the vibrational par-
tition function to obtain

Q′s,vib =

∫
exp

−β
2

3N−6∑
j=1

ω2
s,jξ
′2
j

dξ′
×
∫

exp

−β
2

3N−6∑
j=1

χ′2j

 dχ′

=

3N−6∏
j=1

2π

βωs,j
.

4. Complete partition function in center-of-mass
coordinates

Putting together the translation, rotational, and vi-
brational components with the prefactor in Eq. (12), we
obtain the complete partition function of a structure s in
center-of-mass coordinates:

Q′s =
Qrot

σsh6N
8π2VM3/2

(
2π

β

)3N−3√
Is,1Is,2Is,3

3N−6∏
j=1

1

ωj

 (17)

The version for quasi-two-dimensional systems is given
in the Appendix. We note that Qrot, which accounts for
the rotations of individual particles, will cancel in the
calculation of the cluster probabilities. Apart from the
factor ofQrot/h

3N , Eq. (17) is equivalent to the molecular
partition function, in that the same expression can be
derived from the quantum version of the Hamiltonian
by taking the high-temperature limit. In this limit, no
modes are frozen out.

It is much easier to calculate an explicit value of the
partition function with the center-of-mass formulation,
Equation (17), than with the particle coordinate formu-
lation, Eq. (9). Apart from Qrot, all the constants in
Eq. (17)—the moments of inertia, the vibrational fre-
quencies, and the total mass—can be calculated directly
from the positions and masses of the particles. By con-
trast, in Eq. (9), we must calculate the volumes associ-
ated with all fluctuations of the structure. Calculating
these effective volumes requires calculating a Jacobian
for each particle [25, 26], because the momenta are al-
ready integrated out. By using the rigid-rotor-harmonic-
oscillator approximation and taking advantage of the sep-
arability of translations, rotations, and vibrations, we
are largely able to avoid the calculations of Jacobians
in Eq. (17). In the vibrational partition function, for ex-
ample, we use a coordinate system natural to the vibra-

tional modes (and different from that for the rotational
modes) and pair the positions along the modes with their
conjugate momenta.

However, this separability comes at a cost. Certainly
it sacrifices generality: Equation (9) does not rely on the
rigid-rotor-harmonic-oscillator approximation, whereas
Eq. (17) does. The results of experiments do agree with
the predictions of Eq. (17), establishing the validity of
the approximation. But the more serious problem with
Eq. (17) is that it obscures the essential physics. It is
written in terms of moments of inertia and vibrational
frequencies—dynamical parameters whose names suggest
that inertia and vibrations can affect the equilibrium
probability. As we discuss below, the terminology as-
sociated with these quantities can lead to confusion.

III. DISCUSSION

A. Moments of inertia and vibrational frequencies

Equation (17) might seem to suggest that the value of
the partition function would differ if we switched the lo-
cation of a massive particle with that of a lighter one in
the same structure. Say we have a structure s and a set
of particles, all of which have the same sizes and interac-
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FIG. 6. Schematic of a tri-tetrahedral cluster with one parti-
cle (blue) that is heavier than the others, but otherwise iden-
tical. In this rendering, the pair interactions, or bonds, are
shown as struts connecting the particles, which are not drawn
to scale. Although the moment of inertia decreases if the par-
ticle moves from the position shown on the left to that shown
on the right, the equilibrium probability of the cluster does
not change, as discussed in the text.

tions, but one of which is much denser than the others.
A cluster with the denser particle located near the center
of mass will have much lower moments of inertia than a
cluster with the particle located further away, as shown
in Fig. 6. Therefore the value of the rotational parti-
tion function [Eq. (16)] will be much smaller when the
particle is closer to the center of mass. We might then
expect that in equilibrium, such a configuration would
occur less often than a configuration with the particle
further from the center of mass. This behavior is coun-
terintuitive, because we expect inertia to have no effect
in a typical colloidal suspension, where the surrounding
liquid damps the motion [30].

This apparent dependence on the location of the
masses is an artifact of the separation of the Hamiltonian
into rotational and vibrational components. In particle
coordinates, where we do not separate the Hamiltonian,
the value of the partition function clearly does not de-
pend on the location of the particles: Equation (9) shows
that only the product of the masses matters. Thus, any
changes to the moments of inertia resulting from switch-
ing the masses must be compensated by changes in the
vibrational frequencies.

We can demonstrate this invariance to the positions of
the masses by equating the partition function in center-
of-mass coordinates, Eq. (17), to that in particle coordi-
nates, Eq. (9). The value of the partition function for a
given structure s should be the same in both coordinate
systems if the rigid-rotor-harmonic-oscillator approxima-
tion is valid. Several terms cancel when we equate the
two, including Qrot, σs, and h.

The remaining terms can be sorted into two groups:
those that depend on the particle masses, and those that
do not. The terms that depend on the masses are the
sum of masses M , the product of the moments of inertia
Is,1Is,2Is,3, and the product of the vibration frequencies∏3N−6
j=1 ωj . Terms that do not depend on the masses in-

clude the volume V , the inverse thermal energy β, and
the configurational partition function Zs, which, for a
non-gravitational potential, depends only on the inter-
actions and the positions of the particles and not their

masses. We can further group the terms that depend im-
plicitly on the masses—the moments of inertia and the
vibrational frequencies—on one side of the equation, and
the terms that depend explicitly on the masses—M and∏N
i=1mi—on the other [31]. We then find:

f(V, β, Zs)
√
Is,1Is,2Is,3

3N−6∏
j=1

1

ωj

 =

∏N
i=1m

3/2
i

M3/2
(18)

where f(V, β, Zs) is a function that depends neither im-
plicitly nor explicitly on the masses. The form of Eq. (18)
agrees with that derived by Herschbach, Johnston, and
Rapp [25].

We have therefore shown that the product of the mo-
ments of inertia and the inverse vibrational frequencies
is proportional to the ratio of a product and a sum of the
masses:

√
Is,1Is,2Is,3

3N−6∏
j=1

1

ωj

 ∝ ∏N
i=1m

3/2
i(∑N

i=1mi

)3/2 , (19)

Because the products and sums on the right side are in-
variant to permutations, the product on the left side must
also be invariant to the positions of the masses, so long
as the structure remains the same.

The discussion above shows that we should consider
the moments of inertia as geometrical or structural quan-
tities rather than dynamical ones, at least for the pur-
poses of calculating the partition function. A moment of
inertia characterizes the geometrical extent of a cluster—
the larger the moment, the larger the radius of gyration of
the cluster, and the larger the effective volumes it would
sweep out in particle coordinates [Eq. (9)]. Larger mo-
ments of inertia correspond to higher entropy.

We also interpret the vibrational frequencies as struc-
tural rather than dynamical quantities. Their appear-
ance in the partition function does not mean that the
particles actually oscillate. The ωj appear as a short-
hand for the non-zero eigenvalues of the mass-weighted
Hessian, and, as such, account for how the structure de-
termines the vibrational potential energy.

B. Symmetry

As discussed in Section I A, structures with low sym-
metry are favored in equilibrium when N < 9. This
result is exactly as predicted by the statistical mechani-
cal model above: the partition function in either particle
or center-of-mass coordinates is inversely proportional to
the symmetry number. As a consequence, we expect that
in an equilibrium ensemble, structures with lower symme-
try occur more often than those with higher symmetry.

To understand why the symmetry number σs appears
in the partition function, we must consider how experi-
mentalists measure the equilibrium probabilities. Meng
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and coworkers [3] made an equilibrium ensemble of clus-
ters and, using a microscope, took videos of each clus-
ter as it rotated and translated owing to Brownian mo-
tion. They identified the structure of each cluster from
the videos by visual inspection in the case of the octa-
hedron and tri-tetrahedron, or by determining the net-
works of contacts and the adjacency matrix in the case
of more complicated structures. In either case, they did
not distinguish the particles. Finally, to obtain the equi-
librium probabilities, they counted the number of times
each different structure appeared in the ensemble for a
given number of particles.

For a statistical mechanical model to reproduce the
experimentally measured probabilities, it must “count”
clusters in a similar way—independently of their orien-
tation. An example of a model that does not fit this
criterion is one in which we define the bounds on the
partition function to include only one particular orien-
tation of a structure. For example, we might include
only the orientation of the octahedron with a triangular
face facing toward us and a vertex of that face pointing
down, as shown in Fig. 5. There are 24 ways in which
an octahedral cluster can attain this orientation, owing
to its symmetry. We illustrate the 24 different ways by
giving different colors to the particles in Fig. 5. By con-
trast, the same accounting for a tri-tetrahedron would
show that there are only two ways of obtaining the same
orientation. Thus, our faulty partition function would
overcount the octahedron by a factor of 12 = 24/2.

To correct our faulty model, we might integrate over
all orientations. But in doing so, we must correct for the
overcounting of states at any particular orientation. Put
another way: the rotational partition function in center-
of-mass coordinates, Eq. (16), extends over all Euler an-
gles. But for a given set of principal axes, there are 24
equivalent choices of Euler angles for any orientation of
the octahedral cluster. This factor of 24 is the symme-
try number σs that we include in the denominator of the
partition function, as shown in Eq. (17). As a result, our
corrected model predicts that the equilibrium probabil-
ity of the octahedron relative to the tri-tetrahedron is
proportional to σtri-tetrahedron/σoctahedron.

The argument above explains the mathematical rea-
son for the symmetry number, but it does not explain its
apparent physical effect—suppressing the occurrence of
highly symmetric clusters like the octahedron. This effect
is most easily explained using detailed balance. Let us
neglect any fluctuations in bond distances and consider
only the ways in which bonds can break. There are 12
symmetrically equivalent bonds in the octahedron, and
breaking any of them allows the octahedron to transi-
tion to the tri-tetrahedron. By contrast, there is only
one bond that, once broken, allows the tri-tetrahedron
to transition back to the octahedron, as shown in Fig. 7.
Detailed balance then requires that the equilibrium prob-
ability of the tri-tetrahedron be a factor of 12 higher than
that of the octahedron. This factor is exactly the ratio
of symmetry numbers.

FIG. 7. Detailed balance argument for how symmetry af-
fects probability. Top: There is only one bond in the tri-
tetrahedron (blue bond in top left) that, once broken, allows
the structure to transition to the octahedron. By contrast,
breaking any of the 12 symmetrically-equivalent bonds in the
octahedron allows it to transition back to the tri-tetrahedron.
Bottom: Breaking any other bond in the tri-tetrahedron, such
as the blue bond shown, leads back to the tri-tetrahedron.

To account for the factor of 24 measured in the ex-
periments, we must include contributions from the rota-
tional and vibrational partition functions as well. But the
above arguments show clearly that the symmetry num-
ber accounts for an entropic effect: there are more ways
to arrange particles into a low-symmetry structure like a
tri-tetrahedron than a high-symmetry one like the octa-
hedron.

The symmetry number therefore does not account for
whether the particles are fundamentally distinguishable
or not. Nor does its origin lie in quantum mechanics. It
arises because different orientations of a cluster are not
counted as different states in the experiment.

IV. CONCLUSIONS AND MORE QUESTIONS

We have shown that for isostatic clusters composed
of undistinguished particles with a harmonic potential,
the partition function for colloidal systems is equivalent
to the high-temperature limit of the molecular partition
function. We have also shown that the effects of all of its
terms on the equilibrium cluster probabilities can be ex-
plained classically. By equating the partition functions in
particle and center-of-mass coordinates, we have shown
that the moments of inertia and vibrational frequencies
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should be interpreted as geometrical or structural quanti-
ties rather than dynamical ones, at least for the purposes
of calculating the equilibrium probabilities. We have un-
derscored this point by showing that the ostensible de-
pendence on the positions of the masses in center-of-mass
coordinates is an artifact of the separation between rota-
tional and vibrational modes.

The model we derive can be applied to other systems
if we relax some of our assumptions. For example, it can
be applied to clusters of anisotropic particles [32, 33] in
which one does distinguish clusters by the orientations
of particles within them. In such systems, there is a
rotational potential energy term that causes particles to
favor certain orientations over others. Thus theQrot term
will depend on the structure and will not cancel in the
observation probabilities.

If we relax the rigid-rotor-harmonic-oscillator approx-
imation, we can begin to describe even more classical
systems. For all non-relativistic classical systems with
a non-gravitational potential, the form of the partition
function in particle coordinates remains the same as what
we have derived—so long as it makes sense to define
the structure in terms of an adjacency matrix. Thus,
for all non-gravitational, non-relativistic classical systems
where this structural description is valid, the masses and
the positions decouple in the partition function.

Finally, we note that although we have focused on iso-
static, rigid colloidal clusters, the singular and hyper-
static clusters are important to understand because they
can occur with high probabilities in experiments [3]—
singular clusters because of their high vibrational entropy
and hyperstatic clusters because of their low potential
energy. The center-of-mass partition function we derive
here breaks down in these cases. However, the form of
the partition function in particle coordinates is still valid.
Kallus and Holmes-Cerfon have developed a theoretical
framework to calculate the equilibrium probabilities of
such structures [19].

The overriding goal of both statistical mechanical mod-
els and experiments on colloidal clusters of spheres is to
understand how the free-energy landscape changes as a
function of the number of particles N . The landscape
quantifies the frustration of the system and how that
frustration evolves in the limit as N → ∞, where we
expect that the ground state is a crystal. To this end,
our model and the physical interpretations we give are
important because they give insights into the depths of
the minima on the landscape. Although the vibrational
framework we use breaks down for non-rigid clusters, the
invariance to the positions of masses as well as the en-
tropic effects of the moments of inertia and symmetry
number are valid for all clusters. Understanding their
physical effects is crucial to making sense of the complex
landscape that emerges as N increases.

Appendix: Partition function in two dimensions

Here we show the result for the partition function for
a two-dimensional (2D) cluster, which differs from the
three-dimensional (3D) result because the degrees of free-
dom are different in two dimensions. While true 2D col-
loidal systems do not exist, we can model experiments
in which 3D spherical particles are confined to a 2D sur-
face. For example, under depletion interactions, planar
clusters of spherical particles can form at a surface such
as a microscope coverglass [1]. As in three dimensions,
the depletion interaction does not prevent the particles in
such a quasi-2D cluster from rotating about their centers
of mass. However, the collective motions of the cluster
are constrained to the plane defined by the surface. Our
2D partition function is specific to such systems.

In particle coordinates, each particle has two positional
degrees of freedom. The partition function for a structure
s confined to a plane is given by

Q2D
s =

Qrot

σ2D
s h5N

(
2π

β

)N
Z2D
s

N∏
i=1

mi

=
Qrot

σ2D
s h5N

(
2π

β

)N (
A

N∏
i=2

Ai

)
N∏
i=1

mi,

(A.1)

where in the second line we have replaced Z2D
s by a prod-

uct of areas for each particle, analogous to the product
of volumes in Eq. (9). The factor of Qrot is the same
as that in the 3D case because our particles are still free
to rotate about their own centers of mass in all three di-
mensions. The particle rotations also contribute a factor
of 1/h3N to the partition function, with the remaining
factor of 1/h2N coming from the translations of individ-
ual particles. The symmetry number σ2D

s differs from
that in three dimensions because it does not account for
out-of-plane rotations.

In center-of-mass coordinates, the colloidal cluster has
two translational degrees of freedom and only one rota-
tional degree of freedom, since the only allowed rotations
are in the plane. An isostatic cluster has 2N − 3 vibra-
tional modes. The center-of-mass partition function for
a 2D cluster is then

Q′2Ds =
Qrot

σ2D
s h5N

2πAM
√
Is

(
2π

β

)(4N−3)/2
2N−3∏

j=1

1

ωj

 .

(A.2)
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