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Elastic membranes composed of paramagnetic beads offer the possibility of assembling versatile
actuators operated autonomously by external magnetic fields. Here we develop a theoretical frame-
work to study shapes of such paramagnetic membranes under the influence of a fast precessing
magnetic field. Their conformations are determined by the competition of the elastic and magnetic
energies, arising as a result of their bending and the induced dipolar interactions between nearest
neighbors beads. In the harmonic approximation, the elastic energy is quadratic in the surface
curvatures. To account for the magnetic energy we introduce a continuum limit energy, quadratic
in the projections of the surface tangents onto the precession axis. We derive the Euler-Lagrange
equation governing the equilibria of these membranes, as well as the corresponding stresses. We
apply this framework to examine paramagnetic membranes with quasi-planar, cylindrical and heli-
coidal geometries. In all cases we found that their shape, energy and stresses can be modified by
means of the parameters of the magnetic field, mainly by the angle of precession.

I. INTRODUCTION

Magnetic fields can be used to direct magnetic particles
in multiple environments including living tissues. Since
most materials are not magnetic, magnetic particles can
be directed in media where variables such as tempera-
ture and chemical composition cannot be controlled. For
this reason they are extensively used in biotechnology
and medicine [1, 2]. Moreover, magnetic fields can be
altered much faster than colloidal diffusion timescales.
These features give magnetic particles possibilities to di-
rect self-assembly [3, 4] or to synthesize magnetic gels
or magnetic elastomers which can be used for actuation
or transport [5], as well as to be exploited in the de-
sign of programmable robots able to perform tasks at
small scales [6, 7]. Indeed, paramagnetic filaments, syn-
thesized by joining paramagnetic beads with semiflex-
ible polymers, have found diverse applications such as
micro-mechanical sensors or self-propelled swimmers [8–
12]. They are highly versatile. For instance, depending
on their rigidity and the magnetic field strength, arrays of
paramagnetic filaments may collapse into hairpins, loops,
sheets or pillars [13], and in a fast precessing magnetic
field, depending on the precession angle they may adopt
planar or helical conformations [14, 15].
An obvious extension in the study of this kind of systems
would be the consideration of the two dimensional coun-
terparts of paramagnetic filaments, that is, membranes
consisting of two dimensional arrays of paramagnetic
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beads linked by elastic polymers. However, such systems
have not been synthesized yet and previous work on two
dimensional arrays of magnetic nanoparticles has been
devoted to free magnetic colloids confined to a plane [16],
or to arrays of magnetic filaments on a plane [17]. Here
we study theoretically such paramagnetic membranes in
a fast precessing magnetic field, whose energy is associ-
ated with their bending and the interaction between the
induced dipoles on the beads. To address the latter con-
tribution, we introduce an energy density describing the
continuum limit of the dipolar interactions between near-
est neighbors, analogous to the linear magnetic energy
density for paramagnetic filaments [9, 15, 18]. Although
general frameworks for studying elastic membranes in a
magnetic field have been developed using different ap-
proaches, for instance magnetoelastic theory [19, 20],
here we determine their equilibrium configurations from
a variational principle that exploits the geometric char-
acter of the membrane’s energy. In this framework, the
stresses are expressed in terms of the membrane geom-
etry, and the Euler-Lagrange (EL) equation is given by
the conservation of the stresses along the normal of the
membrane [21–23]. While the EL equation and the stress
tensor for the purely elastic case are well-known [21–25],
here we present their magnetic counterparts. We apply
this framework to analyze paramagnetic membranes with
almost-planar, cylindrical and helicoidal shapes, along
with the forces required to hold them.

II. MEMBRANE ENERGY AND STRESSES

The paramagnetic membrane is represented by the
surface passing through the centers of the beads,
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parametrized by by two local coordinates ua, a = 1, 2 in
3-dimensional Euclidean space as Σ : ua → X(ua) ∈ E

3.
The tangent vectors adapted to this parametrization and
the unit normal vector are ea = ∂aX (∂a = ∂/∂ua) and
n = e1 × e2/‖e1 × e2‖, as illustrated in Fig. 1. The

FIG. 1: The surface Σ is parametrized by local coordinates
u1 and u2; the tangent and unit normal vectors are ea and n.

components of the metric and extrinsic curvature ten-
sors are defined by gab = ea · eb and Kab = ea · ∂bn.
The determinant of the metric is denoted by g. Indices
are raised with the inverse of the metric gab. The shape
operator Ka

b = gacKcb is a linear map acting on sur-
face tangent vectors, and whose eigenvectors and eigen-
values correspond to directions and values of minimum
and maximum curvature, known as principal directions
and principal curvatures C1 and C2, respectively. The
two invariants of Ka

b are its trace K = C1 + C2 and de-
terminant KG = C1C2 known as (twice) the mean and
Gaussian curvatures [26, 27].
The energy ascribed to the membrane has two contribu-
tions that depend on its geometry. The first one, due
to its bending, is given by the Canham-Helfrich energy
density, quadratic in the curvatures [28–30]

HB[X] =
K

2
K2 + KG KG , (1)

where K and KG are the bending and Gaussian moduli
(with units of energy); K and KG are (twice) the mean
and Gaussian curvatures. We consider membranes com-
posed by a single layer of paramagnetic beads, so we do
not include a spontaneous curvature in the first term.
The second energy contribution, is given in the quasi-
static regime by the time averaged dipolar interaction
between nearest neighbors, induced by a magnetic field H

precessing at an angle ϑ about an axis, which we choose
as the Z axis (further details are presented in Appendix
A), as shown in Fig. 2. This magnetic energy density is
quadratic in the projections of the tangent vectors onto
the precession axis,

HM [X] = −m

2
gabezae

z
b , eza = ea · ẑ , (2)

FIG. 2: The axis of precession of the magnetic field is chosen
as the Z axis and the angle of precession is ϑ.

where the magnetic modulus m (with units of energy per
area) depends on the precession angle ϑ,

m =
µ0

4π∆l

(

3µ

∆l2

)2(

cos2 ϑ− 1

3

)

, (3)

with µ0 the vacuum permeability, µ the magnitude of the
magnetic dipoles and ∆l the separation between their
centers. As we will see below, membrane conforma-
tions depend to a large extent on the precession angle
through this magnetic modulus. m(ϑ) vanishes at the so-

called “magic” angle ϑm = arccos (1/
√
3), and the lead-

ing order of the magnetic energy will be the quadrupolar
term, which is of short range, so elasticity of the mem-
branes will dominate [31]. In the regime 0 < ϑ < ϑm

(ϑm < ϑ < π/2), we have m(ϑ) > 0 (m(ϑ) < 0), and
from Eq. (2) we see that in order to minimize HM , mem-
branes will tend to develop vertical (horizontal) regions
aligned with (orthogonal to) the precession axis, so as
to maximize (minimize) the projections eza, analogous to
the behavior of magnetic particle suspensions, which de-
pending on the precession angle may arrange in chains or
sheets along and orthogonally to the precession axis [32].
We rescale all quantities by the bending modulus K and
denote the rescaled quantity by an overbar. In particular,
the rescaled quantity m̄ = m/K possesses dimensions of

inverse area, so the square root of its inverse, ℓ = 1/
√

|m̄|,
provides the characteristic length scale at which elastic
and magnetic terms are comparable. On length scales
smaller than ℓ, elasticity dominates, and on length scales
larger than ℓ, magnetic effects dominate. The dimension-
less parameter γ = m̄A = sign(m)(A/ℓ2), which we call
the magnetoelastic parameter in analogy with the quan-
tity corresponding to filaments [18], quantifies the ratio
of magnetic to elastic energies (HB ∼ K and HM ∼ mA,
so HM/HB ∼ γ = m̄A), so for large (small) values of
γ, magnetic (elastic) effects become dominant. Plausible
experimental values of the magnetoelastic parameter are
of the order |γ| ≈ 10−2 − 104 (see Appendix B).
The total energy of the membrane is given by H [X] =
HB +HM , where HB =

∫

dAHB , and HM =
∫

dAHM ,
are the total bending and magnetic energies, with dA =
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√
g du1∧du2 the area element (g = det gab). HB and HM

are invariant under reparametrizations and translations;
however, while HB is invariant under rotations, HM is
only invariant under rotations about the precession axis.
We assume that the paramagnetic membrane is inexten-
sible, so we introduce a term fixing the total area A0

and consider the effective energy HE = H + σ(A −A0),
where σ is a Lagrange multiplier that can be regarded as
an intrinsic surface tension (σ > 0 represents tension and
σ < 0 compression). We do not consider a term fixing the
total volume, because the array of paramagnetic beads is
likely to have interstices. The variation of HE under a
deformation of the surface δX is given by [21–23, 25]

δHE =

∫

dA∇af
a · δX+

∫

dA∇aδQ
a , (4)

where ∇a is the covariant derivative compatible with gab.
The first term describes the response of the energy to a
deformation in the bulk in terms of the divergence of the
surface stress tensor fa = fabeb+fan, whose components
are defined by

f̄ab = K

(

Kab − K

2
gab
)

+ gab
(

m̄

2
gcd ezc e

z
d − σ̄

)

; (5a)

f̄a = gab (−∇bK + m̄ ezb n
z) , nz = n · ẑ . (5b)

Note that for minimal surfaces with K = 0, the elastic
contributions vanish, but not the magnetic ones. The
total force on a region of the membrane is given by
F =

∫

dsf⊥, where ds is the arc length along the bound-

ary and f⊥ = gabl
af b, with la the components of the out-

ward conormal (further details on the projected stress
tensor f⊥ are presented in Appendix C, whereas the sur-
face torque tensor and the total torque on a region of the
membrane can be found in Appendix D).
By using the Stokes theorem in the second term of Eq.
(4), where

δQ̄a = −f̄a·δX+
[

Kgab − K̄G

(

Kab −Kgab
)]

eb·δn , (6)

it can be recast as a line integral along the boundaries.
Thus, it represents the change of the energy due to a
deformation of the boundaries, which will be useful to
determine the boundary conditions. KG only enters the
variation of the energy through δQa (it does not feature
in fa), which is a consequence of the Gauss-Bonnet the-
orem [23, 25–27]. HM does not contribute to δQa.
From Eq. (4) we see that stationarity of the energy im-
plies the conservation of the stress tensor ∇af

a = 0,
consequence of the translational invariance of H [21–
23]. The tangential projections of this conservation law
vanish identically on account of the reparamerization in-
variance of H [21–23], whereas the normal projection,
E := ∇af

a · n, provides the EL equation

Ē =

(

−∆+ 2KG − K2

2
+ σ̄

)

K

+ m̄

((

Kab − K

2
gab
)

eza e
z
b −Knz2

)

= 0 , (7)

where ∆ = gab∇a∇b is the Laplace-Beltrami operator.
The elastic terms consist of the Laplacian of the mean
curvature and a cubic function of the curvatures [21–
23, 25], whereas the magnetic terms are linear in the cur-
vatures, but quadratic in the projections of the adapted
basis onto the precession axis.
It is noteworthy to mention that Eq. (2) is the sim-
plest covariant expression of HM (equivalent expressions
quadratic in eza are presented in Appendix E). Moreover,
we also point out that it is also possible to recast HM , as
well as the magnetic parts of fab and E , in terms of nz2,
such that it becomes apparent that HM is reparameriza-
tion invariant (details are presented in Appendix E).

III. EQUILIBRIUM CONFIGURATIONS

The EL Eq. (7) is of fourth order in derivatives of
the embedding functions X, which makes very difficult
to solve it in general. However, we can resort to known
solutions of the purely elastic case and examine how they
get modified when the magnetic contribution is present.
It is well known that for appropriate boundary conditions
and material parameters, planes, cylinders, spheres, Clif-
ford tori and minimal surfaces minimize the bending en-
ergy [23, 25, 33]. We now analyze perturbative solutions
of EL Eq. (7) about some of these geometries (relevant
expressions of the required geometric quantities are col-
lected in Appendix F). Let us begin with the simplest
type.

A. Almost planar membranes

Consider the deformation of a planar membrane or-
thogonal to the precession axis. It can be described in the
Monge representation by a height function z = h(x, y),
parametrized by cartesian coordinates x and y on the
base plane. For simplicity, we examine linearized solu-
tions about the base plane, i.e. solutions in the small gra-
dient approximation |∇h| ≪ 1, where ∇h = ∂xhx̂+∂yhŷ.
In this regime we have that up to second order the pro-
jections of the adapted basis onto the precession axis are
eza = ∂ah, and nz ≈ 1 − (∇h)2/2. Furthermore, the
mean and Gaussian curvature are given by K ≈ −∇2h,
with ∇2 = ∂2

x + ∂2
y the Laplacian on the base plane, and

KG ≈ ∂2
xh∂

2
yh − (∂2

xyh)
2 [23, 25, 34]. Hence, at low-

est order in derivatives of h, the EL Eq. (7) reduces
to the Helmholtz equation Ē ≈ −(∇2 + Σ̄)K = 0, with
Σ = −σ + m (recall that under compression σ < 0). We
see that the magnetic modulus renormalizes the intrinsic
surface tension, and depending on the sign of m, it can
be augmented or reduced. Trivial solutions of the EL
Eq. are given by minimal surfaces with K = 0, which in
this regime are described by harmonic functions satisfy-
ing ∇2h = 0 [23]. Another set of solutions is provided by
the Helmholtz equation for h, (∇2 + Σ̄)h = 0, so in this
regime the mean curvature is proportional to the height
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function, K ≈ Σ̄h. Let us consider a rectangular mem-
brane with fixed edges of lengths Lx and Ly and of total
area greater than its projected area, A > Ap = LxLy.
From Eq. (6) follows that stationarity of the energy re-
quires the vanishing of the mean curvature at boundaries,
so K(0, y) = K(L, y) = 0 and K(x, 0) = K(x, L) = 0.
With these boundary conditions, the Helmholtz equa-
tion can be solved by separation of variables, obtain-
ing h = αnm sin qn(x − x0) sin qm(y − y0), where qn =
nπ/Lx, qm = mπ/Ly, x0 = mod(n, 2)L/(2n) and y0 =
mod(m, 2)L/(2m), n,m ∈ N and with Σ̄ = q2n + q2m. The
amplitude is given by α2

nm = (8/Σ̄)(∆A/Ap); it is pro-
portional to the excess area ∆A = A−Ap, and inversely
proportional to Σ (or the squared sum of the wavenum-
bers), which depends on m. The first four modes are plot-
ted in Fig. 3. At second order the total bending energy

(a) n = m = 1 (b) n = 1, m = 2

(c) n = m = 2 (d) n = 2, m = 3

FIG. 3: (a) Ground state and (b)-(d) first excited states re-
sulting from the compression of a planar membrane.

can be written as H̄B ≈ Σ̄2/2
∫

dxdyh2, whereas the total
magnetic energy reads H̄M ≈ −m̄/2

∫

dxdy(∇h)2. Inte-
grating, we get that the total energy is H̄ ≈ Σ̄/2(∆A −
m̄Ap/4), which is proportional to q2n + q2m. Thus for
fixed m, Ap and ∆A the ground state corresponds to
n = m = 1. If m > 0 (m < 0), H increases (decreases).
The total force exerted by the membrane along the edges
at x = ±Lx/2 is F = ±Ly

[

(−σ̄ + m̄/2) q2n/2− σ̄
]

x̂;
likewise the total force along edges at y = ±Ly/2 is
F = ±Lx

[

(−σ̄ + m̄/2) q2m/2− σ̄
]

ŷ. In both cases, if
m > 2σ (m < 2σ), the first term (arising from a combi-
nation of the tangential magnetic stress and the normal
bending stress) is positive, so it represents a compres-
sive (tensile) force. For σ > 0 (σ < 0) the second term
represents a homogeneous tensile (compressive) force.

B. Cylinders

We now consider a cylinder of length L aligned with
the precession axis Z, see Fig. 4(a). The vectors tangent
to the meridians are aligned with the precession axis, so

(a) (b)

FIG. 4: Cylinders oriented (a) along and (b) orthogonally to
the axis of precession.

their projection is constant, whereas the vector tangent
to the parallel and the normal are orthogonal to it. Fur-
thermore, K is constant and KG vanishing. Thus, the EL
Eq. (7) simplifies to Ē = (−K2/2+σ̄−m̄/2)K = 0, which
is satisfied if the radius of the cylinder in equilibrium is
̺e = 1/K = 1/

√
2σ̄ − m̄, (σ > m/2). Hence, for m > 0

(m < 0), ̺e is larger (smaller), than the corresponding
radius of the purely elastic case. The total energy is
H̄ = πL(1/̺e − m̺̄e), which is decreased (increased) for
m > 0 (m < 0). The total force on a boundary parallel
is F = −2π/̺e ẑ, so it is under tension (the membrane
is pulling downwards), whereas the stress on a meridian
vanish [25]. F is also modified in the presence of a mag-
netic field, for it depends on m through ̺e.
If we now consider a cylinder whose axis is orthogonal to
the precession axis Z, say along the X axis as shown in
Fig. 4(b), it is only solution in the purely elastic case with
m = 0. This is because the magnetic contributions, pro-
portional to the projections of the parallel’s tangent and
the normal onto the precession axis, vary along its cir-
cumference, while the bending contribution is constant,
so the EL Eq. (7) cannot be satisfied everywhere. In con-
trast to the previous case of the vertical cylinder, where
the equilibrium radius is determined for a given m, here
we begin with a cylinder of fixed radius (and area) and
we investigate how it gets deformed when m 6= 0. We
assume that for a small magnetic modulus, m1 ≪ 1, the
membrane is still a generalized cylinder with KG = 0, so
that we can examine linearized solutions about a circular
cylinder of radius ̺0, which can be described in the cylin-
drical Monge representation as ̺(ϑ) = ̺0 + ̺1(ϑ), where
̺1 ≪ 1 is a small perturbation and ϑ is the azimuthal
angle on the parallel measured from the precession axis
Z. We also expand σ = σ0 + σ1, with σ1 ≪ 1. The first
order correction to the initial mean curvature K0 = 1/̺0
is K1 = −(∂2

ϑ̺1 + ̺1)/̺
2
0. Inserting these results in the

EL Eq. (7), we find that at lowest order it determines
̺0 = 1/

√

2σ̄(0), whereas to first order it reads

(∂2
ϑ + 1)2̺1 = ̺30

(

m1

4
(3 cos 2ϑ+ 1)− σ1

)

. (8)
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The general solution of this differential equation is

̺1 = (a1θ + b1) sinϑ+ (c1ϑ+ d1) cosϑ

+
̺30
4

(

m̄1

3
cos 2ϑ+ m̄1 − 4σ̄1

)

, (9)

with a1, b1, c1 and d1 constants of integration. Peri-
odicity implies a1 = c1 = 0 and we assume that solu-
tions possess left-right symmetry, ̺1(ϑ) = ̺1(−ϑ), as
well as up-down symmetry, ̺1(ϑ) = ̺1(π − ϑ), which
entail b1 = d1 = 0. Furthermore, the fixed area con-
straint requires the vanishing of the constant term (rep-
resenting a dilation of the radius), so σ1 = m1/4. Fi-
nally the admissible deformation (preserving area to first
order) of the radius is ̺1 = (̺30m̄1/12) cos 2ϑ. Thus,
for m1 > 0 (m1 < 0) the cross section of the cylinder
elongates (flattens) along (orthogonally to) the preces-
sion axis, see Fig. 5. There is no first order correction

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

y/ϱ0

z/
ϱ 0

FIG. 5: Deformations of a circular cylinder (m = 0) oriented
orthogonally to the precession axis Z (dashed line). For m > 0

its cross section elongates along the precession axis (black
line), whereas for m < 0 it gets squeezed in the orthogonal
direction (gray line). The amplitude of the deformation has
been exaggerated for illustration purposes.

to the total energy of the cylinder, H1 = 0, so at this
order we have H ≈ πL/̺0. The force on a parallel is
F = −2π(1/̺0 + ̺0m1/4)x̂, thus, for m1 > 0 (m1 < 0)
the first order correction introduces tension (compres-
sion). There is no first order correction to the total force
on a meridian, so it vanishes at this order even in the
deformed configurations.

C. Helicoid

We know that helices minimize the sum of bending and
magnetic linear energies [14, 15], and since the helicoid
can be foliated by helices, we might expect it to be a crit-
ical point of H . The helicoid is a ruled minimal surface
with glide rotational symmetry characterized by its pitch
2πp, see Fig 6. For a minimal surface, with K = 0, the
EL Eq. (7) reduces to EMS = mKab eza e

z
b = 0. Let us

consider a helicoid whose axis is aligned with the preces-
sion axis Z. Parametrizing it in cylindrical coordinates,
by the distance along rulings and the azimuthal angle,

FIG. 6: A helicoid of pitch 2πp bounded by two straight lines
of length L and two helices of radius L/2.

we have that Kab is antidiagonal. Furthermore, terms
in EMS proportional to off-diagonal components of Kab

vanish because the tangents along rulings are orthogo-
nal to the precession axis, so the EL equation is satis-
fied. We consider that the helicoid is bounded at the
top and bottom by two parallel straight lines of length
L, and laterally by two helices completing one period.
The total energy of such helicoid arises from the mag-
netic contribution and increases monotonically with p,
H = −2πmp2arcsinhχ, where χ = L/(2|p|). The total
forces on the boundary helices vanish, but the top and
bottom boundary lines are subject to total forces along
the helical axis

F = ∓|p|
(

2(σ −m) arcsinhχ+
mχ

√

χ2 + 1

)

ẑ , (10)

For σ > m > 0 (σ < m < 0) the membrane is under
tension (compression). We see that in this case the mag-
netic contribution not only rescales σ, but also introduces
another dependence on χ.

IV. DISCUSSION AND CONCLUSIONS

We have extended the framework of elastic membranes
to the study of flexible paramagnetic membranes. Un-
like two-dimensional arrays of free paramagnetic parti-
cles, such membranes are able to resist shear forces and
to buckle out of plane. To include the paramagnetic at-
tribute of the membrane, we introduced an energy den-
sity representing the dipolar interactions between nearest
neighbours. We have shown that such magnetic energy
density is suitable to describe the main feature of para-
magnetic arrays: alignment along the precession axis for
small precession angles and flattening orthogonally to the
precession axis for large precession angles. Minimization
of the bending and magnetic energies permitted us to
determine their equilibrium shapes and to quantify how
they differ with their purely elastic counterparts.
Besides determining their shapes we have also presented
the part of the surface stress tensor stemming from the
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magnetic dipolar interactions, which permitted us to an-
alyze the underlying stresses shaping them. This infor-
mation allows for a complete characterization of their
conformations, for even when two membranes possess
similar geometries, they well might be under very dif-
ferent forces. We have seen that even if paramagnetic
membranes adopt shapes very close to those of purely
elastic membranes, the magnetic field introduces addi-
tional stresses on them. This point is best illustrated on
minimal surfaces, which regarded as elastic membranes
are only under homogeneous tangential tension, whereas
the paramagnetic membranes are subject to inhomoge-
nous tangential and normal stresses.
For the sake of simplicity we have considered only dipolar
interactions of homogeneous arrays of beads, but several
refinements to our model are possible. For instance one
could take into account the long range nature of dipo-
lar interactions and consider interactions beyond near-
est neighbours, which may prevent the local magnetic
field of the beads to precess at the magical angle, so that
quadrupolar interactions never become dominant. One
could also consider arrays of anisotropic paramagnetic
beads, introducing anisotropies not only in the magnetic
energy, but also in the bending energy. Such consider-
ations would certainly complicate the analysis of their
shapes and stresses, but they might also give rise to in-
teresting phenomena not captured by our model.
Examination of shapes in the non-linear regime can be
achieved by exploiting the residual symmetries of the to-
tal energy. For instance, axial symmetry about the pre-
cession axis provides a first integral of the EL equation,
which will permit us to analyze how spheres or Clifford
Tori (it can be shown that neither one is a critical point
of the total energy) are modified by a magnetic field.
As in the case of elastic membranes, further examination
of general configurations will require numerical analysis
and/or molecular dynamics simulations, which would re-
veal features with many more potential applications in
actuation and soft robotics.
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Appendix A: Derivation of the magnetic energy

density

We consider a membrane consisting of a homogeneous
two-dimensional array of paramagnetic beads connected

by elastic linkers in a magnetic field H. In the high tem-
perature and saturation magnetization regime, the in-
duced dipole moment of each bead has magnitude µ and
all are aligned with the magnetic field, so µi = µ = µ µ̂.
Thus the interaction energy of two paramagnetic beads
at positions xi and xj is [35, 36]

Uij =
µ0µ

2

4π |xij |3
(

1− 3(µ̂ · x̂ij)
2
)

, xij = xj−xi . (A1)

We consider as a unit cell the region spanned by four
beads with edges of length ∆l and ∆w and denote the
separation between the centers of the beads xi − xi−1

along the two directions by ∆x and ∆y. The energy
per unit area associated to this unit cell due to dipolar
interaction between nearest neighbors is

u =
µ0

4π

[

1

∆w

( µ

∆l2

)2
(

1− 3

(

∆x

∆l
· µ̂
)2
)

+
1

∆l

( µ

∆w2

)2
(

1− 3

(

∆y

∆w
· µ̂
)2
)]

. (A2)

Assuming that ∆l ≪ L and ∆w ≪ L, with L the length
scale of the membrane, we can consider the separation
of beads along the two different directions as the cor-
responding arc lengths, ∆l → s and ∆w → t, so that
the array can be approximated by the surface passing
through the centers of the beads. In this approximation
we have that ∆x

∆l
→ V̂ := dX

ds and ∆y

∆w
→ Ŵ := dX

dt . Ad-
ditionally, we assume that the membrane is isotropic, so
the separation between beads along different directions
is approximately equal, ∆l ≈ ∆w, and the coefficients
tend to the same constant value, (with units of energy
per unit area). Thus, with there considerations we can
define the surface energy density

HM =
3µ0

4π∆l

( µ

∆l2

)2
(

2

3
−
(

V̂ · µ̂
)2

−
(

Ŵ · µ̂
)2
)

.

(A3)
Furthermore, if the magnetic field is precessing with
an angular velocity ω about the Z axis at an angle
ϑ, the direction of the induced dipole moment is µ̂ =
(cosωt sinϑ, sinωt sinϑ, cosϑ) and in the quasi-static
regime (fast precession frequency) the tangent vectors

V̂ and Ŵ can be regarded as constant. In one period
the average of the squared scalar product of µ̂ and V is
(V i, i = x, y, z stand for the cartesian components of the
vector)

〈

(µ̂ · V̂)2
〉

=
1

2
sin2 ϑ(V x2 + V y2) + cos2 ϑV z2

=
1

2

(

sin2 ϑ− (1− 3 cos2 ϑ)V z2
)

, (A4)
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and similarly for vector Ŵ. Therefore, the time-averaged
surface energy density is

〈HM 〉 =
3µ0

4π∆l

( µ

∆l2

)2

×
(

2

3
− sin2 ϑ+

1

2

(

1− 3 cos2 ϑ
) (

V z2 +W z2
)

)

= m

[

1

3
− 1

2

(

V z2 +W z2
)

]

, (A5)

where in the last step we defined the magnetic modulus

m =
µ0

4π∆l

(

3µ

∆l2

)2 (

cos2 ϑ− 1

3

)

. (A6)

The constant term of the magnetic dipolar energy, m/3,
just renormalizes the intrinsic surface tension, so we ne-
glect it. The unit tangent vectors can be spanned in
the tangent basis of the surface as V̂ = V a ea and
Ŵ = W a ea, therefore this energy density can be ex-
pressed in terms of the tangent basis as

HM = −m

2

(

V a V b +W a W b
)

eza e
z
b . (A7)

Furthermore, we assume that the unit cell is approxi-
mately a square, such that {V,W} constitute an or-
thonormal tangent basis, whose completeness permits us
to span the metric as gab = Va Vb + Wa Wb. Using this
identity the surface energy density can be recast as the
covariant expression given by Eq. (2) of the main text.

Appendix B: Estimation of the magnetoelastic

parameter

To calculate possible values of γ we employ experimen-
tal values of the material parameters of paramagnetic
filaments. Regarding the membrane as a thin plate of
thickness d, the bending modulus is given by[25, 37]

K =
Y d3

12(1− ν2)
, (B1)

where Y is the Young modulus and ν the Poisson’s ratio,
whose typical values are of the order Y ≈ 103 − 105Pa,
[6, 8, 9, 38] and ν ≈ 10−1. The diameter of the beads
is approximately d = ∆l ≈ 1µm, so the bending mod-
ulus is of the order of K ≈ 10−16 − 10−14J. Common
values of the magnetic susceptibility and the magnetic
fields are χ ≈ 1 and H ≈ 103 − 104A/m [6, 8, 9, 38],
so the magnitude of the induced dipole of a bead of ra-
dius a = d/2 is µ = 4/3πa3χH ≈ 10−15 − 10−14Am2,
thus m ≈ 10−6 − 10−4N/m. From this estimations we

find that ℓ =
√

K/|m| ≈ 10 − 100µm. Typical length
scales of this kind of systems are L ≈ 10 − 103µm
[6, 8, 9, 38], so A ∼ L2 ≈ 10−10 − 10−6m2. There-
fore, possible values of the magnetoelastic parameter are
|γ| = A/ℓ2 ≈ 10−2 − 104.

Appendix C: Stress tensor projections

Consider a region D of the membrane bounded by a
curve ∂D, with tangent t = taea and outward conormal
l = t × n = laea. The projection of the stress tensor
onto l, f⊥ = laf

a represents the force per unit length
exerted by D on the neighboring region. This projection
can be expressed in the Darboux frame {t, l,n} as f⊥ =
f⊥‖t+f⊥⊥l+f⊥n, where the components are defined by

f̄⊥‖ := latbf
ab = −Kτg , (C1a)

f̄⊥⊥ := lalbf
ab =

1

2

(

κ2
n⊥ − κ2

n

)

− σ̄

+
m̄

2

(

tz2 + lz2
)

, (C1b)

f̄⊥ := laf
a = −∇⊥K + m̄ lznz , (C1c)

with κn = tatbKab and κn⊥ = lalbKab the normal cur-
vatures along and across the curve (K = κn + κn⊥);
τg = −talbKab is the geodesic torsion of the curve;
∇⊥ = la∇a.
We see that the tangential bending stresses do not have
a definite sign, so they can represent either compression
(+) or tension (−). By contrast, the sign of tangential
magnetic stress is given entirely by the sign of the mag-
netic modulus: for m > 0 the magnetic field introduces
a compressive stress on the membrane, and for m < 0
a tensile stress. Due to the minus sign in front, σ > 0
introduces tension and σ < 0 compression.

Appendix D: Surface Torque tensor

The surface torque tensor is given by [21, 23]

m̄a = X× f̄a+
[

Kgab − K̄G

(

Kab −Kgab
)]

eb×n , (D1)

Taking its covariant derivative we get

∇am
a = X×∇af

a +m nz ẑ× n , (D2)

where we have used the Codazzi-Mainardi integrability
condition ∇a

(

Kab −Kgab
)

= 0, as well as the identity

ẑ = gabezaeb+nzn. While the first term vanishes in equi-
librium on account of the conservation law of the stress
tensor, the second term, representing a torque per unit
area due to the magnetic field, does not vanish in general.
Thus, the torque tensor is not conserved. However, its
projection onto the precession axis, ma = ma · ẑ, is con-
served in equilibrium, for we have ∇am

a = ẑ ·X×∇af
a.

This is consequence of the rotational symmetry of H
about the precession axis. The torque per unit length
exerted by a region D, is given by the projection

m̄⊥ = lam̄
a = X× f̄⊥ −Kt− K̄G (κnt− τgl) . (D3)

Integrating the torque per unit area by a region D, given
by Eq. (D2), we find that the membrane is subject to a
total torque about the precession axis, M =

∫

dsm⊥ =
m
∫

dAnz ẑ× n.
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Appendix E: Alternative expressions

Up to a constant term, the energy density (2) could
also be written as HM = gab (ea × ẑ) · (eb × ẑ), or in
terms of the antisymmetric tensor εab = n · (ea × eb), as
HM = gabε

acεbdezce
z
d.

Moreover, squaring the identity ẑ = gabezaeb + nzn, we
have 1 = gabezae

z
b + nz2. This relation permits us to

express the magnetic energy density (2) in a coordinate-
free manner in terms of the squared projection of the unit
normal vector onto the precession axis:

HM =
m

2
nz2 . (E1)

In this manner it becomes clear that HM does not de-
pend on how the beads are distributed in the membrane.
The constant term involving the magnetic modulus can
be absorbed in the intrinsic surface tension, σ → σ−m/2.
Variation of the energy density (E1) leads to the follow-
ing expressions of the magnetic parts of the tangential
components of the stress tensor and of the EL equation

fab
M = −m

2
nz2 gab , (E2a)

εM = m

(

Kabezae
z
b −

K

2
nz2
)

, (E2b)

which are equivalent to the corresponding expressions in
Eqs. (5a) and (7), up to the redefinition of σ mentioned
above.

Appendix F: Geometric quantities

Here we present the expressions of the geometric quan-
tities required to calculate the EL Eq. for each geometry,
and defined by (a = 1, 2)

X = (X1, X2, X3) , embedding functions (F1a)

ea = ∂aX adapted tangent vectors

n =
e1 × e2

|e1 × e2|
unit normal vector (F1b)

gab = ea · eb metric tensor (F1c)

Kab = ea · ∂bn curvature tensor (F1d)

Almost planar membranes : (∇h = ∂xhx̂+ ∂yhŷ)

X(x, y) = xx̂ + yŷ + h(x, y)ẑ ; (F2a)

ex = x̂+ ∂xhẑ , ey = ŷ + ∂yhẑ ,

n =
1

√

1 + (∇h)2
(−∂xhx̂− ∂yhŷ + ẑ) ; (F2b)

gab = δab + ∂ah∂bh ; (F2c)

Kab =
−∂a∂bh

√

1 + (∇h)2
. (F2d)

Vertical cylinder : Cylindrical basis { ˆ̺, ϕ̂, ẑ}, with ˆ̺ =
cosϕx̂+ sinϕŷ and ϕ̂ = − sinϕx̂+ cosϕŷ;

X(ϕ, z) = ̺0 ˆ̺ + zẑ ; (F3a)

eϕ = ̺0ϕ̂ , ez = ẑ n = ˆ̺ ; (F3b)

gϕϕ = ̺20 , gϕz = 0 , gzz = 1 ; (F3c)

Kϕϕ = ̺0 , Kϕz = Kzz = 0 . (F3d)

Horizontal cylinder : Cylindrical basis {x̂, ϑ̂, ˆ̺}, with

ϑ̂ = cosϑŷ − sinϑẑ and ˆ̺(ϑ) = sinϑŷ + cosϑẑ;

X(x, ϑ) = xx̂ + ̺(ϑ) ˆ̺(ϑ) ; (F4a)

ex = x̂ , eϑ = ∂ϑ̺ ˆ̺ + ̺ϑ̂ ,

n =
1

√

̺2 + (∂ϑ̺)2

(

̺ ˆ̺− ∂ϑ̺ϑ̂
)

; (F4b)

gxx = 1 , gxϑ = 0 , gϑϑ = ̺2 + (∂ϑ̺)
2 ; (F4c)

Kxx = Kxϑ = 0 ,

Kϑϑ =
̺
(

−∂2
ϑ̺+ ̺

)

+ 2(∂ϑ̺)
2

√

̺2 + (∂ϑ̺)2
. (F4d)

Helicoid : Cylindrical basis { ˆ̺, ϕ̂, ẑ}, with ˆ̺ = cosϕx̂ +
sinϕŷ and ϕ̂ = − sinϕx̂+ cosϕŷ;

X(̺, ϕ) = ̺ ˆ̺ + pϕẑ ; (F5a)

e̺ = ˆ̺ , eϕ = ̺ϕ̂+ pẑ ,

n =
1

√

̺2 + p2
(−pϕ̂+ ̺ẑ) ; (F5b)

g̺̺ = 1 , g̺ϕ = 0 , gϕϕ = ̺2 + p2 ; (F5c)

K̺̺ = Kϕϕ = 0 , K̺ϕ =
p

√

̺2 + p2
. (F5d)
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