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We propose a Standing Wave Decomposition (SWD) approximation to Gaussian Process regres-
sion (GP). GP involves a costly matrix inversion operation, which limits applicability to large data
analysis. For an input space that can be approximated by a grid and when correlations among data
are short-ranged, the kernel matrix inversion can be replaced by analytic diagonalization using the
SWD. We show that this approach applies to uni- and multi-dimensional input data, extends to
include longer-range correlations, and the grid can be in a latent space and used as inducing points.
Through simulations, we show that our approximate method applied to the squared exponential
kernel outperforms existing methods in predictive accuracy per unit time in the regime where data
are plentiful. Our SWD-GP is recommended for regression analyses where there is a relatively large
amount of data and/or there are constraints on computation time.

I. INTRODUCTION

Gaussian Process (GP) regression [1] is powerful as well
as elegant because of its ability to transform correlation
into prediction. This nonparametric and Bayesian ap-
proach needs not specify a predetermined function that
the data points fit to, and only assumes that any subset
of data follows a joint Gaussian distribution character-
ized by the mean and covariance functions. GP is equiv-
alent to a class of neural networks which have infinite
number of hidden units [2, 3]. As a flexible model for
highly complicated functions and physical processes, GP
is a familiar tool for physicists in many context, such as
predicting melting temperature [4], inter-atomic poten-
tial [5], fractional Brownian motion [6], DNA replication
kinetics [7, 8], gravitational waveform [9], etc. Further-
more, in the machine learning community, GP can be
used for classification [1, 10], data dimension reduction,
and signal reconstruction [11].

However, the scalability of GP regression is limited by
its O(N3) training time for N training data points. In-
verting the kernel matrix is the critical step which essen-
tially transforms correlation into prediction. The task of
speeding up the GP training algorithm has been taken
up by computer scientists who use inducing points and
Nyström method to approximate the kernel matrix [12],
and, recently, by physicists [13, 14] who employ quan-
tum algorithms capable of solving system of linear equa-
tions [15]. In this paper, we propose an approximating
GP based on sparsifying the kernel matrix of a latent grid
in the input space, which allows us to analytically diago-
nalize the kernel matrix by employing standing wave de-
composition. Observing that correlation among nearest
neighbors is most relevant to prediction, we approximate
the full matrix with its tridiagonal matrix.1 This tridi-
agonal matrix has analytic eigenvalues and eigenvectors
resembling standing waves, a fact that has been exten-
sively exploited in the studies of electronic structure of

1 In a tridiagonal matrix, the only non-zero values are on the main
diagonal, superdiagonal, and subdiagonal.

solids [16]. If the training data is on a grid, like time-
series data, then the approximated kernel matrix can be
immediately used in the usual GP prediction algorithm.
When the given data is not on a grid in the input space,
a latent grid is treated as inducing points and the func-
tion values are obtained by Bayesian projection from off-
grid data. Our approach works best for the squared ex-
ponential (SE) kernel matrix, a very popular kernel for
many machine learning tasks, because the off-diagonal
matrix elements decay rapidly. For high dimensional grid
data, the SE kernel matrix has a Kronecker product form,
which makes the present approach applicable as well.

One constraint of the approximated GP is that the ra-
tio of length scale for SE kernel to the grid spacing, `/∆,
has an upper bound because the kernel matrix must be
semi-definite positive, which is guaranteed if the small-
est eigenvalue is positive. The tridiagonal approximation
works well when the neglected off-diagonal matrix ele-
ments have little effect on those small eigenvalues and
the corresponding eigenvectors. An improvement to the
tridiagonal approximation and the upper bound for `/∆
is the pentadiagonal approximation, which has the next
nearest correlation included in the kernel matrix. The
pentadiagonal matrix, however, does not have simple
form of eigenvalues and eigenvectors. Thus, using the
eigenvector of tridiagonal kernel matrix, we reconstruct
the kernel matrix so that the next-nearest neighbor cor-
relation terms are included and the eigenvectors are still
exact with eigenvalues modified. In the end, a simula-
tion with synthetic data is carried out with comparison
with other GP approximations to highlight the condition
under which the proposed method is at its best.

The rest of the paper is structured as follows. In
Sec. II, an overview of GP regression along with an an-
alytic example in terms of eigen basis decomposition is
given. In Sec. III, we introduce the approximate tridiag-
onal kernel matrix for a one-dimensional grid input and
derive the standing wave eigen basis. The extension to
two-dimensional grid input using the Kronecker product
is provided in Sec. IV. To account for longer-ranged cor-
relations, we demonstrate in Sec. V the reconstruction
of a nearly pentadiagonal kernel matrix which allows the
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standing wave decomposition Gaussian process (SWD-
GP) to be applied with longer length scale. Based on the
above techniques, in Sec. VI our SWD-GP is then com-
bined with a latent grid (LG) to model data that do not
do not lie on a grid. Our LGSWD-GP method is com-
pared with popular existing methods, and the simulated
accuracy and run time are reported in Sec. VII. Sec. VIII
is devoted to the investigation of the time complexity of
our approximated methods and a comparison with some
popular algorithms. In the end, the related works and a
brief discussion are given in Sec. IX and Sec. X, respec-
tively.

II. OVERVIEW OF GP

Here we give an overview of GP by considering two
unobserved values y1 and y2 at two distinct locations x1

and x2, respectively. To make it a tractable problem,
we may assume the values follow a joint normal distri-
bution, namely p(y1, y2) = N (0,Σ) with zero mean and
convariance matrix

Σ = σ2

(
1 c
c 1

)
. (1)

The parameter c is a function of distance |x1 − x2|,
which quantifies the correlation between y1 and y2. Here,
|c| ≤ 1 so that Σ is positive semidefinite. It is then
interesting to see how the joint distribution adjusts it-
self after one of the variable, say, y2 has been observed.
The way the correlation is transformed into prediction is
seen by first decomposing the inverse of kernel matrix us-
ing the eigenvalues and eigenvectors, which yields Σ−1 =
1
λ+

v+vT
+ + 1

λ−
v−vT

−. The eigenvalues are λ± = σ2(1± c)
and the corresponding eigenvectors read

v± =
1√
2

(
1
±1

)
. (2)

After some algebra, we find that the joint distribution is
factorized into,

p(y1, y2) ∝ exp

[
− (y1 − cy2)2

2(1− c2)σ2

]
exp(− y2

2

2σ2
) . (3)

Thus, the adjusted distribution for y1 becomes condi-
tional on the observed y2. It is easy to verify that
p(y1|y2) = p(y1, y2)/p(y2) is still Gaussian, and the up-
dated mean and variance µ1|2 = cy2 and σ2

1|2 = (1−c2)σ2,

respectively.
Generalizing the above procedure to a multivariate

joint distribution over the set of observed and unob-
served variables {y1, y2, · · · , yN , y∗} with a general ker-
nel matrix K constitutes the GP regression, which is to
seek the underlying latent function y = f(x) mapped
from the input points {x1,x2, · · · ,xN ,x∗}. Because of
the Gaussianity, the correlation among the data leads to
the conditional distribution over the unobserved variable,

p(y∗|y1:N ), which is another Gaussian N (µ∗, σ
2
∗) with up-

dated mean,

µ∗ = kT∗K
−1y , (4)

and variance,

σ2
∗ = σ2 − kT∗K

−1k∗ , (5)

where K denotes the kernel matrix associated with train-
ing data {(xi, yi)}Ni=1 and k∗ denotes the kernel matrix
between training and test points (x∗, y∗). Corresponding
to the above example, K = σ2, k∗ = cσ2, and y = y2.

In the following, we shall focus on the kernel ma-
trix taken from the squared exponential kernel function
[K]lm = k(xl,xm),

k(x,x′) = σ2
d∏
i=1

exp

[
− (xi − x′i)2

2`2

]
, (6)

where the product form appears due to the separable
sum of squared distance along each dimension. The hy-
perparameters include the variance σ2 and length scale
`.

III. STANDING WAVE EIGEN BASIS

It is observed that the kernel matrix K given by (6) has
a simplified form if all the input points {x}Mi=1 are on an
one-dimensional grid since the matrix elements k(xi,xj)
only depend on |i− j|, as in a Toeplitz matrix [17]. Here
we make further simplification by retaining only the most
relevant terms, namely the matrix elements [K]ij with
|i − j| ≤ 1, which is quite legitimate when the grid unit
length ∆ is larger than length scale. Notice that the rest

of matrix elements decrease exponentially as α(i−j)2 with

α = exp(−∆2

2`2 ). The eigenvalue equations Kv = λv in
terms of the coefficients of eigenvector v = [c1, c2, ..., cM ]
read

αc2 + (1− λ̃)c1 = 0 , (7a)

αci+1 + (1− λ̃)ci + αci−1 = 0 , (7b)

(1− λ̃) cN + αcN−1 = 0 , (7c)

where the index i = 2 · · ·M−1 applies in (7b). The eigen-

values are rescaled as λ̃ = λ/σ2. We observe that (7) is
similar with the energy Hamiltonian for an electron hop-
ping on semi-infinite one-dimensional tight-binding lat-
tice [16]. Defining the z-transform associated with an
auxiliary {ci}∞i=1 as F (z) =

∑∞
i=1 ciz

1−i, we find from

(7a) and (7b) that F (z) = c1[1 − (α + (1 − λ̃)z)/(αz2 +

(1 − λ̃)z + α)]. Moreover, the sequence {ci} can be re-
produced from the contour integral [16],

ci = c1

[
δi1 −

1

2πi

∮
F (z)zi−2dz

]
, (8)
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followed by employing the residue theorem. We note that
the pair of poles of F (z) are z1,2 = e±iθ with which the

eigenvalues λ̃ = 1 + 2α cos θ can be consistent. Thus, the
coefficients are shown to be,

ci =
sin iθ

sin θ
c1 , (9)

for all nonnegative i. The final stage is to take care of
(7c), which is not necessarily consistent with the solution

in (9) with arbitrary θ and λ̃. The only way to make (9)
a valid solution is to set the auxiliary term cM+1 = 0,
which results in

θk = k
π

M + 1
, k = 1, 2, 3, · · · ,M , (10)

and the corresponding eigenvalues,

λk = σ2(1 + 2α cos θk) . (11)

Consequently, we may conclude the orthonormal
standing wave basis,

[vk]j =
sin jθk√
M+1

2

. (12)

Fig. 1 demonstrates four pairs of symmetric eigenvec-
tors {vk, vM−k+1} of an 20×20 kernel matrix K. As
seen from the identity in (10), it is interesting to re-
mark that the arguments θk and θM−k+1 always sum up
to π, which suggests the symmetric coefficients [vk]i =
(−1)i+1[vM−k+1]i. Such symmetry is also manifested in
Fig. 1 where, for instance, in (a) the star symbols rep-
resenting v20 alternate its sign whereas the dot symbols
associating with v1 do not. Finally, the inverted kernel
matrix can be simply decomposed as,

K−1 =

M∑
k=1

1

λk
vkvT

k . (13)

Here, we note that the same sparse approximation
which results in the tridiagonal K must also be ap-
plied to the kernel matrix k∗ so that the product k∗K

−1

shall result in a row vector which is one at the jth ele-
ment and zero otherwise when the test point coincides
with the jth training point. The expression for K−1

in (13) suggests that the prediction mean of SWD-GP
shall pass through the training points if all the eigenval-
ues are positive. Next, we employ the inverted kernel
matrix (13) in the GP learning algorithm (4) and (5),
and apply this SWD-GP to the on-grid data, {xi}10

i=1,
evenly spaced in [0, 1], and {yi = f(xi)} with f(x) =
x cos(2πx) sin[24π(x+ 0.03)]. Figure 2(a) and (b) repre-
sent the results using `/∆ = 0.27 and 0.54, respectively.
The prediction mean associated with smaller `/∆ passes
through all the training points, but is not able to cap-
ture the longer-distance features. Away from the train-
ing points, the variance σ∗ is close to the value of σ used
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FIG. 1. Four pairs of eigenvectors vk and vM−k are shown
for the tridiagonal kernel matrix with M = 20. Circle sym-
bols denote the components of [vk] while the star symbols
represent its symmetric partner [vM−k+1]. Panels (a) to (d)
correspond to k = 1, 2, 3, and 4, respectively.

in (11), which is expected from the squared exponential
kernel. On the other hand, the prediction mean and vari-
ance are optimal for the used length scale `/∆ = 0.54 be-
cause further increased `/∆ shall lead to zero or negative
eigenvalues in (11).

IV. MULTI-DIMENSIONAL GRID

For higher dimensional input x ∈ Rd, the squared ex-
ponential kernel function as an instance of a product ker-
nel allows a compact and efficient representation of kernel
matrix, namely [18]

K = K(1) ⊗K(2) ⊗ · · · ⊗K(d) (14)

where the matrix element associated with the nth di-
mension is given by K

(n)
x,x′ = k(xn, x

′
n). Fig. 3 shows the

regression results for data generated from the function
f(x, y) = sin(4πx) cos(4πy) using the 10x10 (middle) and
20x20 (right) grid, respectively, and ` = 0.03.

V. KERNEL MATRIX RECONSTRUCTION

Thus far it has been seen how the eigen decomposi-
tion of kernel matrix using the standing wave basis in
(12) leads to the GP prediction given one-dimensional
(Figure 2) and two-dimensional grid inputs (Figure 3).
Although the size of grid and the ensuing length ∆ can
be varied arbitrarily, the length scale always has a con-
straint. More precisely, demanding the positive semi-
definiteness of kernel K, which is guaranteed if the min-
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(a)

(b)

FIG. 2. Regression using on-grid data (red dots) generated
by the function f(x) = x cos(2πx) sin[4π(x + 0.03)] (black
dashed line). Blue line and yellow dashed lines represent the
prediction mean µ∗ of SWD-GP and plus/minus one variance
σ∗ around the mean. The 10 grid points are uniformly placed
in [0, 1]. The length scale are ` = 0.03 and 0.06, respectively,
for (a) and (b).

imum eigenvalue λ in (11) is positive, leads to the con-

straint `/∆ < 1/
√

2 ln 2 ≈ 0.85. However, an exact GP
in which every correlation term is retained is free of such
constraint on `. In the following, we show how to incre-
mentally relax the constraint by reconstructing the kernel
matrix.

As a motivation, let us examine Fig. 4(a) where
the results from exact GP (green star) and tridiagonal
SWD-GP (blue solid line) for data generated by y =
sin(12πx) cos(2πx) (black dashed line) using `/∆ = 0.57
for a grid of 20 points in [0,1] are shown. First, we note
that the GP and the present SWD-GP have identical
results, suggesting that the SWD-GP is indeed a good
approximation. Secondly, both results here are unable to
capture the curvature feature near the extreme points,
e.g. at x = 1/8 there is a subtle discrepancy against the
true function. Besides the fact that there are not suffi-
ciently many data points near these points, increasing the
length scale may work, as suggested by the exact GP re-
sult (green star) in Fig. 4(b) where a longer `/∆ = 0.76 is
used. However, our simulation shows that directly apply-
ing the tridiagonal SWD-GP with `/∆ = 0.76 does not

(a) (b) (c)

FIG. 3. Two-dimensional XY space grid used for regression
with data generated by function f(x, y) = sin(4πx) cos(4πy).
The function values are represented by the color code. (a) The
true function. (b) The regression result using 10×10 grid. (c)
20×20 grid.

generate as a smooth prediction mean as the case with
`/∆ = 0.57 does. This is because as the length scale
approaches the upper bound, the smallest eigenvalue ap-
proaches zero and creates numerical instabilities.

In order to extend the applicable range for `/∆, we are
interested in restoring the next nearest neighbor (NNN)
correlation terms proportional to α4 in K, i.e. the matrix
elements Kij with |i− j| = 2. Inspection of (7) suggests
that the eigenvalue acquires a new contribution so that
the new eigenvalue λ(1) reads

λ(1)/σ2 = 1 + 2α cos θ + 2α4 cos 2θ (15)

while the eigenvectors are left intact. In fact, neither the
eigenvalues nor the eigenvectors are exact because the
correlation among the grid points is not symmetric near
the boundary.

Instead of solving for the true eigenvalues and true
eigenvectors of the kernel matrix K containing the NNN
correlation, we reconstruct the kernel matrix which is still
diagonalized by the eigen basis in (12) and has eigenval-
ues as in (15). We apply the following identity to recon-

struct K̃,

M∑
k=1

cos(qθk)[vkvTk ]ij =
1

2(M + 1)
[a(i− j + q)+

a(i− j − q)− a(i+ j + q)− a(i+ j − q)]

(16)

with the coefficient defined as,

a(p) ≡
M∑
k=1

cos
kp π

M + 1
=
−1− (−1)p

2
, (17)

for p ∈ Z2N+2\{0} and M otherwise. It is easy to see
that the constant (q = 0) together with the first cosine
term (q = 1) in (15) gives rise to the original tridiago-
nal matrix. As for the last term in (15) corresponding
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to q = 2, the RHS of (16) associated with i − j = ±2
equal 1

2 , which leads to the desired NNN correlation
term. However, special care is needed for the cases for
i+ j − q = 0 and i+ j + q = 2N + 2, which, respectively,
correspond to (i, j) = (1, 1) and (i, j) = (M,M) with
q = 2. It is easily verified that the reconstructed kernel
matrix elements corresponding to the end points in grid
are K̃11 = K̃MM = K11 − σ2α4.

x

y

(a)

x

y

(b)

FIG. 4. Regression results from the SWD-GP (blue lines) and
exact GP (green star symbols) in comparison with the true
function (black-dashed lines). Red dots denote the training
data points generated by f(x) = cos(2πx) sin(12πx) (black
dashed line) on the grid of 20 points in [0, 1]. (a) Fit is
obtained by applying tridiagonal SWD-GP and use length
scale ` = 0.03. (b) Fit is obtained from the reconstructed
pentadiagonal kernel matrix with ` = 0.04.

In summary, the reconstructed pentadiagonal kernel
matrix K̃, which contains the NNN correlation terms,
reads,

K̃ij = Kij + σ2α4
[
δ|i−j|,2 − δi,j(δi,1 + δi,M )

]
. (18)

As shown in Fig. 4(b), we employ the pentadiagonal K̃
using `/∆ = 0.76 to repeat the regression task, and we
are able to reproduce the same result as the exact GP
with same length scale. Moreover, including NNN corre-
lation also improves the accuracy near the local extreme
points.

VI. LATENT GRID SWD-GP

A. Bayesian Data Projection

When applying to data (X,y) where the input points
X are randomly selected, we shall construct a latent grid
Xg so that the previous SWD-GP approach can be em-
ployed. The missing components are the corresponding
function values g evaluated at these grid points. Now we
assume that g is a set of random variable and we find
the most probable values ḡ in the Baysian approach. We
first calculate the posterior distribution associated with
g,

p(g|Xg,X,y) ∝

(
N∏
i=1

p(yi|xi,Xg,g)

)
p(g|Xg) (19)

where we have assumed independence among the given
data. The likelihood function follows the usual GP pre-
dictive distribution by assuming g is known,

p(y|x,X,g) = N (KxgK
−1
gg g, σ2

x) , (20)

and the variance at x is denoted by

σ2
x = Kxx −KxgK

−1
ggKgx + σ2

N (21)

with σ2
N being the variance of the observation noise. The

prior has its zero mean distribution with the kernel ma-
trix Kgg,

p(g|Xg) = N (0,Kgg) . (22)

With some tedious calculations, the posterior distribu-
tion can be shown to be,

p(g|Xg,X,y) = N (ḡ, A−1) , (23)

where the updated variance is encoded in

A−1 = KggQ
−1Kgg , (24)

with the matrix

Q = Kgg +KgxΛ−1Kxg . (25)

The diagonal matrix Λ = diag(σ2
x1
, σ2

x2
, · · · , σ2

xN
). Fur-

thermore, the mean vector ḡ represents the most proba-
ble projected function values,

ḡ = KggQ
−1KgxΛ−1y . (26)

Now, by marginalizing the latent function values g, we
may obtain the predictive distribution for the function
value y∗ associated with the test point x∗,

p(y∗|x∗) = N (K∗gK
−1
gg ḡ, σ2

∗ +K∗gQ
−1Kg∗) , (27)

which is consistent with the results presented in [19, 20].
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B. Perturbation and Matrix Inversion

Unlike the grid data to which the inverted kernel ma-
trix K−1

gg is readily applicable, here we have to invert the
matrix Q in (25) in order to find the mean of predictive
distribution in (27). To approach this problem, we shall
eventually write Q in terms of the SW eigen basis of Kgg.
Hence, the second term in (25) is treated as perturbation
so that the eigenvalues in (11) as well as eigenvectors in
(12) are modified. Here, to make the calculation more ef-
ficient and accessible, we regroup theM eigenvectors {vi}
with i = 1, 2, · · · ,M into pairs {vi, vM+1−i}, and for ease
of notation we use v and v̄ to represent the two eigen-
vectors in a given pair. Projecting Q onto the subspace
spanned by v and v̄, we arrive at the following eigenvalue
equation for each pair, and the associated eigenvalue χ
and eigenvector u can be obtained by solving,(

λ+ ε δ
δ λ̄+ ε̄

)
u = χu . (28)

The value ε is the first-order correction to unperturbed
eigenvalue λ due to the term vTQv, while δ is the cross
term from v̄TQv. It can be shown that the updated
eigenvalues and eigenvectors are given by,

χ± = β+ ±
√
β2
− + δ2 , (29)

and (
u+

u−

)
=

(
cosφ sinφ
− sinφ cosφ

)(
v
v̄

)
(30)

with the rotation angle φ specified by

tanφ =

√
β2
− + δ2 + β−√
β2
− + δ2 − β−

. (31)

The parameter β± = [(λ+ ε)± (λ̄+ ε̄)]/2. Consequently,
the matrix Q has the following decomposition,

Q−1 =
M∑
i=1

uiu
T
i

χi
. (32)

Next, we apply the the above approach to the data gen-
erated by the function y = x cos[8π(x + 0.15)] cos(2πx)
with input x randomly selected from [0,1]. Figure 5(a)–
(b) and (c)–(d) show the results for the training number
|X| = 200 and 1000, respectively. Panels (a) and (c)
in Fig. 5 are obtained in first-order perturbation, or by
setting δ = 0 in (28). With a larger number of training
points [Fig. 5(c) versus (a)], the most probable projected
function values ḡ are closer to the true function values on
the grid. Panels (b) and (d) correspond to a fuller second-
order perturbation treatment by considering the eigen-
vector correction due to nonzero δ in (28). Incremental
improvements, and in particular near the end points, can
be seen by comparing (a) versus (b), or (c) versus (d).

x

y

x

y

x

y

x

y

FIG. 5. Illustration of latent grid SWD-GP 1st order δ = 0 in
(28)] and 2nd order (δ > 0) perturbation using data generated
from function f(x) = x cos[8π(x+0.15)] cos(2πx) (red dashed
line) plus noise. A latent grid of 20 points and ` = 0.03 are
used, and the prediction mean is denoted by the blue solid
line. (a) First-order purturbation with 200 data points. (b)
Second-order perturbation with same parameters as (a). (c)
Same as (a) but with 1000 data points. (d) Same as (b) but
the number of data points increased to 1000.

The above results suggest that the inference through
Eq. (26) using the approximated matrix inversion is ef-
fective for larger |X| and noise parameter σN/σ of order
10−1. To get insight into why it works, we shall show
that the second matrix in Eq. (25) can be approximated
as a linear combination of identity and super/sub diago-
nal matrices,

[KgxΛ−1Kxg]ij = aδij + bδ|i−j|=1 +Rij , (33)

where a and b stand for the averages of diagonal and
super/sub diagonal matrix elements, respectively. The
last term R denotes the residual matrix. Therefore, the
first two terms in Eq. (33) commute with Kgg while R is
small if the variations among the diagonal and super/sub
diagonal matrix elements are weak. We demonstrate in
Fig. 6(a)–(c) that larger values of σN/σ result in weaker
variation among the matrix elements. This is further
confirmed in panels (d) and (e) where the ratio of stan-
dard deviation over mean along diagonal [Fig. 6(d)] and
super/sub diagonal [Fig. 6(e)] lines are sufficiently small
for σN/σ > 0.1.

VII. SIMULATIONS

We compare the method presented here with three ex-
isting, popular methods—exact GP, fully independent
training conditional GP (FITC-GP) [19, 20], and Ker-
nel Interpolation for Scalable Structured GP (KISS-GP)
[21]. The main quantities of interest are data efficiency—
the amount of data needed to reach a certain accuracy—
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FIG. 6. Variation of matrix elements of KgxΛ−1Kxg, the sec-
ond matrix in Eq. (25). Upper panel: results for grid size
|Xg| = 10 and number of training points |X| = 200 with dif-
ferent noise parameters σN/σ. From (a) to (c), decreasing
σN/σ’s leads to stronger variations among the matrix ele-
ments along the diagonal, superdiagonal, and subdiagonal.
Lower panel: Using |Xg| = 50 and |X| = 1000, the ratio of
standard deviation over the mean for matrix elements along
the diagonal (d) and sub/super diagonal (e) against σN/σ is
obtained. A critical value σN/σ = 0.1 is suggested for valid
perturbation.

and run time. We apply all methods to a toy regression
problem, where the x-values are drawn uniformly ran-
dom from [0, 1], and the corresponding y-values are given
by y = sin( 5π

x+0.1 ) + Normal(0, 0.22). Accuracy is mea-

sured by standardized mean-square error (SMSE). Run
time is measured on a 2015 model of MacBook with 1.1
GHz dualcore Intel Core M and 8GB 1600MHz LPDDR3.
All methods are implemented in MATLAB 2017b. We
largely followed an example2 in the documentation of
the GPML toolbox for using the existing methods. For
the implementation of our latent grid standing wave de-
composition GP (LGSWD-GP), we used only first-order
correction on the eigenvalues (i.e., setting δ = 0 in (28)),
since Fig. 5 suggests that the improvement from adding
second-order correction on the eigenvectors is relatively
small compared to increasing the number of training
points. Our code is available at: TBA.

For all methods, the squared-exponential kernel is
used. The kernel’s overall variance, σ2, is fixed at 0.52,
and the variance of likelihood is set to the true value, 0.22.
Exact GP and KISS-GP are allowed to optimize for the
kernel’s length scale, and FITC-GP is allowed to opti-
mize for the location of the inducing points in addition
to the kernel’s length scale. These hyper-parameter op-
timization are limited to 20 iterations. Note that for our
LGSWD-GP, the length scale can be determined without

2 www.gaussianprocess.org/gpml/code/matlab/doc/demoGrid1d.m

invoking hyper-parameter optimization (see Sec. V). The
number of inducing points are fixed at 300 throughout
for FITC-GP, KISS-GP, and LGSWD-GP. The inducing
grid in KISS-GP and LGSWD-GP are evenly spaced in
[0, 1]. The test points are 500 evenly spaced points in
[0, 1]. Example fits are shown in Figure 7.
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FIG. 7. Example fits of (a) exact GP with N = 3000, (b)
FITC-GP with N = 104, (c) KISS-GP with N = 104, and (d)
our LGSWD-GP with N = 5 × 105, where N is the number
of training data points. The different N used in each method
corresponds to the largest N used for that method in Fig. 8.
Black line represents the true underlying function; markers
represent the mean of the predictive distribution at the test
points. For (d), red circles and blue crosses correspond to
tridiagonal and pentadiagonal reconstruction, respectively.

Figure 8 shows the accuracy and run time as a function
of number of training points for the different methods.
From the error plot, we see that our method has a lower
data efficiency compared to existing methods; that is,
compared to those methods, the LGSWD-GP needs more
data to achieve the same accuracy. Nevertheless, the run-
time plot shows that the poorer data-efficiency is offset
by the radical increase in computational efficiency. The
LGSWD-GP is roughly two orders of magnitude faster
than FITC-GP and KISS-GP and is capable of reach-
ing or even surpassing these methods in accuracy in the
same amount of time. A trade-off between speed and
accuracy is expected. What is interesting is that these
seemingly bold tridiagonal and pentadiagonal kernel ap-
proximations provides enough data efficiency to make the
trade off favorable.

Next, we analyze the accuracy by breaking
the test region into five equi-sized regions, i.e.,
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FIG. 8. SMSE error (a) and run time (b) as a function of num-
ber of training points for exact GP, FITC-GP, KISS-GP, and
LGSWD-GP. LGSWD-3 and LGSWD-5 correspond to the
tridiagonal and pentadiagonal approximations, respectively.
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FIG. 9. Accuracy by regions. SMSE is calculated for the 100
test points in regions (a) x = [0, 0.2) and (b) x = (0.2, 0.4).
In theory, all the training points affect the prediction at every
test point; thus, the x-axis is the same as that in Fig. 8. But
effectively, only roughly one fifth of the training points (those
in the test region) contributed to the fit. The error plots for
the remaining regions (0.4, 0.6), (0.6, 0.8), and (0.8, 1] all look
similar to (b).

[0, 0.2), (0.2, 0.4), . . . , (0.8, 1]. Note that the effec-
tive length scale of the underlying function is different
in each region (see Fig. 7). Let the effective length scale
in region r be ξr and the number of training points in
ξr be nr = N ξr

L . The ratio ∆/ξr and nr are useful in
characterizing the accuracy behavior of GP. First, all
methods do relatively poorly when nr is small (Fig. 9(a))
and relatively well when nr is large enough (Fig. 9(b)),
which is just a restatement of classical sampling theory.
Second, methods that depend on inducing points reach
a plateau when ∆/ξr is relatively large (Fig. 9(a)) and
thus are limited in data efficiency. Third, when ∆/ξr
becomes sufficiently small (Fig. 9(b)), this limitation
no longer exists. Based on these observations, we
recommend using exact GP when both ∆/ξr and nr
are sufficiently large, FITC-GP or KISS-GP when ∆/ξr
is sufficiently small and nr is sufficiently large, and
LGSWD-GP when ∆/ξr is sufficient small and nr is
large. In other words, among the methods shown, our
method is the most accurate and time-efficient one in

the regime where the latent grid is relatively fine and
the number of training points is large.

VIII. TIME COMPLEXITY ANALYSIS

For N training data points on the grid, (4) and (13)
gives the predictive mean for SWD-GP:

µ∗ =

N∑
i=1

1

λi
(kT∗ vi)(v

T
i y). (34)

Since the second inner product has time complexity
O(N), the sum has a total time complexity of O(N2).
The space complexity of SWD-GP is O(N). For M
inducing points on a grid and N training data points,
from Sec. VI one can show that the predictive mean for
LGSWD-GP is

µ∗ =

M∑
i=1

1

χi
(k∗gui)(u

T
i KgxΛ−1y), (35)

where χi = λi + uTi KgxΛ−1Kxgui. The time complex-
ity for computing χi is O(pN), where p is the number
of bands used in the approximation (p = 3 for tridiago-
nal and p = 5 for pentadiagonal); thus, the sum gives a
total time complexity of O(MpN). The same time com-
plexity is found for computing Λ−1 and Q−1. The space
complexity of LGSWD-GP is O(pN) with the bottleneck
being at representing Kgx.

Next, for clarity of comparison, we show how our
method differs from other methods in terms of the other
methods’ bottleneck operation: Exact GP requires com-
posing the kernel matrix and inverting it. The bottle-
neck operation is the inverse, which has time complexity
O(N3) for N training points. If the data lie on a grid,
the SWD method can compose the inverted kernel ana-
lytically via (13), although in practice, as shown by (34),
we never need to explicitly represent the inverted kernel
matrix for computing the predictive mean.

The bottleneck operation of FITC-GP is the matrix
multiplication KgxΛ−1Kxg in (25), which has time com-
plexity O(M2N) for M inducing points and N training
points. If the inducing points lie on a grid, that multipli-
cation in LGSWD-GP with p-diagonal kernel approxima-
tion has time complexity O(MpN), because each row in
Kxg has at most p non-zero elements. Note that one can
choose not to explicitly compute this particular matrix
product as it is absorbed into the χi’s in (35). In ad-
dition, whenever a matrix inverse operation is required,
such as in (21), LGSWD-GP benefits from being able to
construct the inverse directly.

KISS-GP, which also uses inducing points on a grid,
replaces all the operations in computing the predic-
tive mean in (27) by solving a linear system K̃∗xK̃

−1
xx y

through linear conjugate gradients, where K̃ab ≈
KagK

−1
ggKgb [21]. The optimization has time complex-

ity O(SqN) because the product K̃xxy can be computed
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in O(qN) given the sparse approximation made by KISS-
GP and because the optimization can be fixed to S steps.
The contribution of q and k in KISS-GP correspond to
the contribution of p and M in LGSWD-GP, respectively:
p and q stem from sparse approximations, while M and a
good choice for S depend on the number of contributing
eigenvalues.

Lastly, we mention that there are a couple of ways to
further speed up SWD-GP and LGSWD-GP. First, as a
result of the sine functions appeared in {vk}Nk=1, we may
rewrite the mean and variance in (4) and (5) in terms
of Discrete Fourier Transformed vector for the training
data {yi}Ni=1,

[FFTθ(y)]j =

N∑
k=1

eikθjyk , (36)

where θj = jπ/(N + 1). As such, the mean function
becomes

µ∗ =
2

N + 1

N∑
i=1

Im[FFTθ(k∗)]i Im[FFTθ(y)]i
λi

, (37)

and the predicting variance is

σ2
∗ = σ2 − 2

N + 1

N∑
i=1

{Im[FFTθ(k∗)]i}2

λi
. (38)

For SWD-GP, this reduces the time complexity from
O(N2) to O(N logN), analogous to how Toeplitz struc-
ture reduces the time complexity of matrix multiplica-
tion. For LGSWD-GP, although this will not help re-
duce the bottleneck time complexity, it can help re-
duce many of the operations involving matrix products
with the eigenvectors. Second, the sum in the eigen-
decomposition of (12) and (32) can be computed inde-
pendently and is directly amenable to parallelization.

IX. RELATED WORK

Previous works have also taken advantage of struc-
tured data to increase the computational efficiency of GP.
For input data that lie on a grid, [22, 23] sidestep the
matrix inversion by solving K−1y with gradient-based
methods. Importantly, the optimization is fast because
Toeplitz / circulant structure can be exploited for fast
matrix multiplication. These fast multiplications take
on forms similar to (36). For input data that do not lie
on a grid, [21] (KISS-GP) introduces a latent grid, finds
a sparse, approximate representation of Kxg in terms of
Kgg, and makes inference using the same kind of opti-
mization problem in [22, 23]. The sparsification in KISS-
GP and that in our LGSWD-GP share the same flavor in
ignoring the diminishing long-range correlations among
data points. Recently, [24] further extended this opti-
mization approach to efficiently handle high dimensional

data by applying the Nyström approximation for eigen-
decomposition and by exploiting properties of Kronecker
and Khatri-Rao products for fast matrix multiplication.
Overall, our method and these methods all take advan-
tage of the grid structure to form fast matrix multiplica-
tion; however, our method differs in that it overcomes the
matrix inversion bottleneck via analytic diagonalizaion
rather than optimization.

Variational approaches are another popular method for
GP inference. Variational methods turn the inference of
the predictive mean and variance into an optimization
problem [25]. Variational GP often provides more accu-
rate prediction than FITC [26] and has been made pro-
gressively faster through a series of development—from
stochastic variational inference [27], to distributed vari-
ational inference [28], to asynchronous distributed vari-
ational inference [29]—to handle billions of input data.
Similar to our work and [24], [30] uses grid inducing
points with stochastic variational inference, which allows
added efficiencies in computation via the Kronecker and
Khatri-Rao products.

X. DISCUSSION

In this paper we present an analytic approach to in-
vert a class of kernels for GP regression with grid inputs
through standing wave decomposition (SWD). This class
of kernels is roughly Toeplitz 3 and thus approximates
all translational invariant kernels with grid inputs. Here
we show results for tridiagonal Toeplitz kernels, which
can be thought of as approximating a square exponential
kernel by keeping only the nearest neighbor correlation
among data points, and a pentadiagonal kernel, which in-
cludes the next nearest neighbor correlation. We demon-
strate that the approach can be extended to approximate
product kernels in higher dimensions. Lastly, we apply
the approach to a latent grid of inducing points so as to
handle training data that do not lie on a grid.

From the perspective of signal processing, one may re-
gard the grid as a collection of input points at which
the function is sampled. Thus, the grid representation
of data and function is sufficient for prediction and re-
construction as long as the underlying functions have a
finite Nyquist rate.

Our SWD approach is unique in that the inversion of
the (approximated) kernel matrix is done analytically.
This analytic inverse, along with the sparse matrices in-
duced by keeping only the most important correlations
among data points, makes this approach computation-
ally very efficient (Sec. VIII). Furthermore, the optimal
length scale hyperparameter in the SWD approach can
be determined without the need to invoke optimization

3 The tridiagonal kernel is exactly Toeplitz. For pentadiagonal
kernel, (18) shows which elements are modified and by how much.
The procedure is readily extendable to more diagonials.
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(Sec. V). When applied to training data on a grid, we
see that the predictions of SWD-GP are very similar to
those of exact GP if the two use the same length scale
(Fig. 4), although vastly faster. For data that do not
lie on a grid, our results show that LGSWD-GP can be
both faster and more accurate than existing approxima-
tion GP methods when the number of training points is
large (Figs. 8 and 9). We expect that this advantage
will be magnified in situations where a highly precise la-
tent representation is not crucial, such as GP classifica-
tion. The analytical form of the eigen-decomposition also
allows straight-forward parallelization of our approach,
which we leave to future work. Other future directions

include extending the approach to kernel approximations
with longer-range correlation, to other types kernel such
as periodic kernels, and to latent grid in high dimensions.
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