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Transition state theory formally provides a simplifying approach for determining chemical reaction
rates and pathways. Given an underlying potential energy surface for a reactive system, one can
determine the dividing surface in phase space which separates reactant and product regions, and
thereby also these regions. This is often a difficult task, and it is especially demanding for high-
dimensional time-dependent systems or when a non-local dividing surface is required. Recently,
approaches relying on Lagrangian descriptors have been successful at resolving the dividing surface
in some of these challenging cases, but this method can also be computationally expensive due
to the necessity of integrating the corresponding phase space function. In this paper, we present
an alternative method by which time-dependent, locally recrossing-free dividing surfaces can be
constructed without the calculation of any auxiliary phase space function, but only from simple
dynamical properties close to the energy barrier.

I. INTRODUCTION

Predicting the rate of a chemical reaction is a cen-
tral problem in the study of reaction dynamics. Their
dynamics are governed by classical equations of motion
(EOM) driven by potentials whose primary nontrivial
features can be approximated locally via rank-1 saddle
points. Transition state theory (TST) [1–13] then pro-
vides a powerful framework for predicting both reaction
rates and pathways. The theory is based on the identifi-
cation of the dividing surface (DS) between reactant and
product regions associated with a given rank-1 saddle
which ipso facto defines these regions. In order to obtain
exact —that is, not approximate— reaction rates, the
DS must be free of recrossings. Otherwise, TST overes-
timates the reaction rate due to the incorrect attribution
of non-reactive flux to the reaction rate. The central
idea for constructing non-recrossing DSs is to resolve the
good action-angle variables in phase space or the associ-
ated normally hyperbolic invariant manifold (NHIM) via
its stable and unstable manifolds [14–17].

Local approximations to the saddle geometry can be
applied in the case of low temperatures because passage
over the rank-1 saddle is dominated by trajectories that
cross near it. Harmonic approximations significantly re-
duce the computational effort because the reaction rate
can then be directly formulated from the properties of the
potential energy surface at the saddle. For higher-energy
contributions which can feel the anharmonic potential in
the vicinity of the saddle, normal form expansions [18–
26] can be used to construct non-recrossing DSs to the
desired accuracy.

A significant challenge arises if the DS is required for a
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potential energy surface whose reaction dynamics is de-
termined by a non-local region, or that is time-dependent
such as when external forces are present. In recent years,
this challenge has been successfully approached using La-
grangian descriptors (LDs) [27–30], which define a phase
space function allowing for the identification of both sta-
ble and unstable manifolds. Despite their success in the
application to non-autonomous systems [31–33], we rec-
ognize that LD-based methods can require a consider-
able amount of computational time making it difficult
to systems with large parameter sets or many degrees of
freedom.

In this paper, we introduce a method that efficiently
computes discrete points on the NHIM from very sim-
ple dynamical properties close to the energy barrier. A
benefit of this algorithm lies in its avoidance of the cal-
culation of any phase space function at the cost of the
integration of a relatively small number of trajectories.
It converges exponentially allowing for the determination
of high-accuracy DSs with relatively small computational
effort. The computational efficiency in the determination
of these high-accuracy points can be extended through
machine-learning algorithms —e.g., based on neural net-
works [34]. Specifically, a lower-resolution grid of points
can be used as a training set for a neural net thereby
providing a non-iterative and smooth interpolation of the
NHIM. The recrossing-free dividing surface attached to
this NHIM can then be used in TST to compute reaction
rates by propagating trajectories from a suitably chosen
initial distribution [33]. Note that application of TST
requires the knowledge of which time each trajectory
changes from reactant to product, and this is achieved
with the help of a recrossing-free time-dependent divid-
ing surface [33–35].

The paper is organized as follows: In Sec. II A we give a
brief review of LDs and discuss a method based on nested
iterations with LDs to obtain points on the NHIM. We
then introduce in Sec. II B an efficient binary contrac-
tion method that does not rely on LDs, but which ac-
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complishes the same goal. Important aspects of the con-
traction method are discussed in Secs. II B 1 and II B 2
in more detail. In Sec. III we compare the performance
of the binary contraction method with the LD approach
in a practical application. The accuracy of the NHIM is
also verified by showing that points initially arbitrarily
close to the NHIM deviate away from it in time with-
out recrossing it. The limits and implications of this
method in addressing higher-dimensional rank-1 saddles,
multiple-ranked saddles, roaming reactions and quantum
effects are discussed in Sec. IV. Conclusions are drawn in
Sec. V.

II. METHODS

We describe a driven chemical reaction as a dynami-
cal system with d degrees of freedom of which only one
is unstable and the remainder are stable. The unstable
degree of freedom is used to classify the reaction coordi-
nate, while we refer to the stable degrees of freedom that
are coupled to the dynamics of the reaction coordinate
as the bath coordinates. We model such a system by a
Hamiltonian with a time-dependent rank-1 saddle driven
by the underlying time-dependent potential.

When d = 1, the dynamics in the vicinity of a saddle
point can be surmised by the hyperbolic fixed points in a
moving frame. Stable and unstable manifolds —that is,
continuous sets of points in phase space where trajecto-
ries either exponentially approach or leave the hyperbolic
point, respectively— can be attached to the hyperbolic
points. A critical observation lies in the fact that dynam-
ical propagation contracts the stable manifold towards,
and expands the unstable manifold away from the hyper-
bolic fixed points.

In higher dimensions (d > 1), the notion of a hyper-
bolic fixed point is generalized by the (2d−2)-dimensional
NHIM mentioned above, and points on the stable and
unstable manifolds exponentially approach to or depart
from the NHIM. Once the NHIM is known, a recrossing-
free DS with increased dimension 2d−1, which separates
the (2d)-dimensional phase space into the product and
reactant region can easily be attached to the NHIM [33].

A. Nested iterations with LDs

An LD is generally defined via the integral of a positive
definite function along a trajectory within a given time
interval [t−τ, t+τ ]. Here, t describes the time coordinate
and τ is some positive value large enough to cover the
relevant dynamics. The phase space function used to
define the LD is the velocity v of the particle, which
makes the LD,

L(x,v, t) =

∫ t+τ

t−τ
||v(t′)|| dt′ , (1)
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FIG. 1. (a) Two-dimensional LD plot in the xvx-plane. The
function ∆v(x) is given by the difference in vx between the
extreme values for the forward and backward time component
of the LD. (b) Plot of the function ∆v(x) for the figure in (a).
The dotted line indicates the value zero of the function.

a measure of the arc length of the corresponding trajec-
tory [28, 29, 32, 35]. An example of a two-dimensional
LD plot in the xvx-plane computed for the open, three-
dimensional model system introduced later in Sec. III
is shown in Fig. 1(a). The connection between the LD
and the stable and unstable manifolds is surprisingly sim-
ple [29, 30]. Since, the dynamics on these manifolds is
extremal, said property is also true for the LD. To be
precise, a particle on such a manifold approaches the
fixed point either in forward or in backward time. Con-
sequently, the LD reveals minimal values on each of the
manifolds and their intersection —that is, the hyperbolic
fixed point— is a (local) minimum of the LD.

One can use this approach to construct an algorithm
to find the intersection of the closure of the stable and
unstable manifold —i.e. the NHIM— as follows. First,
at a given reaction coordinate x and bath coordinates,
one can perform an optimization in the reaction velocity
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vx extremizing the LD so as to obtain the associated po-
sitions of stable and unstable manifolds [see Fig. 1(a)].
From this, one computes their difference ∆v(x) in vx-
space as a function of the reaction coordinate x. A one-
dimensional root search for ∆v(x0) = 0 [see Fig. 1(b)]
yields the position x0, where the stable and unstable
manifold intersect, i.e., a point on the NHIM. This can be
repeated for a set of bath coordinates and time to obtain
the time-dependent NHIM up to the desired resolution.

Although one can readily identify the intersection of
the manifolds in Fig. 1(a), the construction of a high ac-
curacy image requires the computation of tens of thou-
sands of trajectories and is only useful for demonstration
purposes or to determine a rough estimate for the lo-
cation of the NHIM. Meanwhile, the computation of a
single value of ∆v(x) —i.e., a search of the manifolds for
a fixed reaction coordinate— requires the computation of
several LDs because extremal optimizations are in gen-
eral iterative processes. This is especially taxing as one
considers the fact that root finding methods, in and of
themselves, are also iterative and require multiple values
of ∆v(x) to provide accurate results. Doing so, provides
a multiplicative factor to the required amount of com-
putations. For multidimensional systems, these nested
iterations have to be performed several times over large
sets of bath coordinates, and this may easily result in the
integration of several millions of trajectories.

B. Binary contraction method

In this section, we provide an alternative method that
does not explicitly search for the stable and unstable
manifolds, and thereby avoids the nested iterations of
the LD approach. To accomplish this, we assume that
the saddle region is an appropriate interval in the reac-
tion coordinate [x1, x2] that covers the relevant dynamics
of the time-dependent saddle. It can be found by sam-
pling LDs in the region of interest, and has the structure
shown in Fig. 1(a). In doing so, we are able to discrimi-
nate between four types of trajectories tied to one of four
regions in phase space as shown in Fig. 2(a). Trajec-
tories in regions (II) and (IV) are characterized as re-
active, going from reactants to products and vice versa,
respectively. Trajectories in regions (I) and (III) are non-
reactive, remaining as products to products and reactants
to reactants, respectively. Thus, every trajectory can be
assigned to one of the four regions by integrating it for-
ward and backward in time. While trajectories near the
stable manifolds can spend a long time in the vicinity of
the NHIM, they will eventually leave the barrier region
when they are integrated sufficiently long. For orbits ex-
tremely close to the stable manifolds, the classification to
the regions (I)-(IV) may nevertheless depend on round-
ing errors or numerical errors of the integrator, which
means that the stable and unstable manifolds and thus
the crossing point on the NHIM can only be determined
with finite numerical accuracy. For the benchmark ex-
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FIG. 2. (a) View of the phase space in reaction coordinate and
velocity. Stable and unstable manifold intersect and divide
the plane in four regions marked by (I)–(IV). The dynam-
ics in a region is dictated by the dynamics on the manifolds
that form the region’s boundary. The arrows indicate the
general path of trajectories in a positive time direction. (b)
The intersection of the manifolds is found by contracting a
quadrangle with a binary search algorithm applied to all four
edges consecutively. The highlighted quadrangle is the result
of contracting all edges of the quadrangle with the vertices 1,
2, 3, and 4 once in a counter-clockwise manner. The arrows
with encircled numbers indicate the order and direction how
vertices are replaced. The procedure can be iterated to obtain
the intersection point with the desired accuracy.

ample of this work, the accuracy of the integrator was
sufficient for the determination of the four regions as il-
lustrated in Sec. III A.

Our binary contraction method is based on the obser-
vation that in the immediate vicinity of the hyperbolic
point, the reactive and non-reactive regions are arbitrar-
ily close to each other but still separated by stable and
unstable manifolds. This is illustrated in Fig. 2(a). The
manifolds associated with the NHIM determine the par-
ticle dynamics in the saddle region due to the asymptotic
behavior of the related trajectories. More precisely, these
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regions determine which directions a particle enters and
leaves the saddle region.

Similar to the LD method, we integrate the trajecto-
ries forward and backward in time. However, here the
propagation of the trajectories does not occur for a fixed
amount of time, rather each of the integrations in forward
and backward time is stopped when the particle leaves
the saddle region. This allows us to determine which
of the four regions corresponds to the given initial phase
space point. Using this information, we can construct a
quadrangle in the xvx-plane, with each vertex in one of
the four regions. The algorithm is then divided into five
steps [see Fig. 2(b)]:

1. Construct a quadrangle with each of its vertices in
one of the four regions (I)–(IV).

2. Determine the midpoint between two adjacent ver-
tices of the quadrangle.

3. Determine which region the midpoint corresponds
to by integrating the dynamics in forward and back-
ward time.

4. Use the new vertex to replace the vertex in the same
region. (If the region identified for the midpoint is
not identical to either of the original points, per-
form an error correction as described in Sec. II B 2.)

5. Repeat steps 2–4 for all edges, e.g., in a counter-
clockwise manner as in Fig. 2, until the longest edge
of the quadrangle is below a desired error tolerance.

As implemented in our scheme, we walk through all the
edges counterclockwise and successively in step 5. Alter-
native walks through the edges could provide faster or
slower convergence, and the optimization of this scheme
would be of possible interest to future work.

In Fig. 2(b), we illustrate these steps for the initial
quadrangle with vertices {1, 2, 3, 4}. First, our algorithm
contracts vertices 1 and 4, leading to the new quadrangle
{5, 2, 3, 4}. It is then applied to vertices 5 and 2 to create
{5, 6, 3, 4}. In the next step, the new vertex 6 (and not
one of the old vertex points as in the two previous steps)
is replaced with vertex 7 resulting in {5, 7, 3, 4}. After
step 4, the highlighted quadrangle {5, 7, 3, 8} is created.
Since this process is similar to a binary search algorithm,
we call this method binary contraction.

Repeating this for all lines on the quadrangle ensures
the reduction of mutual phase space distances between
the vertices. Since reducing these distances in the xvx-
plane to an arbitrarily small size is only possible in the
immediate vicinity of the hyperbolic point, we know that
the quadrangle converges towards it. By computing
the geometric center of the quadrangle in that plane, we
have found the position of the hyperbolic point with an
accuracy proportional to the size of the final quadrangle.
By applying this method on a xvx-plane of the reaction
coordinates in a higher dimensional system, one can con-
struct the NHIM (xNHIM(y,vy, t0), vNHIM

x (y,vy, t0)) for

any suitable set of bath coordinates (y,vy) and initial
time t0. As the contraction still takes place on a two-
dimensional plane, the efficiency of the method is not
impacted by additional dimensions in phase space.

An efficient initialization of the quadrangle in step 1, as
well as the error correction in step 4 will now be discussed
in detail in Secs. II B 1 and II B 2, respectively.

1. Exception handling in initialization

An important prerequisite of the binary contraction
method is the identification of good initial conditions for
the iteration. To construct a valid quadrangle, we rely on
the observation that the shape of the cross which divides
the regions in the xvx-plane is robust in the vicinity of the
hyperbolic fixed point. The construction of the NHIM
can be visualized readily with the help of an LD plot such
as that shown in Fig. 1(a). One first constructs a quad-
rangle by guessing a phase space coordinate (x0, vx0

) in
the vicinity of the NHIM. Then one constructs the ver-
tices with constant shifts in the xvx-plane ∆x and ∆vx,
such that (x0 ± ∆x, vx0

) and (x0, vx0
± ∆vx) form the

vertices of the quadrangle.
For the initial set of selected vertices, we integrate the

trajectories and compare their types to see if the con-
struction of the required quadrangle was successful in
the sense that there is a vertex in each of the 4 regions.
If this is true, the iteration will start at this point. How-
ever some constructions may fail because they rely on
both the accuracy of the guess and the size of the shifts.
To mitigate this issue, one may increase shift sizes and
try again. In addition, one can implement a bookkeeping
method to combine valid vertices constructed from dif-
ferent shift sizes. Optimally, using a light-weight extra-
polation method to determine an accurate guess from
previous results would allow for a quick construction.
This is especially efficient if we construct the NHIM in
higher dimensions from a few already known points. In
practice, a combination of both extrapolation and man-
aged variation of shift sizes have proven to be highly ef-
fective for constructing the initial quadrangle.

One could also try to use an LD-based approach to
determine points on the stable and unstable manifolds
from which one can interpolate a valid quadrangle. How-
ever, because of the efficiency of the iteration in the bi-
nary contraction method, it would be ill-advised to use
an initialization method that is computationally taxing
in comparison, as the latter could dominate the runtime
and overall cost of the computation.

2. Increasing convergence for edge cases

Depending on the choice of the underlying EOM and
plane, one may run into situations where the borders of
the regions form a heavily distorted cross. In situations
like these, it is possible that the quadrangle contracts into
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FIG. 3. Edge case where a convergence failure may occur.
The connecting line between vertices in regions (I) and (IV)
crosses into other regions. The highlighted midpoint is de-
tected to be in region (III) instead of (I) or (IV), and a new
vertex is searched in the direction orthogonal to the connect-
ing line. The dotted lines highlight the new quadrangle after
a successful correction.

an area where the intersection is not present, see Fig. 3.
For an iteration that is completely inclusive —that is,
one that contracts the quadrangle into a subset of itself—
this may lead to convergence problems. This issue arises
when the midpoint of a line is not contained in either
of the regions of the original vertices, as this is the only
situation where the quadrangle does not contract further.
In that case, we allow the quadrangle to expand outward
in the direction where the failure was discovered. The
expansion is controlled such that the possible contraction
of the iteration dominates.

Using this procedure, the quadrangle not only con-
tracts around the intersection of the region, but also tum-
bles along the stable and unstable manifolds to actively
center itself around the intersection. Although this pro-
cedure adds computational complexity to the iteration,
we have observed that, on average, there is no noticeable
increase in the computational time required. On the con-
trary, it even accelerates the computation for situations
where convergence might not have been reached other-
wise because it opens the quadrangle to more equally
wrap around the targeted fixed point.

III. RESULTS

A. Tracing the motion of the NHIM for fixed bath
coordinates

In this section, we will compare the performance of
the LD-based method with nested iterations to the bi-
nary contraction method by computing several points on
the NHIM and comparing the average number of nec-
essary trajectories to compute a single point as a func-
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FIG. 4. Number of integrated trajectories per hyperbolic fixed
point found as function of the error tolerance of the algo-
rithms. The difference in the scaling behavior is evident.

tion of the algorithm’s tolerance. This is accomplished
by applying both methods to a three-dimensional model
system with a time-dependently moving rank-1 saddle.
To this end, we use a three-dimensional extension of the
two-dimensional time-dependent potential introduced in
Ref. [33]

V (x, y, z, t) = Eb exp
(
−a[x− x̂ sin (ωxt)]

2
)

+
ω2
y

2

(
y − 2

π
arctan (2x)

)2

+
ω2
z

2

(
z − 2

π
arctan (2x)

)2

, (2)

and we use parameters in simulation units Eb = 2, a = 1,
x̂ = 0.4, ωx = π, ωy = 2, and ωz = 1. With these pa-
rameters, the potential has a periodicity of T = 2. The
algorithms are set to find a point on the NHIM for fixed
bath coordinates y = z = vy = 0 and vz = 0.5, for 200
equidistant, initial time coordinates during one oscilla-
tion period, thereby tracing the NHIM’s time-dependent
motion. Note that this tracing of the NHIM is not, in
general, a trajectory of the system, since the results of
the algorithms are not propagated by the dynamics of the
system to find further points on the NHIM. Each point is
computed separately. This allows us to control the accu-
racy of the data, as well as the specific bath coordinate
for which the point is computed.

The results in Fig. 4 show that the binary contraction
method requires far fewer trajectories to reach a given
tolerance. Especially for very low tolerances, i.e., for
high accuracy, it is highly superior in terms of perfor-
mance. The difference in scaling is also quite evident,
as the contraction exhibits an exponential convergence
to the hyperbolic fixed point, while the performance of
the nested iterations is clearly worse, even for large val-
ues of the tolerance. The fast convergence of the binary
contraction method is evident from the fact that it di-
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FIG. 5. The binary contraction in action for the model system
with the time-dependent potential given in Eq. (2). One iter-
ation corresponds to one counter-clockwise revolution around
the quadrangle, contracting each side once, starting from the
vertex line {1, 2} of the quadrangle {1, 2, 3, 4}. In the next it-
eration the quadrangle {2, 7, 4, 8} is obtained. The LD values
are shown through shading in the background, where one can
clearly discern a cross which corresponds to the stable and
unstable manifolds in the darkest shade. The quadrangles
rapidly contract towards their intersection.

vides the lengths of the quadrangle’s sides by roughly
two for every successful iteration, therefore contracting
the quadrangle exponentially fast. This is further illus-
trated in Fig. 5, where we apply the method to the model
system with the time-dependent potential (2) for a spe-
cific choice of the bath coordinates and time. [Note that
in this figure we use a different set of bath coordinates
and time compared to Fig. 1(a).] The quadrangles of the
first and second iteration are marked by numbers 1–8,
and the dashed lines complete intermediate quadrangles.
The quadrangles converge rapidly towards the intersec-
tion of the stable and unstable manifolds as marked by
the largest values of the LD shown in the darkest shade
of gray.

B. Propagation of trajectories initially in close
vicinity to the NHIM

Using our method to efficiently compute high-accuracy
points on the NHIM for any suitable bath coordinate
and time, we investigate how trajectories deviate from
the NHIM when they are started in its close vicinity. In
this section, we present the results of an investigation for
the model system defined in Eq. (2) as it is sufficient to
illustrate the behavior even for systems with higher di-
mensionality as long as our earlier stated assumptions are
satisfied. The binary contraction was performed to find
the reaction coordinate (xNHIM, vNHIM

x ) of the NHIM for
a given bath coordinate. The results of the contraction,
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FIG. 6. The x-coordinate distance of trajectories from
the NHIM over time. The trajectories were propagated from
the close vicinity of the NHIM with the initial position at
increasing distances from the NHIM as listed in the legend
and seen in the curves from left to right. Trajectories starting
closer to the NHIM stay in its vicinity for a longer amount of
time before deviating from it.

performed for several different accuracies, are used as ini-
tial conditions for trajectories starting very close to the
NHIM.

The properties of the resulting trajectories are shown
in Fig. 6. Trajectories initially in close vicinity to the
NHIM deviate exponentially from it, as expected. Those
trajectories that started closer to the NHIM stay in its
vicinity for longer time. When trajectories were initi-
ated on the numerically computed NHIM, the situation
was rather different in that they would also eventually
deviate from the NHIM. In order to limit this deviation,
the accuracy of the calculation had to be increased by
continuing the iterative process of the contraction un-
til the longest distance between adjacent vertices of the
quadrangle was below 10−12. It is important to note that
this accuracy only applies to the discrete dynamics of the
numerically integrated system. The analytical accuracy
of the trajectories is bound by the accuracy of the inte-
gration method used, as well as the size of the discrete
time step. Nevertheless, for the discrete dynamics, this
degree of accuracy can be achieved as long as sufficient
numerical stability is provided. Consequently, the binary
contraction method can indeed be used to obtain stable
and accurate estimates of the NHIM up to the desired
numerical accuracy.

IV. DISCUSSION

This work has been restricted to rank-1 saddles primar-
ily because the construction of the time-dependent tran-
sition state trajectory remains a challenge even for this
case. Much of the early work [36–38] on the transition
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state trajectory utilizing perturbation theory presumes
such rank-1 saddles but is restricted by its radius of con-
vergence. The more recent use of the LD was meant to
get around this problem but it can be challenging when
there is higher dimensionality [27–33]. Below, we discuss
the extent to which the binary contraction method ad-
dresses this challenge, and the implications on activated
reactions with more general features.

The simple geometric structure drawn in, for example,
Fig. 2 may appear to be a challenge to the binary contrac-
tion method for rank-1 barriers with multidimensional
orthogonal coordinates. However, regardless of dimen-
sionality the method contracts onto a quadrangle whose
vertices reside on a two-dimensional plane via the mid-
points between the vertices. The number of trajectories
necessary to contract the quadrangle to the desired size
does not increase with the dimensionality of the problem.
However, the complexity of the equations of motion that
may increase in higher dimensional systems will increase
the computational cost of computing these trajectories.
Additionally, one needs to keep in mind that even though
the complexity of the contraction for a single point on
the NHIM scales modestly with the dimensionality of
the equations of motion, the number of points needed
to characterize the NHIM for a given system may scale
exponentially with its dimensionality, depending on how
one chooses to construct the DS.

Although we have been successful in applying the bi-
nary contraction method to a system with a rank-1 saddle
potential, we have yet to see how well it can be applied to
systems with higher ranked saddle potentials, such as the
systems investigated in Refs. 39–41, where the classifica-
tion of trajectories is not as straightforward as for rank-
1 saddle potentials because the characterization of the
dynamics does not necessarily contract to the requisite
quadrangle. Thus it remains to be seen if this approach
can be extended to higher-rank saddles.

Another challenge to this and related approaches lies
in its possible application to roaming pathways for which
no clear saddle exists [42–46]. However, if a NHIM exists
for such a reaction, then that NHIM would by defini-
tion not be associated to a rank-1 saddle potential. This
makes the identification of trajectories for the binary con-
traction even more of a challenge because the requisite
quadrangle does not exist. Thus the future use of a bi-
nary contraction method to address roaming reactions
would require a classification scheme to identify which
trajectories —on a contracted two-dimensional surface—
are reactive or not.

Finally, an additional concern for this and other related
approaches addressing chemical reactions using transi-
tion state theory is whether quantum effects provide a
significant correction [47, 48]. Indeed, one of the con-
structions of semiclassical transition state theory has re-
lied on the construction of the good-action variables that
underlie the NIHM [20, 21, 49–52]. Thus, one possible
new direction beyond this work would involve the use
of the binary contraction method to construct not use

the NIHM but also an underlying coordinate space that
represents the nonseparable but integrable coordinates
needed to construct a semiclassical rate formula. How-
ever, this would only be necessary if the chosen system
exhibits significant quantum effects. The present work is
restricted to fully classical treatments of driven chemical
reactions. Such dynamics arises frequently, particularly
when heavy molecular motions occur in solution.

V. CONCLUSION

We have introduced an exponentially converging algo-
rithm that finds hyperbolic fixed points, i.e. the NHIM
for non-autonomous systems with rank-1 saddles. The
binary contraction method achieves the high efficiency
by avoiding the explicit search for stable and unstable
manifolds in nested iterations with LDs. The method re-
lies on the identification of the saddle region, as well as
the ability to describe the system in coordinates where
the stable and unstable manifold intersect within two-
dimensional planes in phase space.

By independently performing the algorithm on several
two-dimensional planes one can map the NHIM via the
bath coordinates of the system. We have discussed ideas
to make this method reliable for difficult phase space
structures, and methods for efficient initialization even
in higher dimensions.

We have confirmed the relative stability of the
NHIM computed numerically from the binary contrac-
tion method. Specifically, trajectories initiated on the
time-dependent NHIM remain in its vicinity over time
subject to the accuracy of the initial computation of the
NHIM. The binary contraction method presented here
is a useful advance to the existing set of methods for
the comprehensive handling of driven chemical reactions.
Using TST, fluxes and rates in such systems can be ob-
tained by propagating a large ensemble of trajectories
and determining the time when each trajectory crosses a
time-dependent DS [33]. The binary contraction method
provides, in a first step, a large set of points on the NHIM,
which can then be used, in a second step, to construct a
time-dependent and locally recrossing-free DS by inter-
polating the discrete points on the NHIM. As with the
other approaches —listed in the discussion in Sec. IV,—
it remains challenging to address high dimensionality in
the degrees of freedom orthogonal to the reaction coor-
dinate. This could perhaps be resolved using machine
learning methods, such as neural networks, as demon-
strated in Ref. 34.
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Nonlinearity 24, 527 (2011).

[41] Y. Nagahata, H. Teramoto, C.-B. Li, S. Kawai, and
T. Komatsuzaki, Phys. Rev. E 88, 042923 (2013).

[42] D. Townsend, S. A. Lahankar, S. K. Lee, S. D. Cham-
breau, A. G. Suits, X. Zhang, J. L. Rheinecker, L. B.
Harding, and J. M. Bowman, Science 306, 1158 (2004).

[43] I. S. Ulusoy, J. F. Stanton, and R. Hernandez, J. Phys.
Chem. A 117, 10567 (2013).

[44] F. A. L. Maugière, P. Collins, G. Ezra, S. C. Farantos,
and S. Wiggins, Chem. Phys. Lett. 592, 282 (2014).

[45] J. M. Bowman and A. G. Suits, Phys. Today 64, 33
(2011).

[46] J. M. Bowman, Mol. Phys. 112, 2516 (2014).
[47] W. H. Miller, J. Chem. Phys. 61, 1823 (1974).
[48] B. C. Garrett, A. D. Isaacson, R. T. Skodje, and D. G.

Truhlar, J. Phys. Chem. 86, 2252 (1982).
[49] W. H. Miller, Faraday Discuss. Chem. Soc. 62, 40 (1977).
[50] W. H. Miller, R. Hernandez, N. C. Handy, D. Jayatilaka,

and A. Willetts, Chem. Phys. Lett. 172, 62 (1990).
[51] T. L. Nguyen, J. F. Stanton, and J. R. Barker, J. Phys.

Chem. A 115, 5118 (2011).
[52] J. R. Barker, T. L. Nguyen, and J. F. Stanton, J. Phys.

Chem. A 116, 6408 (2012).

http://dx.doi.org/10.1088/0305-4470/37/35/L02

	Binary contraction method for the construction of time-dependent dividing surfaces in driven chemical reactions
	Abstract
	Introduction
	Methods
	Nested iterations with LDs
	Binary contraction method
	Exception handling in initialization
	Increasing convergence for edge cases


	Results
	Tracing the motion of the NHIM for fixed bath coordinates
	Propagation of trajectories initially in close vicinity to the NHIM

	Discussion
	Conclusion
	Acknowledgments
	References


